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Abstract:   
 
We show how the Koide relationships and associated triplet mass matrices can be generalized to 
derive the observed sum of the free proton and neutron rest masses in terms of the up and down 
current quark masses and the Fermi vev to six parts in 10,000, which sum can then be solved for 
the separate neutron and proton masses using the neutron–proton mass difference derived by the 
author in an recent, separate paper.  The opposite charges of the up and down quarks are 
responsible for the appearance of a complex phase exp(iδ) which in turn can be used to adjust 
these mass relationships to unlimited accuracy.  For the moment, phase angle δ=1.99328580 is 
an empirical parameter, but it does appear to be possibly related to the CP-violating phase of 
weak interactions for three fermion generations.  The Koide generalizations developed here 
enable these proton and neutron mass relationships to be given a Lagrangian formulation based 
on proton and neutron field strength tensors that contain constituent quark wavefunctions and 
masses.  In the course of development, we also uncover new Koide relationships for the 
neutrinos, the up quarks, and the down quarks.   
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1.  Introduction 
 
In an earlier paper [1], the author introduced the thesis that baryons are Yang-Mills 

magnetic monopoles.  One of the relationships predicted in this paper, equation [11.22] therein, 
predicted the electron rest mass as a function of the up and down quark masses, namely: 

( ) ( )
3
23 / 2e d um m m π= − , (1.1) 

with the factor of ( )
3
22π  emerging from a three-dimensional Gaussian integration.  Based on a 

“resonant cavity” analysis of the nucleons whereby the energies released or retained during 
binding are directly dependent upon the masses of the quarks contained within the nucleons, we 
also predicted the latent, intrinsic binding energies of a proton and neutron in [12.12] and [12.13] 
of [1], to be given by: 

( ) ( )
3
22 4 4 / 2 7.640679P u d d u d uB m m m m m m MeVπ= + − + + =  (1.2) 

( ) ( )
3
22 4 4 / 2 9.812358N d u u u d dB m m m m m m MeVπ= + − + + = . (1.3) 

This predicts a latent binding energy of 8.7625185 MeV per nucleon for a nucleus with an equal 
number of protons and neutrons, which is remarkably close to what is observed for all but the 
very lightest nuclides, as well as a total latent binding energy of 493.028394 MeV for 56Fe, in 
contrast to the empirical binding energy of 492.253892 MeV.  This is understood to mean that 
99.8429093% of the available binding energy in 56Fe is applied to inter-nucleon binding, with the 
balance of 0.1570907% retained for the intra-nucleon confinement of quarks.  It was also noted 
that this percentage of energy released for inter-nucleon binding is higher in 56Fe than in any 
other nuclide, which further explains that although the quarks come closer to de-confinement in 
56Fe than in any other nuclide (which also explains the “first EMC effect”), they do always 
remain confined, as emphasized by the decline in this percentage beyond 56Fe. 

In a second paper [2], the author showed how the thesis that baryons are Yang-Mills 
magnetic monopoles together with the foregoing “resonant cavity” analysis can be used to 
predict the binding energies of the 1s nuclides, namely 2H, 3H, 3He and 4He, to at least parts per 
hundred thousand and in most cases parts per million, and also to predict the difference between 
the proton and neutron masses according to: 

( ) ( )
3
23 2 3 / 2N P u d µ d uM M m m m m m π− = − + − . (1.4) 

This relationship, originally predicted in [6.16] of [2] to about seven parts per ten million in 
AMU, was later taken in [9.1] of [2] to be an exact relationship, and all of the other prior mass 
relationships which had been developed were then nominally adjusted to implement (1.4) as an 
exact relationship.  The review of the solar fusion cycle in section 8 of [2] served to emphasize 
how effectively this resonant cavity analysis can be used to accurately predict empirical binding 
energies, and suggested how applying gamma radiation with the right resonant harmonics to a 
store of hydrogen may well have a catalyzing effect for nuclear fusion. 
 At the heart of these numeric calculations were the two outer products [3.9] and [3.10] in 
[2] for the proton and the neutron, with components given by [3.11] and related relationships 
developed throughout section 2 of [2].  In particular, the two matrices which stood at the center 
of these successful binding calculations were the 3x3 Yang-Mills diagonalized matrices K of 

mass dimension ½ with components ( ) ( )diag , ,P d u uK m m m=  for the proton and 
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( ) ( )diag , ,N u d dK m m m=  for the neutron, where um  is the “current” mass of the up quark 

and dm  is the current mass of the down quark. 

 What is very intriguing about these K matrices (which we designate as such to reference 
Koide), is that although they originate out of the thesis that baryons are magnetic monopoles, 
they have a form very similar to matrices which may be used in the so-called Koide mass 
formula [3] for the charged leptons, namely: 

( )2

1 2 3

1 2 3

3
2

m m m
R

m m m

+ +
= ≅

+ +
. (1.5) 

Above, when we take 1 em m= , 2m mµ=  and 3m mτ=  to be the charged lepton masses, the ratio 

3 / 2R ≅  gives a very precise relationship among these masses.  Indeed, if we use the 2012 PDG 
data 0.510998928 0.000000011em MeV= ± , 105.6583715 0.0000035m MeVµ = ±  and 

1776.82 0.16m MeVτ = ±  [4], we find using the mean experimental data that 1.500022828R =  

which is very close to 3/2.  However, when we use the extremes of the experimental data ranges, 
specifically, the largest possible tau mass and the lowest possible mu mass, we obtain 
R=1.5000024968.  Although this is an order of magnitude closer to 3/2 than the ratio obtained 
from the mean data, is still outside of experimental errors.  This means that while 3 / 2R ≅  is a 
very close relationship, even accounting for experimental error, it is still approximate.  For this to 
be within experimental errors, it would have to be possible to obtain some 3 / 2R≤  for some 
combination of masses at the edges of the experimental ranges, and it is not.  So in the 
application of the Koide relationships to various mass triplets, the question becomes, not whether 
a triplet has a ratio exactly equal to 3/2, because no triplet does have this exact relationship, but 
rather, how close to 3/2 any given ratio is, and more importantly, what the meaning is of this 
ratio and deviations from this ratio. 
 The similarities of the matrices developed by the author in [1] and [2] and those 
developed by Koide in [3] is highlighted if we define a Koide matrix generally as: 

1

2

3

0 0

0 0

0 0

AB

m

K m

m

 
 

≡  
 
 
 

. (1.6) 

Then, the two latent binding energy relationships (1.2) and (1.3) may be written: 

( ) ( )
( ) ( )

( )

3
2

3 3
2 2

3
2

21 1
( ) ( ) 2 4 4 / 2

2 2

0 0 0 0 0 0 0 0
1

0 0 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0

P AB BA AA BB u d d u d u

d d d d

u u u u

u u u u

B K K K K Tr K Tr K K m m m m m m

m m m m

Tr m m Tr m m

m m m m

π
π π

π

= − = − ⊗ = + − + +

      
      

= − ⊗      
      
      
      

,(1.7) 
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( ) ( )
( ) ( )

( )

3
2

3 3
2 2

3
2

21 1
( ) ( ) 2 4 4 / 2

2 2

0 0 0 0 0 0 0 0
1

0 0 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0

N AB BA AA BB d u u u d d

u u u u

d d d d

d d d d

B K K K K Tr K Tr K K m m m m m m

m m m m

Tr m m Tr m m

m m m m

π
π π

π

= − = − ⊗ = + − + +

      
      

= − ⊗      
      
      
      

,(1.8) 

where, based on (1.6), in (1.7) we have set 1 dm m≡  and 2 3 um m m= ≡ , and in (1.8) we have set 

1 um m≡  and 2 3 dm m m= ≡ .  These originate in the author’s thesis in [1] that baryons are Yang-

Mills magnetic monopoles.  Above, ⊗  designates an outer matrix product. 
 On the other hand, setting  1 em m= , 2m mµ=  and 3m mτ=  in (1.6), we may write: 

2
1 2 3( ) AB BATr K K K m m m= = + + , (1.9) 

