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Magnetic Monopoles and Koide Mass Triplets

Jay R. Yablon
Schenectady, New York 12309

Abstract:

We show how the Koide relationships and associaigieét mass matrices can be generalized to
derive the observed sum of the free proton androeuest masses in terms of the up and down
current quark masses and the Fermi vev to six pari$,000, which sum can then be solved for
the separate neutron and proton masses using tiieame-proton mass difference derived by the
author in an recent, separate paper. The oppatiteges of the up and down quarks are
responsible for the appearance of a complex phaséd@ which in turn can be used to adjust
these mass relationships to unlimited accuracyr the moment, phase angle1.9932858 is

an empirical parameter, but it does appear to begiay related to the CP-violating phase of
weak interactions for three fermion generation$ie Koide generalizations developed here
enable these proton and neutron mass relationgbijpe given a Lagrangian formulation based
on proton and neutron field strength tensors thaitain constituent quark wavefunctions and
masses. In the course of development, we alsovenoew Koide relationships for the
neutrinos, the up quarks, and the down quarks.
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1. Introduction

In an earlier paper [1], the author introducedttiesis that baryons are Yang-Mills
magnetic monopoles. One of the relationships ptediin this paper, equation [11.22] therein,
predicted the electron rest mass as a functioheotip and down quark masses, namely:

m, =3(m, - m)/(2r)*, (1.1)
with the factor of(27r)% emerging from a three-dimensional Gaussian integra Based on a

“resonant cavity” analysis of the nucleons wheretgyenergies released or retained during
binding are directly dependent upon the massdseofiiarks contained within the nucleons, we
also predicted the latent, intrinsic binding enesgdf a proton and neutron in [12.12] and [12.13]
of [1], to be given by:

B, =2m,+ m-( m+4/ mm+4 n) /(27)° = 7.640679Me (1.2)
B, =2m,+ m,~( m+4/ m m+4 ) /(27) = 9.812358Me" (1.3)

This predicts a latent binding energy of 8.7625088/ per nucleon for a nucleus with an equal
number of protons and neutrons, which is remarkalalye to what is observed for all but the
very lightest nuclides, as well as a total laténtling energy of 493.028394 MeV fdiFe, in
contrast to the empirical binding energy of 4922%3MeV. This is understood to mean that
99.8429093% of the available binding energy’fe is applied to inter-nucleon binding, with the
balance of 0.1570907% retained for the intra-nutkeanfinement of quarks. It was also noted
that this percentage of energy released for inteteon binding is higher iffFe than in any

other nuclide, which further explains that althoudlgé quarks come closer to de-confinement in
*Fe than in any other nuclide (which also explaires‘first EMC effect”), they do always
remain confined, as emphasized by the declineisnpircentage beyoridre.

In a second paper [2], the author showed how tésigithat baryons are Yang-Mills
magnetic monopoles together with the foregoingdnesit cavity” analysis can be used to
predict the binding energies of the 1s nuclidemels®H, °H, *He and'He, to at least parts per
hundred thousand and in most cases parts per midiod also to predict the difference between
the proton and neutron masses according to:

MN—MP:mu—(3n1d+2/mrQ—Sm)/(Zr)Z. (1.4)
This relationship, originally predicted in [6.16][@] to about seven parts per ten million in
AMU, was later taken in [9.1] of [2] to be axactrelationship, and all of the other prior mass
relationships which had been developed were themmailly adjusted to implement (1.4) as an
exact relationship. The review of the solar fusigole in section 8 of [2] served to emphasize
how effectively this resonant cavity analysis carubed to accurately predict empirical binding
energies, and suggested how applying gamma radliaitb the right resonant harmonics to a
store of hydrogen may well have a catalyzing effectuclear fusion.

At the heart of these numeric calculations weeettto outer products [3.9] and [3.10] in
[2] for the proton and the neutron, with componeaten by [3.11] and related relationships
developed throughout section 2 of [2]. In partacuthe two matrices which stood at the center
of these successful binding calculations were #8Yang-Mills diagonalized matricés of

mass dimension Y2 with componemiiag(KP) = (\/ﬁ ,\/ﬁ ,\/ﬁu) for the proton and



diag(K, ) = (\/ﬁ m ,\/ﬁ) for the neutron, whera, is the “current” mass of the up quark

and m, is the current mass of the down quark.

What is very intriguing about thegematrices (which we designate as such to reference
Koide), is that although they originate out of thesis that baryons are magnetic monopoles,
they have a form very similar to matrices which rbayused in the so-called Koide mass
formula [3] for the charged leptons, namely:

2
Jm +\m, + \/ﬁ) 13 (1.5)
m+m+m 2 '
Above, when we taken = m, m, = m, andm, = m to be the charged lepton masses, the ratio

R [3/2 gives a very precise relationship among these esassideed, if we use the 2012 PDG
datam, = 0.510998928 0.0000000M&V, m, =105.658371% 0.0000038eV and

m, =1776.82+ 0.16/eV [4], we find using the mean experimental data Rat1.50002282:
which is very close to 3/2. However, when we Umedxtremes of the experimental data ranges,
specifically, the largest possible tau mass andawest possible mu mass, we obtain
R=1.5000024968. Although this is an order of magietcloser to 3/2 than the ratio obtained
from the mean data, is stdutsideof experimental errors. This means that whRlél3/2 is a
very close relationship, even accounting for expental error, it is still approximate. For this to
bewithin experimental errors, it would have to be possiblebtain someR< 3/ 2 for some
combination of masses at the edges of the expetainemges, and it is not. So in the
application of the Koide relationships to variouass triplets, the question becomes,wloéther

a triplet has a ratio exactly equal to 3/2, becaugstriplet does have this exact relationship, but
rather, how close to 3/2 any given ratio is, andemmportantly, what the meaning is of this

ratio and deviations from this ratio.
The similarities of the matrices developed bydh#hor in [1] and [2] and those

developed by Koide in [3] is highlighted if we dedi a Koide matrix generally as:

Jm 0 o0
Kg=| 0 Jm, 0 | (1.6)
o o0 Jm

Then, the two latent binding energy relationship2) and (1.3) may be written:
1 1 —
BP = KABKBA_(i KAAK BB:Tr(KZ) - (2”) TI’(K 0 K) = an +m _( m+ mmp+ 4 nu) /( ZT)
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1 1
BN = KABKBA_ié KAAK BB Tr(KZ) -

(27) (27)

Jm o o})Jym o o Jm o o) (ym o0 o (1.8)
=7l 0o ym o o ym o|-—1.T o Jym oo o ym o
o o Jmllo o ym @ o o Jm o o Jm

where, based on (1.6), in (1.7) we haversge m, andm, = my= m, and in (1.8) we have set

m =m andm, = m, = m. These originate in the author’s thesis in [Httharyons are Yang-

Mills magnetic monopoles. Abové] designates aouter matrix product.
On the other hand, settingy = m, m, = m, andm, = m in (1.6), we may write:

Tr(K?) =K, gKga=m +m+ m, (1.9)

Tr(K 0 K) = KK g = +m, +m) (1.10)

Then, using (1.9) and (1.10), Koide relationshigp)Tor charged leptons may be written as:

R= (M+\/E+\/E)Z _ KuKs :Tr(K 0 K) DE

m+m+ m Ke e  T(K) 2

Clearly then, the Koide matrices (1.6) providesagyal form for organizing the study of
both binding energy and fermion mass relationshipch lead to very accurate empirical
results. It thus becomes desirable to understamg@tiysical origin of these matrices and tie
them to a Lagrangian