( )2

1 2 3( ) AA BBTr K K K K m m m⊗ = = + + . (1.10) 

Then, using (1.9) and (1.10), Koide relationship (1.5) for charged leptons may be written as: 

( )2

1 2 3

2
1 2 3

( ) 3
( ) 2

AA BB

AB BA

m m m K K Tr K K
R

m m m K K Tr K

+ + ⊗= = = ≅
+ +

. (1.11) 

 Clearly then, the Koide matrices (1.6) provide a general form for organizing the study of 
both binding energy and fermion mass relationships which lead to very accurate empirical 
results.  It thus becomes desirable to understand the physical origin of these matrices and tie 
them to a Lagrangian formulation so that they are no longer just intriguing curiosities that yield 
tantalizingly-accurate empirical results.  And, it is desirable to see if they can be extended to 
make additional mass predictions and gain deeper understanding of the particle mass spectrum.  
 Because the binding energy formulation in (1.7) and (1.8) has its roots in the thesis that 
baryons are Yang-Mills magnetic monopoles and specifically emerges from the calculation of 
energies via 3E d x= −∫∫∫L , see [11.7] of [1] et. seq., the author’s previous findings will provide 

us with the means to anchor the Koide relationships in a Lagrangian formulation.  And, because 
Koide provides a generalization of the mass matrices derived by the author, these matrices will 
provide us with the means to derive additional mass relationships as well. 
 Most importantly, in this paper, we shall combine the author’s previous work in [1] and 
[2] as well as [5], using the generalization provided by Koide triplet mass matrices of the form 
(1.6), to deduce the observed rest masses 938.272046 MeV and 939.565379 MeV of the free 
proton and free neutron, as a function of the up and down quark masses and the Fermi vev.  The 
next two sections will lay the foundation for doing this, and the mass derivation will then 
commence in section 4. 
 
2.  Statistical Reformulation of the Koide Mass Relationship 
 
 Let us begin by couching the Koide mass relationship (1.5) for the charged leptons in 
statistical terms, using 1 em m= , 2m mµ=  and 3m mτ=  in (1.6).  First, using (1.9), we write the 

average of the masses in a Koide mass triplet 1m , 2m , 3m , i.e., the “average of the squares” of 

the matrix elements in (1.6), as: 

( )2 2
1 2 3( ) / 3 / 3 / 3AB BA iK Tr K K K m m m m= = = + + = . (2.1) 
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Next, via (1.10), we write the “square of the average” of these matrix elements as: 

( )22

1 2 32 1 2 3( )
9 9 3 9

AA BB
m m mm m mTr K K K K

K
+ + + +⊗= = = =  

 
. (2.2) 

So, combining (2.1) and (2.2) in the form of (1.5) allows us to write: 

( )2
2

1 2 3

22
1 2 3

( ) 3
3

( ) 2
AA BB

AB BA

m m mK Tr K K K K
R

Tr K K K m m mK

+ +⊗= = = = ≅
+ +

. (2.3) 

This allows us to extract the relationship: 
2 2 21

3 2
R

K K K= ≅ , (2.4) 

which naturally absorbs the 3 from the factor of 3/2. 
 Now, we simply use (2.4) to form the statistical variance ( )Kσ  in the usual way, as:   

( ) 2 2 22 2 23 3 1
1 1 1

3 2i i

R
K K K K K m K K m

R R
σ      = − = − = − = − ≅ = =     

     
. (2.5) 

The key relationship here, using the first and last terms, is: 
( ) iK mσ ≅ . (2.6) 

So the average charged lepton mass im  is approximately (and very closely) equal to the 

statistical variance ( )Kσ  of Koide matrix (1.6) for the charged leptons.  This is a much simpler 

and more transparent way to express the Koide mass relationship (1.5), and it completely absorbs 
the factor of 3/2. 
 Of course, as noted after (1.5), this is a very close, but still approximate relationship.  The 
exact relationship, also extracted from (2.5), and using 1.500022828R =  based on the mean 
experimental data, is: 

( ) 0.999969563
3

1 i i iK m m C m
R

σ  = − = ≡ 
 

, (2.7) 

where we have defined the statistical coefficient C and the inverted relationship for R as: 
3 3

1;
1

C R
R C

≡ − ≡
+

. (2.8) 

Thus, we rewrite the basic Koide relationship (1.5) more generally as: 

( )2

1 2 3

1 2 3

3
1

m m m
R

m m m C

+ +
= =

+ + +
. (2.9) 

In the circumstance where the statistical coefficient C=1, i.e., where the average mass is exactly 
equal to the statistical variance, we have 3 / 2R = .  So the variance of the square roots of the 
three charged lepton masses is just a tiny touch less ( 0.999969563× ) than the average of the 
three masses themselves.  But the factor of 3/2, which is somewhat mysterious in (1.5), is now 
more readily understood when we realize that it corresponds with C=1 in (2.7). 
 This means that the Koide relationship for any given triplet of numbers with mass 
dimension ½, may be most transparently characterized by the coefficient C.  Thus, using (2.7), 
the coefficient for the charged lepton triplet is (we also include R for comparison): 

( ) ( )0.999969563 1; 1.500022828 3 / 2RC e eµτ µτ≅ ≅= = . (2.10) 
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So what about some other Koide triplets?  For the neutrinos, PDG in [6] provides upper limits on 
the neutrino masses whereby 2

e
m eVν < , 0.19m MeV

µν <  and 18.2m MeV
τν < .  If we use these 

mass limits in a Koide triplet, we find that R=1.202960231, but the significance of this is more 
easily seen by using (2.8) to calculate: 

( ) ( )1.49384803 3 / 2 6 /; 1.202960 31 52e eRC µ τ µ τν ν ν ν ν ν≅ ≅= = . (2.11) 

So the variance in the square roots of the neutrino mass limits is very close to being 50% larger 
than the average of these mass limits, i.e., ( ) (3 / 2)K mν νσ ≅ .  This in an interesting 

“coefficient migration” as between the charged and uncharged leptons, wherein for the charged 
leptons masses 3 / 2R ≅  to parts per 100,000, while for the neutrino lepton upper mass limits, 

3 / 2C ≅  within about 0.4%.  As we shall see, it is the start of a new Koide pattern. 
 Turning to quark masses, we use 2.223792405um MeV=  and 4.906470335dm MeV=  

developed in [9.3] and [9.4] of [2] via 1 u=931.494 061(21) MeV/c2, as well as 
1.275 0.025cm GeV= ± , 95 5sm MeV= ± , 173.5 .6 .8tm GeV= ± ±  and 4.18 0.03bm GeV= ±  

from PDG’s [7].  For Koide triplets of a single flavor type, we can calculate that: 
( ) ( )1.54688 3 / 2; 1.177913486 6 / 5C uct uR ct≅ = ≅= . (2.12) 

( ) ( )1.18741 6 / 5; 1.371483911 15 /11C dsb dsbR≅ = ≅= . (2.13) 

So we now see a distinctive pattern among (2.10) through (2.13).  For the charged leptons 
in (2.10) which are the lower members of a weak isospin doublet, ( ) 3 / 2R eµτ ≅ .  For the 

neutrinos which are the upper member of this doublet, ( ) 3 / 2eC µ τν ν ν ≅ , which migrates the 

3 / 2 from the R to the C coefficient.  Then, for the up quarks, ( ) 3 / 2C uct ≅ , which is same as 

the C for the neutrinos, and both quarks and neutrinos are the upper members of the isospin 
doublets.  But it is the ( ) 6 / 5R uct ≅  coefficient for the up quarks, that migrates to 

( ) 6 / 5C dsb ≅  for down quarks.  So the migration is ( ) ( )3 / 2 3 / 2ee CR µ τµτ ν ν ν≅ → ≅  for 

leptons, ( ) ( )3 / 2 3 / 2eC C uctµ τν ν ν ≅ → ≅  providing a “bridge” from “up” leptons to “up” 

quarks, and then ( ) ( )6 / 5 6 / 5uct C dsbR ≅ → ≅  migrating the up to the down quarks.  The net 

upshot of this coefficient migration is that we now have Koide-style close relations for all four 
sets of fermions (and anti-fermions) of like electric charge Q, namely: 

( )2

( ) ( ) ( )

( ) ( ) ( )

6
( 0)

5

e

e

m m m
R Q

m m m

ν ν µ ν τ

ν ν µ ν τ

+ +
= = ≅

+ +
. (2.14) 

( )2

3
( 1)

2

e

e

m m m
R Q

m m m

µ τ

µ τ

+ +
= ± = ≅

+ +
. (2.15) 

( )2

2 6
( )

3 5

u c t

u c t

m m m
R Q

m m m

+ +
= ± = ≅

+ +
. (2.16) 

( )2

1 15
( )

3 11

d s b

d s b

m m m
R Q

m m m

+ +
= ± = ≅

+ +
. (2.17) 
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Each of these relationships takes 12 (apparently) independent fermion masses and reduces by 1, 
their mutual independence.  So with (2.14) through (12.17), to first approximation, we have now 
eight, rather than 12 independent fermion masses. 
 For some other commonly-studied Koide triplets we have: 

( ) ( ) ( )0.69290 1 / 2; 1.772105341 2 / 23 1C uds udsR ≅=≅= + . (2.18) 

( ) ( )1.00939 1; 1.492994103 3 / 2C ctb ctR b =≅ ≅= . (2.19) 

( ) ( )0.86795; 1.606042302C usc uR sc== . (2.20) 

( ) ( )1.02783 1; 1.479416975 3 / 2 (with )sC csb bR cs m≅ ≅ −= = . (2.21) 

( ) ( )0.81520; 1.652718083C dcs dR cs= = . (2.22) 

We note that the relationship (2.14) for ( ) 1/ 2C uds ≅  is accurate to within experimental 

errors.  Specifically, given the empirical 95 5sm MeV= ± , (2.14) can be made into an exact 

relationship to ten digits (the accuracy of the up and down masses derived in [2]) if we set 
98.95303495sm MeV= .  Of course, even the relationship for the charged leptons is a close but 

not exact relationship, see the discussion following (1.5), so we ought not expect (2.14) to be 

exactly ( ) 1/ 2C uds = .  But, similarly to (1.5), see also (2.10), it may well make sense to regard 

this as a relationship accurate to the first three or four decimal places, which would improve our 
knowledge of the strange quark mass by four of five orders of magnitude. 
  But this main point of the foregoing is not about the specific Koide relationships (though 
(2.14) through (2.17) are important steps forward in their own right), but about how the ratio 
parameter R which for the charged lepton triplet is 3 / 2R ≅ , can be reformulated for any 
fermion triplet into the coefficient C in the statistical variance relationship ( ) iK C mσ = , 

which, for the charged leptons, is 1C ≅ .  And, as we see in (2.14) through (2.17), this can lead to 
additional relationships and, indeed, a cascading migration of coefficients. 

Turning back to the proton and neutron triplets ( ) ( )diag , ,P d u uK m m m=  and 

( ) ( )diag , ,N u d dK m m m=  which were so central to obtaining accurate binding energy 

predictions in [1] and [2], we find using the mass values 2.223792405um MeV=  and 

4.906470335dm MeV=  obtained in [2] that: 

( ) ( )0.0387876019; 2.8879821000C p duu R p duu= = = = . (2.19) 

( ) ( )0.0298844997; 2.9129480061C n udd n uddR= = = = . (2.20) 

For these triplets which all have a small variance in comparison to the earlier triplets which cross 
generations, the Koide ratio 3R ≅ .  In the circumstance where the variance is exactly zero 
because all three quarks have the same mass, for example, for the triplets uuu++∆ =  and 

ddd−∆ = , using the Koide mass relationship for parameterization, we have 0C = ; 3R = . 
 
3.  Lagrangian / Energy Reformulation of the Koide Mass Relationship 
 
 The appearance of Koide triplets originating from the thesis that Baryons are Yang-Mills 
magnetic monopoles can be seen, for example, by considering equation [11.2] of [1] for the field 
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strength tensor of a Yang-Mills magnetic monopole containing a triplet of colored quarks in the 
zero-perturbation limit, reproduced below: 

[ ] [ ] [ ]














−/
+

−/
+

−/
−= ∨∨∨

""""""
Tr

BB

BB

GG

GG

RR

RR

mpmpmp
iF

ψγγψψγγψψγγψ νµνµνµ
µν . (3.1) 

If we generalize this to any three fermion wavefunctions 1 2 3, ,ψ ψ ψ  such that (3.1) represents the 

specific case 1 Rψ ψ= , 2 Gψ ψ=  and 3 Bψ ψ= , and, as we did prior to [11.19] of [1], if we 

consider the circumstance in which the interactions shown in Figure 1 at the start of section 3 in 
[1] occur essentially at a point, then ,µ ν µ νγ γ γ γ∨   →     approaches an ordinary commutator, 

each of the 0p →/ , and the “quoted” denominator becomes an ordinary denominator, see [3.9] 

through [3.12] of [1] for further background.  So also setting 1 Rm m= , 2 Gm m=  and 3 Bm m= , 

(3.1) generalizes for a point interaction to a Koide-style field strength tensor: 

1 2 31 2 3

1 2 3

, , ,
TrF i

m m m

µ ν µ ν µ ν
µν ψ γ γ ψ ψ γ γ ψ ψ γ γ ψ            = − + +

 
 

. (3.2) 

Then, we form a pure gauge field Lagrangian ( ) ( )1 1
gauge 2 2Tr F F Tr F Fµν

µν= − = − ⋅L  as 

in [11.7] of [1].  As discussed in section 2 of [2], we consider both inner and outer products over 
the Yang-Mills indexes of F, i.e., we consider both ( )2

AB BC AB BATrF Tr F F F F= ⋅ = ⋅  and 

( ) ( )AB CD AA BBTr F F Tr F F F F⊗ = ⋅ = ⋅ .  Note carefully the different index structures in AB BAF F⋅  

versus AA BBF F⋅ , and also contrast this to (1.7) and (1.10) in this paper, which is where we are 

headed at the moment.  We then use this Lagrangian to calculate energies according to [11.7] of 
[1], see also [1.1] of [2], which is reproduced below: 

∫∫∫∫∫∫ =−= xdFFxdE 3
2
13

gauge Tr µν
µνL . (3.3) 

In the case where 1 dψ ψ= , 2 3 uψ ψ ψ= =  so that PF Fµν µν=  represents the proton, then 

depending on whether we contact indexes using AB BAF F⋅  or AA BBF F⋅ , we obtain the inner and 

outer products [2.8] and [2.6] of [2], respectively.  When 1 uψ ψ= , 2 3 dψ ψ ψ= =  so NF Fµν µν=  

represents the neutron, we obtain the inner and outer products [2.9] and [2.7] of [2], respectively.  
Using (1.6), the Koide-type generalization of the outer products [2.6] and [2.7] of [2] is: 

( )

( ) ( )
( )

3
2

3 3
2 2

3 3 3 31 1 1 1
2 2 2

2

1 1
2

2 2 1 2 3

3 3

Tr Tr

0 0 0 0
1 1

Tr 0 0 0 0
2 2

0 0 0 0

AB CD AA BB AA BBE d x F F d x F F d x F F d x K K

m m

m m m m m

m m

µν
µν

π

π π

⊗ ⊗= − = ⊗ = ⋅ = ⋅ =

    
    
 = ⊗ = + +   
    
        

∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫L

,(3.4) 

while the Koide generalization of the inner products [2.8] and [2.9] of [2] is: 
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( )

( ) ( )
( )

3
2

3 3
2 2

3 3 3 31 1 1 1
2 2 2

2

1 1

2 2 1 2 3

3 3

Tr Tr

0 0 0 0
1 1

Tr 0 0 0 0
2 2

0 0 0 0

AB BD AB BA AB BAE d x F F d x F F d x F F d x K K

m m

m m m m m

m m

µν
µν

π

π π

= − = = ⋅ = ⋅ =

   
   
 = = + +  
   
      

∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫L

,(3.5) 

This means that is now becomes possible to express the Koide relationship (2.9) entirely in terms 
of energies E derived from the general integral (3.3) of a Lagrangian density ( )1

2 Tr F F= − ⋅L  

over 3d x.  Specifically, combining (2.9) with (3.4) and (3.5) allows us to write:  

( )

3 3 3

3 3 3

2

1 2 3

1 2 3

Tr

Tr

3
1

AA BB AA BB

AB BAAB BA

d x F F d x F F d xE K K

E K Kd x F F d x F F d x

m m m
R

m m m C

µν
µν

µν
µν

⊗⊗
⊗ ⋅

= = = =
⋅⋅

+ +
= = =

+ + +

∫∫∫ ∫∫∫ ∫∫∫
∫∫∫ ∫∫∫ ∫∫∫

L

L

. (3.6) 

This expresses the Koide mass relationship in multiple forms, in terms of the energy integral of a 
Lagrangian density of the general form ( )1

2 Tr F F= − ⋅L , with the field strength given by (3.2).  

This means that for any Koide triplet of given empirical R, there is an energy RE  which vanishes 

under the condition: 

( ) ( )3 2 3Tr 0RE R d x F F RF d x⊗= − = ⊗ − =∫∫∫ ∫∫∫L L . (3.7) 

This is the Lagrangian / energy formulation of the Koide relationship (2.9), and although 
different in appearance, it is entirely equivalent.  So, for example, using the symbol ∴  as in 
figure 1 and Table 3 of [5] to represent the three generations of the fermions for any given 
charge, the four Koide relationships (2.14) through (2.17) for the “pole” (low-probe energy) 
masses, may be written as: 

( ) ( )3 2 36 6
5 5Tr 0E d x F F F d xν∴ ⊗= − = ⊗ − ≅∫∫∫ ∫∫∫L L . (3.8) 

( ) ( )3 2 33 3
2 2Tr 0eE d x F F F d x∴ ⊗= − = ⊗ − ≅∫∫∫ ∫∫∫L L . (3.9) 

( ) ( )3 2 36 6
5 5Tr 0uE d x F F F d x∴ ⊗= − = ⊗ − ≅∫∫∫ ∫∫∫L L . (3.10) 

( ) ( )3 2 315 15
11 11Tr 0dE d x F F F d x∴ ⊗= − = ⊗ − ≅∫∫∫ ∫∫∫L L . (3.11) 

Whether these become exactly equal to zero for masses at high-probe energies, and whether there 
is an underlying action principle involved here, are questions beyond the scope of this paper 
which are worth consideration. 
 What ties all of this together, is that we model the radial behavior of each fermion using 
the Gaussian ansatz introduced in [9.9] of [1] which is reproduced below with an added label 

1,2,3i =  for each of the fermions and masses in (3.2): 

( ) ( ) ( )23
02 4
2

1
( ) exp

2
i

i i i
i

r r
r u pψ πλ

−  −
 = −
 
 Ż

, (3.12) 

and that we also relate the reduced Compton wavelength iŻ  to mass im  via the DeBroglie 

relation /i imc=Ż ℏ , see [1] following [11.18].  This is what makes it possible to precisely 
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calculate the energy in integrals of the form (3.3), specifically making use of the basic Gaussian 
mathematical relation [9.11] of [1]: 

( )
1exp

1 3
2

2
0

32
3 =









 −
−∫∫∫ xd

rr

ŻŻπ
, (3.13) 

and variants thereof.  It is (3.12) and (3.13) and 1/i im=Ż  (in 1c= =ℏ  units) which tie 

everything together when (3.2) is employed in (3.3) through (3.7).  And this is what leads to the 
accurate mass relationship (1.1) and binding energy predictions (1.2) and (1.3), as well as the 
binding energy predictions for 2H, 3H, 3He and 4He and the proton–neutron mass difference (1.4) 
developed in [2].  And the final piece which also ties this together, is the empirical normalization 
for fermion wavefunctions developed in [11.30] of [1], namely: 

( )
( )

( )
( )2

2

2

2
4

224

1

2

1

m

mE

m

mE

n
N

f

+=+= , (3.14) 

where 24fn =  is the total number of fermions including three colors for each quark.  

 Now, it is important to emphasize that the Gaussian ansatz (3.12) is not a theory, but 
rather, it is a modeling hypothesis that allows us to perform the necessary integrations and 
calculate energies that turn out to correlate very well with empirical data.  That is, in explicitly in 
[1] and implicitly in [2], we hypothesized that the fermion wavefunctions can be modeled as 
Gaussians with specific Compton wavelengths 1/i im=Ż  defined to match the undressed, 

current quark masses, we performed the integrations in (3.3), and we found that the energies 
predicted matched empirical binding data to – in most cases – parts per million.  This, in turn, 
tells us that for the purpose of predicting binding energies, it is possible to model the current 
quarks as Gaussians (which means they act as free fermions), with masses and wavelengths 
based on their undressed, current masses, and to thereby obtain empirically-validated results.  
But, as also discussed at the end of section 11 in [1], this use of undressed mass does not apply 
when it comes predicting the short range of the nuclear interaction which we showed at the end 
of section 10 in [1] is indeed short range with a standard deviation of Ż

2
1=σ .  For, if we use 

the undressed fermion masses that work so well for binding energies, we find Fu 65.85~Ż  and 

Fd 04.41~Ż , and the predicted short range is still not short enough.  If, however, we turn to the 

constituent quark masses which, at the end of section 11, for estimation, we took to be 939 
MeV/3=313 MeV, then we have F63.~Ż  and F45.~

2
1 Ż=σ , which tells us that the nuclear 

interaction virtually ceases to be effective at about F2~34 Ż≈σ .  This is exactly what is 
observed. 
 In both cases – for nuclear binding energies and for the nuclear interaction short range – 
we found that the Gaussian ansatz (3.12) does yield empirically-accurate results.  But for binding 
energies, it was the undressed, current quark masses which gave us the right results, while for 
nuclear short range, it was the fully dressed, “constituent” quarks masses that were needed to 
obtain the correct result.  Because we shall momentarily embark on a prediction of the fully 
dressed rest masses 938.272046 MeV and 939.565379 MeV of the free proton and free neutron, 
what we learn from this is that while we might also be able to approach these masses using the 
Gaussian ansatz for fermion wavefunctions, we will, however, need to be judicious in the 
fermions we choose and in the masses that we assign to the fermions.  That is, the focus of our 
deliberations will be, not whether we can use the Gaussian ansatz, but on how to select the 
fermions and masses that we do use with the Gaussian ansatz. 
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 Now, based on all of the foregoing development, let us see how to predict the proton and 
neutron masses. 
 
4.  Predicting the Proton Plus Neutron Mass Sum to within about 6 Parts in 10,000 
 
 Because we can connect any Koide matrix products to a Lagrangian via (3.4) and (3.5), 
let us work directly with the Koide matrix (1.6) to determine how to assign the masses 1m , 2m , 

3m  so as to predict the proton and neutron masses.  Then, at the end, we can backtrack using the 

development in section 3 to connect these masses to their associated Lagrangian.  In other words, 
we will first fit the empirical mass data, then we will backtrack to the underlying Lagrangian. 
 Each of the proton and neutron contains three quarks.  The sum of the quark masses is 

9.354055142 u dm m MeV+ =  for the proton and 12.03673312 d um m MeV+ =  for the neutron.  

For a free proton and neutron, none of their rest mass is released as binding energy, and so these 
quark mass sums are included in 938.272046PM MeV=  and 939.565379NM MeV=  

respectively, where we use an uppercase M to denote these fully-dressed, observed masses.  As 
demonstrated in sections 11 and 12 of [1] and throughout [2], these rest masses are reduced when 
the proton and neutron fuse with other nucleons.  But for free protons and neutrons, the entire 
rest mass is retained and all of the latent binding energy is used to confine quarks.  Using 

2.223792405um MeV=  and 4.906470335dm MeV=  from [9.3] and [9.4] of [2] as earlier 

introduced after (2.11), this means that the “mass coverings” m (using a lowercase m) of the 
proton and neutron, may be calculated to be: 

928.91792 915P P u dm M m em M V≡ − − = , (4.1) 

927.52862 457N N u dm M m em M V≡ − − = . (4.2) 

That is, these m represent the observed, fully-dressed proton and neutron masses M, less the sum 

1 2 3AB BAK K m m m= + +  of the current quark masses, with 1 dm m≡ , 2 3 um m m= ≡  for the proton, 

and 1 um m≡ , 2 3 dm m m= ≡  for the neutron, see (1.9).  One may think of this as the weight of the 

rather heavy “clothing” over the bare quarks.  The sum of these two mass covers is: 
3 1856.443 6637N P N P u dm m M M m m MeV+ = + − − = . (4.3) 

At the end of section 9 of [2], after deriving the neutron–proton mass difference (1.4), we 
noted that the individual masses for the proton and neutron could now be obtained by deriving 
some independent expression related to the sum of their masses, and then solving these two 
simultaneous equations – sum equation and difference equation – for the two target masses – 
proton and neutron.  We shall do exactly that here.  In particular, it will be our goal to derive the 
sum N PM M+  of these two masses, and then use (1.4) as a simultaneous equation to obtain each 

separate mass.  The benefit of this approach using a sum, referring to the so-called mass 
“toolbox” in [3.11] of [2] and also the discussion of the alpha nuclide following [4.4] of [2], is 
that in selecting mass terms to consider, we can eliminate any candidates that are not absolutely 
symmetric under np ↔  and du ↔  interchange, because the sum N PM M+  contains three up 

quarks and three down quarks, as well as one proton and one neutron.  The empirical target, 
therefore, is 1877.837425N PM M MeV+ = , or, alternatively, 1856.446637P Nm m MeV+ =  

from (4.3).  This is what we seek to predict. 



12 
 

 Now let us return to the “clues” we laid out in [3.6] through [3.8] of [5].  Let us start in 
the simplest way possible by focusing our consideration on [3.8] of [5], reproduced below, but 

multiplied by a factor of 2 and separated into 4
uvm  and 4 dvm in the second term: 

4 42 2 MeV1803.670518u d u dv m m vm vm⋅ = = . (4.4) 

Here, vF=246.219651 GeV is the Fermi vev.  Because, this is about 3% smaller than P Nm m+  in 

(4.3) and it is closer to P Nm m+  than either [3.6] or [3.7] of [5], and it is symmetric under 

du ↔  interchange, we shall see if (4.4) can be used, by itself, to provide the foundation for 
reaching the target. As we shall, see, with P Nm m+  in (4.3) as the target, it can be so used! 

 Now, in (3.11) of [2], we developed a “toolkit” of masses which we used for calculating 
several binding and fusion release energies with very close precision.  We shall wish to add to 
this toolkit here, and in particular, will wish to refine our use of the Fermi vev vF=246.219651 
GeV beyond what is shown in (4.4).  Specifically, as noted after [3.8] of [5], we need to put (4.4) 
“and like expressions into the right context and obtain the right coefficients.  And where do such 
coefficients come from?  The generators of a GUT!”  Now, we need to use the GUT we 
developed in (4.4) to obtain the needed coefficients needed to bring (4.4) closer to the target 
mass of 1856.446637MeV  in (4.3).  Because the vev that seems bring us into the correct 
“ballpark” is the Fermi vev, we focus on the electroweak symmetry breaking which occurs at the 
Fermi vev, and which, in [8.2] of [5], is specified by:  

( ) ( ) ( )2 1 1 1 2 2
3 3 3 3 3 3diag diag 0, , , , 1, , , diagi

F iF F FT v v QϕΦ = ≡ − − − − = . (4.5) 

For the proton with a fermion triplet ( ), ,d u u , the corresponding eigenvalue entries in (4.5) 

above are ( )1 2 2
3 3 3, ,F F Fv v v− .  For the neutron and its ( ), ,u d d  triplet, the entries are 

( )2 1 1
3 3 3, ,F F Fv v v− − .  We now wish to use these to establish respective Koide triplet matrices for 

the proton and neutron. 
 Looking at (4.4) and the vacuum triplets ( )1 2 2

3 3 3, ,F F Fv v v−  and ( )2 1 1
3 3 3, ,F F Fv v v− − , we 

see that to obtain the proper mass dimension of the terms with 4 uvm  and 4 dvm  and use these as 

Koide triplets, we will need to take the fourth roots of these triplets.  Let us do exactly that, and 
pair these triplets with the mass triplets ( ), ,d u um m m  and ( ), ,u d dm m m , for which we also take 

the fourth root.  Thus, we define two Koide triplets, one for the proton and one for the neutron:  
.51 14 4

3 3

2 24 4
3 3

2 24 4
3 3

0 0 0 0

( ) 0 0 0 0

0 0 0 0

d d

AB u u

u u

vm i vm

K P vm vm

vm vm

   −
   
   ≡ =
   
   
   

, (4.6) 

2 24 4
3 3

.51 14 4
3 3

.51 14 4
3 3

0 0 0 0

( ) 0 0 0 0

0 0 0 0

u u

AB d d

d d

vm vm

K N vm i vm

vm i vm

   
   
   ≡ − =
   
   −
   

. (4.7) 

We see that because of the negative charge of the down quark, each of these triplets contains 

( ).5 1
2

1i i= +  which is a complex number.  In recent years, consideration has been given to 
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having negative square root terms in Koide mass relations, see for example (2.16) in which one 

uses sm−  to derive a close relation for the ( )csb  triplet.  The above, (4.6) and (4.7) take this a 

step further, because they raise the specter of triplets with complex square roots!  In the next 
section we shall explore the implication of these complex components, which arise from the 
opposite charges of the up and down quarks.  But for the moment, let us ignore .5i  in the above 
so we can look at magnitudes only, and let us form the Koide matrix product with .5i  excised: 

1 24 4
3 3

2 14 4
3 3

2 14 4
3 3

4

0 0 0 0

( ) ( ) 0 0 0 0

0 0 0 0

2
3

9

d u

AB BA u d

u d

u d

vm vm

K P K N Tr vm vm

vm vm

v m m

   
   
   =
   
      

= ⋅ ⋅ = 1857.570635 MeV

. (4.8) 

Comparing to (4.3) which tells us that P Nm m+ = 1856.446637 MeV  we see that we have hit the 

target to within about 0.06%!  That is: 
 

( )Observed

( ) ( )AB BA

N P

K P K N

m m
==

+
1857.570635 MeV

1.000605457
1856.446637 MeV

! (4.9) 

This is extremely close, and in particular, we now see that to within about 6 parts in 10,000, the 
sum of the proton and neutron masses may be expressed completely as a function of the up and 
down quark masses and the Fermi vev!  So if we use this close relationship to hypothesize that a 
meaningful relationship is given by ( )

Predicted
( ) ( )N P AB BAm m K P K N+ ≅ , then using the above with 

(4.3), we now see that to within about 0.06%: 

4
2

3 3 3 3 3
9N P N P u d u d u dM M m m m m v m m m m+ = + + + ≅ ⋅ ⋅ + + . (4.10) 

This expression is symmetric under under np ↔  and du ↔  interchange, and as a sum of the 

proton and a neutron mass, it is formed by taking the inner product ( ) ( )AB BAK P K N  between a Koide 

proton matrix ( )1 2 24 4 4
3 3 3diag( ) , ,P d u uK vm vm vm=  which employs electric charge and mass 

magnitudes for one down and two up quarks, and ( )2 1 14 4 4
3 3 3diag( ) , ,N u d dK vm vm vm=  which is a 

Koide neutron matrix  employing electric charge and mass magnitudes for one up and two down quarks. 
 Furthermore, if we divide (4.8) by 2, we see that: 

4
3 2

( ) ( ) / 2
2 9

928.7853174AB BA u dK P K N v Mm m eV= ⋅ ⋅ = . (4.11) 

This actually falls between 928.9179915Pm MeV=  and 927.5286457Nm MeV=  from (4.1) 

and (4.2), and so (4.10) clearly appears to be the correct expression for the leading terms in the 
proton and neutron masses.  Based on this close concurrence and “threading the needle” between 
the proton and neutron masses with (4.11), we now regard (4.10) as a meaningful (rather than 
coincidental) close expression for P NM M+  to 0.06%, and embark in the next section on the 

task of overcoming this final 0.06% and developing an exact expression for P NM M+ .  Then, 
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we shall be able to use that in combination with the M(n) M(p)−  difference (1.4) to specify the 
proton and neutron masses individually, as a function of the up and down quark masses.  That, in 
turn, will enable us to return to relationships such as [7.1], [7.3], [7.5] and [7.6] in [2] which still 
contain the proton and neutron masses, and express the nuclear weights of these composite 2H, 
3H, 3He and 4He nuclides, and others developed in the future, strictly in terms of quark masses. 
 Now, let us see how to close the remaining 0.06% gap. 
 
5.  Exact Characterization of the Proton and Neutron Masses, with a Phase Parameter δ 
 
 In (4.8) we neglected the factors of ( ).5 1

2
1i i= +  in order to examine the magnitude of 

the predicted P Nm m+ .  If we now restore this factor, (4.8) becomes: 

( ) ( )

.5 1 24 4
3 3

.52 14 4
3 3

.52 14 4
3 3

4

0 0 0 0

( ) ( ) 0 0 0 0

0 0 0 0

1 2 1
3 1 1 1857.5 6

2 2
0 3

9
7 5

d u

AB BA u d

u d

u d

i vm vm

K P K N Tr vm i vm

vm i v

M

m

i v m em i V

   
   
   =
   
      

= + ⋅ ⋅ = + ⋅

. (5.1) 

Having now found the right magnitude, we could make use of a 2  factor and continue to match 

the empirical data by writing ( )2 Re ( ) ( )AB BA P NK P K N m m≅ + .  But this just sidesteps some 

questions because a) it introduces a substantial imaginary component to this mass sum and b) it 
does not help us past the 0.06% difference that still remains.  Let us therefore deal with the 

( ).5 1
2

1i i= +  factor a little differently. 

 Instead, let us write this factor ( ).5 1
2

1i i= +  in terms of a phase δ  such that: 

( ) ( ).5 1
2

1 exp cos sin ; / 4i i i iδ δ δ δ π= + = = + = . (5.2) 

So now, we write the proton plus neutron mass sum (5.1) as: 

( ) ( )4
2

( ) ( ) 3exp exp 1857.570
9

635N P AB BA u dm Mm eVK P K N i v m m iδ δ+ = = ⋅ ⋅ = ⋅ , (5.3) 

with / 4δ π= .  Now, let us rotate the proton and neutron masses to a different phase δ δ ′→  
such that the real part of the rotated mass sum is exactly equal to 1856.446637P Nm m MeV+ =  

from (4.3).  In other words, we rotate the phase such that: 

( ) ( ) ( )

( )

4
2

( ) ( ) 3exp exp
9

cos sin

1857.570635

1857.570635 1857si . 63n 570 5

N P AB BA u d Mm m K P K N i v m m i eV

MeV MeVi i

δ δ

δ δ δ

′ ′ ′ ′ ′+ = = ⋅ ⋅ = ⋅

′ ′ ′= ≡ ++ ⋅ ⋅1856.446637MeV

.(5.4) 

Above, we have highlighted the empirical value in bold type.  This means that δ ′  will, for now, 
need to be an empirical phase parameter defined such that: 

1856.446637
0.9993949098

1857.570
cos

635
MeV

MeV
δ ′ = = . (5.5) 

It is fortunate, and a further indication that (4.10) is indeed a meaningful and not merely a 
coincidental relationship, that the predicted N Pm m+  is larger than the empirical N Pm m+ , 
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because this satisfies the required constraint that cos 1δ ′ ≤ .  Had the prediction been smaller, 
then we would have cos 1δ ′ > , which is mathematically impossible without using imaginary 
arguments to convert over to hyperbolic cosines.  So from (5.5), we readily deduce: 

00.0347894 rad 1.9932858δ ′ = = . (5.6) 
Consequently, we have 0.03478sin 2383δ = , so that (5.4) becomes: 

( ) 1856.446637 64.61073342N P Mem iV Vm Me′+ = ⋅+ . (5.7) 

The real part of this expression, by design, now precisely matches the empirical data. 
 Now let us solve the simultaneous equations (5.4) and (1.4) to obtain the separate masses 
of the proton and neutron.  First, as in (4.10), we add the quark masses back in to (5.4), and also 
we remove the primes from (5.4) and thus establish 01.9932858δ =  rather than the original 

/ 4δ π=  (see (5.2)) as the unprimed phase angle.  Thus, we recast (5.4) as: 

( ) 4
2

3exp 3 3
9N P u d u dM M i v m m m mδ+ = ⋅ ⋅ + + . (5.8) 

Now, we simultaneously solve (5.8) and (1.4) to obtain the separate expressions: 

( )
( )

3
2

4
3 2 31 2

3exp 4 3
2 9 2

d µ d u

N u d u d

m m m m
M i v m m m m

π
δ

 + −
 = ⋅ ⋅ + + −
 
 

. (5.9) 

( )
( )

3
2

4
3 2 31 2

3exp 2 3
2 9 2

d µ d u

P u d u d

m m m m
M i v m m m m

π
δ

 + −
 = ⋅ ⋅ + + +
 
 

. (5.10) 

 Now, as a double check, let us solve for the phase using the separate, observed masses of 
the neutron and proton in each of (5.9) and (5.10).  Using Γ  to represent the magnitude of the 
imaginary term that arises from the phase, respectively, we first obtain: 

( )
( )

3
2

4
3 2 31 2

3 cos sin 4 3
2

939.565378

2

8

9

N

d µ d u

N

u d u d

M

m m m m
i v

M

m m m m
π

eV i

δ δ

=

 + −
 = + ⋅ ⋅ +

Γ

+ −

 

+



. (5.11) 

( )
( )

3
2

4
3 2 31 2

3 cos sin 2 3
2

938.272046

2

6

9

P

d µ d u

P

u d u d

M

m m m m
i v

M

m m m m
π

eV i

δ δ

=

 + −
 = + ⋅ ⋅ +

Γ

+ +

 

+



. (5.12) 

 Then we segregate out the real terms and reorder to write and calculate: 

( )
3
2

4

3 2 31
4 3

2 2
cos

3

939.5653788

0.99939490 8

2

9
2
9

d µ d u

u d

u d

m m m m
mM m

π

v

eV

m m

δ

 + −
 + −
 
 = =

−

⋅
. (5.13) 
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( )
3
2

4

3 2 31
2 3

2 2
cos

3

938.2720466

0.99939490 8

2

9
2
9

d µ d u

u d

u d

m m m m
mM m

π

v

eV

m m

δ

 + −
 + +
 
 = =

−

⋅
. (5.14) 

Because (1.4) for the neutron–proton mass difference has been defined as an exact relationship 
with all other masses adjusted to ensure this, see section 9 of [2], the numerical value of cosδ  is 
exactly the same in each of the above, and also matches the magnitude calculated in (5.5).  So 
our check confirms that all of the calculations fit together correctly. 
 Now, using 0.03478sin 2383δ = , see just after (5.6), the magnitudes Γ  of the imaginary 
portion of (5.11) and (5.12) may be calculated via:  

( )
3
2

4 43.6
3 2 31 2

3sin 4 4742693
2 9 2

d

N

d u

u d u d

m m m m
v Mem m Vm m

µδ
π

 + −
 = ⋅ ⋅ + + − =
 
 

Γ , (5.15) 

( )
3
2

4 42.3
3 2 31 2

3sin 2 5409473
2 9 2

d

P

d u

u d u d

m m m m
v Mem m Vm m

µδ
π

 + −
 = ⋅ ⋅ + + + =
 
 

Γ . (5.16) 

Note that the difference 1.2933322N P MeVΓ − Γ =  is also the same as the neutron minus proton 

mass difference N PM M− .  Finally, using 0.0347894 radδ =  from (5.6), our theoretical 

expressions (5.11) and (5.12) for the proton and neutron masses become: 
 

( )
( )

3
2

40.0347894

939.5653788 43.64

3 2 31 2
3exp( ) 4 3

2 9 2

74269

d µ d u

N u d u d

m m m m
M i v m m m m

i MeV

π

 + −
 = ⋅ ⋅ ⋅ +




+

+ −



=

, (5.17) 

( )
( )

3
2

40.0347894

938.2720466 42.35

3 2 31 2
3exp( ) 2 3

2 9 2

40947

d µ d u

P u d u d

m m m m
M i v m m m m

i MeV

π

 + −
 = ⋅ ⋅ ⋅ +




+

+ +



=

, (5.18) 

with 0.0347894 rad= /90.3031564δ π=  being an empirical parameter, and with the real part of 
the masses matching precisely what is observed.  Now let us discuss some of the implications of 
these results. 
 
6.  Vacuum-Amplified (Constituent) Quark Masses, Meaning of the Phase Parameter δ, 
and the Lagrangian Formulation of the Proton Plus Neutron Mass Sum 
 

The expressions (5.17), (5.18) for the neutron and proton masses are exact expressions, 
but in order to close the 0.06% gap between theory and experiment that emerged at the end of 
section 4, we were required to utilize a phase angle with an empirically, not theoretically-
obtained value of 0.999394co 8s 909δ = , which, because 1/ cos 1.000605457δ = , essentially 
represents and closes this 0.06% gap.  So while we are able to predict the proton plus neutron 
mass sum to 6 parts in 10,000, we needed an empirical parameter δ to represent and close the 
balance of this gap.  This also has the consequence of introducing an imaginary component for 
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each of the proton and neutron masses.  Thus, we should discuss this phase angle, and try to gain 
some sense as to how this phase might itself be understood from a theoretical viewpoint. 

Theoretically, of course, this phase angle is not pasted on in any way, but naturally results 
from the fact that the down quark has a negative electric charge (or more accurately, a charge 
that is oppositely-signed from that of the up quark), and so is a consequence of Koide matrices 
(4.6) and (4.7) with complex components generalized via ( ) ( ).5 1

2
1 expi i iδ= + →  which are 

associated with the down quark mass.  So the existence of this phase angle has a fully theoretical 
basis, but its actual value 0.999394co 8s 909δ =  is what is empirical and so requires close 
consideration.  Especially, the question arises, is this phase angle a new parameter, or is related 
in some way to a phase parameter that is already known to exist elsewhere in elementary particle 
physics?  The obvious candidate for an already existing phase is the phase angle that is 
responsible for CP violation, and which arises in the Cabibbo-type mixing of quarks and leptons 
for three generations.  Might there be some definitive relationship between the phase uncovered 
here, and this phase that arises from generational mixing, so that they are really one and the same 
in different guises?  Certainly, economy would suggest that this question be explored. 

While it is beyond the scope of this paper to fully explore this question, let us at least 
explore its plausibility.  We start with the Koide matrices (4.6) and (4.7) from whence this phase 

originated, use the replacement ( ) ( ) ( ).5 1 4
2

1 exp exp 4i i i iδ δ= + → = , and connect this, in turn, 

to the generalized Koide matrix (1.6) to write: 

( )14
3 1

24
23

24
33

exp 4 0 0 0 0

( ) 0 0 0 0

0 00 0

d

AB u

u

i vm m

K P vm m

mvm

δ   
   
 = ≡  
   

  
  

. (6.1) 

( )
( )

24
3 1

14
23

14 3
3

0 0 0 0

( ) 0 exp 4 0 0 0

0 00 0 exp 4

u

AB d

d

vm m

K N i vm m

mi vm

δ

δ

   
   
 = ≡  
   

  
  

. (6.2) 

Let us then develop a correspondence between these, and the generalized Koide matrix (1.6) as 
applied in (1.7) and (1.8) to obtain nuclear binding energies, namely: 

1

2

3

0 0 0 0

( ) 0 0 0 0

0 0 0 0

d

AB AB u

u

m m

K P K m m

m m

   
   

= = ≡   
   
   
   

 (6.3) 

 

1

2

3

0 0 0 0

( ) 0 0 0 0

0 0 0 0

u

AB AB d

d

m m

K N K m m

m m

   
   

= = ≡   
   
   
   

 (6.4) 

Comparing (6.1) with (6.3) we see the correspondence (⇔ ): 
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( )1
1 3

2
2 3 3

exp 4 d d

u u

m i vm m

m m vm m

δ= ⇔

= = ⇔
. (6.5) 

Similarly, comparing (6.2) with (6.4): 

( )

2
1 3

1
2 3 3 exp 4

u u

d d

m vm m

m m i vm mδ

= ⇔

= = ⇔
. (6.6) 

 This leads to several points.  First, let us define what we shall refer to as the “vacuum-
amplified” masses uM  and dM  for the up and down quarks according to: 

2
3 604.1751345u u uMeM vm mV≡ = ⇔ . (6.7) 

1
3 634.5784463d d dMeM vm V m≡ ⇔= . (6.8) 

These should be compared to [3.6] and [3.7] of [5], which in the above have now acquired the 
desired coefficients based on the magnitude of their electric charges.  With this, we start to use 
the other two “clues” that we left in [3.6] to [3.8] of [5].  Now we make use of (6.7) and (6.8) to 
rewrite (6.1) and (6.2) as: 

1

2

3

exp 0 0 0 0

( ) 0 0 0 0

0 0 0 0

d

AB u

u

i M m

K P M m

M m

δ   
   

= ≡   
   
   
   

, (6.9) 

( )
( )

1

2

3

0 0 0 0

( ) 0 exp 0 0 0

0 0 exp 0 0

u

AB d

d

M m

K N i M m

i M m

δ
δ

   
   

= ≡   
   
   
   

. (6.10) 

So we see that indeed, the Koide matrices now have complex components, associated in 
particular with the vacuum-amplified down quark masses.  This takes yet another step in the 
development of the Koide relationships, by introducing complex mass square roots. 
 Second, the correspondences in (6.7) and (6.8) may now be written as: 

( ) ( )1
3

2
3

exp 2 exp 2d d d

u u u

i vm i M m

vm M m

δ δ= ⇔

= ⇔
. (6.11) 

So the vacuum-amplified down quark mass with the correspondence ( )exp 2 d di M mδ ⇔  now 

carries a phase.  But in the Cabibbo mixing scheme for quarks with three colors , ,C R G B=  , the 
down quarks mix according to [7.14] of [5], namely: 

1 1 3 1 3

1 2 1 2 3 2 3 1 2 3 2 3

1 2 1 2 3 2 3 1 2 3 2 3

C C

iδ iδ
Ci C C q Ci

iδ iδ
C Cq

d c s c s s d

d s s c c c c s s e c c s s c e s U d

b s s c s c c s e c s s c c e b

′     
     ′ ′= ≡ − − + =     
     ′ − − − +     

. (6.12) 

This is of course one of several mixing parameterizations and is well-known.  But in [5], the 
author derived the very existence of three generations and their mixing on a strictly theoretical 
foundation based on the GUT symmetry breaking of an SU(8) octuplet of fermions which 
removes two degrees of freedom which are then used for the horizontal freedom of three 
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generations.  While this particular parameterization (6.12) places all of the phase into the strange 
and bottom quarks Cs′  and Cb′ , this is simply one representation, and it also uses the convention 

in which all of the mixing occurs for the lower, versus the upper, members of the weak isospin 
doublets ( ),u d .  Additionally, as to the up and down quarks, what matters is not that the down 

quark has a negative charge and the up quark a positive charge, but the fact that these have 
opposite charges.  That is what injects the complex phase into (6.9) and (6.10).  The sign is a 
matter of convention, and were we to reverse the sign convention, the vacuum-amplified up 
quark masses would instead be the ones with an associated complex phase.  

So, speaking in representation and convention-independent language, each of the 
observed quark wavefunctions (and each of the lepton wavefunctions given that the neutrino 
mass is not exactly equal to zero) do carry a complex component in their wavefunction which 
emanates from a phase that is indicative of weak CP violation.  This phase should then be 
expected to appear in the masses of the fermions as well. And, with that being the case, when 
using conventions which reflect the phase in the down quarks (and elsewhere), one would expect 
these phases to make their way through into the vacuum-amplified down quark mass, which 
appears as ( )exp 2 d di M mδ ⇔  in the Koide matrices.  So it is indeed plausible to expect that the 

phase δ developed here, will come to be understood as bearing a direct and precise relationship 
to the weak CP-violation phase, and thus is not a new parameter, but a known parameter 
stumbled upon via the independent line of inquiry that we have developed here to obtain the 
proton and neutron masses on a fully theoretical basis.  In short, the phase we came upon here, 
may well be an indication of CP violation arrived at from a completely different direction. 
 Third, we note via (6.7) that 302.087567/ 2 3uM MeV= ; 317.289223/ 2 2dM MeV= .  

So if we add these two numbers and multiply by 3, we find ( ) 1858.130373 / 12u d eM M M V+ = .   

This is not far from the empirical 1856.446637N Pm m MeV+ =  of (4.3) or the predicted 

1857.570635N Pm m MeV+ =  of (4.8).  This suggests that (6.8) may be directly related to the 

constituent masses of the up and down quarks which specify how much of the proton and 
neutron masses arise from the down quarks and their interactions with the vacuum, versus from 
the up quarks and their interactions with the vacuum. 
 Finally, we as noted at the start of section 4, we can connect any Koide matrix products 
to a Lagrangian via (3.4) and (3.5).  Now that we have obtained a theoretical expression for the 
proton and neutron masses up to a phase that looks to be related to the CP-violating phase of 
weak interactions among three generations, it is time to backtrack using the development in 
section 3 to connect these masses to their associated Lagrangian expression.   

To start, we use (6.9) and (6.10) together with (6.7) and (6.8) and (5.8) to write: 

 

( )
( )

2 1 24
3 3 9

exp 0 0 0 0

( ) ( ) Tr 0 0 0 exp 0

0 0 0 0 exp

3exp 3exp 3exp

3 3

d u

AB BA u d

u d

u d u d u d

N P u d

i M M

K P K N M i M

M i M

i M M i vm vm i v m m

M M m m

δ
δ

δ

δ δ δ

  
  

=   
  
  
  

= = = ⋅

= + − −

 (6.13) 

Referring to (3.4) and (3.5), this means that we can write the mass sum N Pm m+  as: 
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( ) ( ) ( ) ( )
( )

( )
( )

3 3 3 3
2 2 2 2

3
2

3 3 31 1
2 2

31
2

2 2 2 Tr ( ) ( ) 2 Tr ( ) ( )

2 ( ) ( ) ( ) ( )

exp 0 0 0 0

Tr 0 0 0 exp 0

0 0 0 0 exp

3

AB BD

AB BA AB BA

d u

u d

u d

N P u

d x P N d x P N d x

P N d x K P K N

i M M

M i M

M i M

M M m

µν
µνπ π π π

π

δ

δ
δ

= − = = ⋅

= ⋅ =

   
   
 =   
   
      

= + −

∫∫∫ ∫∫∫ ∫∫∫

∫∫∫

E L F F F F

F F

3 d N Pm m m− = +

 (6.14) 

by introducing two new field strength tensors defined in the manner of (3.2), namely: 

, ,
Tr ( ) 2

d ud u

d u

P i
M M

µ ν µ ν
µν γ γ γ γ    Ψ Ψ Ψ Ψ    ≡ − +

 
 

F , (6.15) 

, ,
Tr ( ) 2

u du d

u d

N i
M M

µ ν µ ν
µν γ γ γ γ    Ψ Ψ Ψ Ψ    ≡ − +

 
 

F . (6.16) 

Above, the “vacuum-amplified” masses uM  and dM  are defined as in (6.7) and (6.8), and uΨ  

and dΨ  represent wavefunctions for the vacuum-amplified up and down quarks (which as noted 

just above should bear a relationship to the so-called “constituent quark” wavefunctions).  Lastly, 
we apply the Gaussian ansatz (3.12), in the form: 

( ) ( ) ( )23
02 4
2

1
exp

2
u

u u
u

r r
r U π

−  −
 Ψ = Λ −
 Λ 

, (6.17) 

( ) ( ) ( )23
02 4
2

1
exp

2
d

d d
d

r r
r D π

−  −
 Ψ = Λ −
 Λ 

, (6.18) 

and for the reduced Compton wavelengths Λ , we also make use uM  and dM  defined in (6.7) and 

(6.8), to specify: 
/ 1/u u uM c MΛ/ = =ℏ , (6.19) 

/ 1/d d dM c MΛ/ = =ℏ . (6.20) 

  So, referring back to the discussion at the end of section 3, as was the case with the short 
range of the nuclear interaction, we can indeed use the Gaussian ansatz to model fermion 
wavefunctions as Gaussians and obtain the fully-dressed proton and neutron masses.  But to do 
so, we are not using the undressed “current” quarks which yielded binding energies in [1] and 
[2], but are instead using vacuum-amplified quark wavefunctions and masses and wavelengths 
associated with the fully-dressed, constituent quark masses, which also are responsible for 
yielding the correct magnitude of the short range of nuclear interactions.  So here too, it is not a 
question of whether we can use a Gaussian ansatz, but rather, it is a question of which 
wavefunctions with which masses and wavelengths we need to use in the Gaussian ansatz, in 
order to obtain a precise concurrence with empirical data.  So, insofar as fully covered protons 
and neutrons are concerned, it looks as if the constituent quarks are behaving as free fermions, in 
contrast to when we derived nuclear binding energies for which the current quarks behave as 
free fermions.  This underscores the role of the Gaussian ansatz as a modeling tool use to derive 
effective concurrence with empirical data, rather than as a part of the theory per se.  The theory is 
centered on baryons being Yang-Mills magnetic monopoles, and nucleons which release or 
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retain binding energies based on a their resonant properties which in turn depend upon the 
current quark content of those nucleons.  For calculations which involve the components and 
emissions of protons and neutrons such as their quarks and their binding energies, the current 
quarks can be modeled as free fermions to obtain empirically-accurate results.  For other 
calculations which involve the bulk behavior of protons and neutrons, accurate results may be 
obtained by modeling constituent quarks as free fermions. 
 
7.  Conclusion 
 
 We have shown how the Koide  relationships and associated triplet mass matrices can be 
generalized to derive the observed sum of the free proton and neutron rest masses in terms of the 
up and down current quark masses and the Fermi vev to six parts in 10,000, which sum can then 
be solved for the separate neutron and proton masses using the neutron–proton mass difference 
earlier derived in [2].  The opposite charges of the up and down quarks are responsible for the 
appearance of a complex phase exp(iδ) which in turn can be used to adjust these mass 
relationships to unlimited accuracy.  For the moment, phase angle δ=1.99328580 is an empirical 
parameter, but it does appear to be possibly related to the CP-violating phase of weak 
interactions for three fermion generations.  The Koide generalizations developed here enable 
these proton and neutron mass relationships to be given a Lagrangian formulation based on 
proton and neutron field strength tensors that contain constituent quark wavefunctions and 
masses.  In the course of development, we have also uncovered new Koide relationships for the 
neutrinos, the up quarks, and the down quarks. 
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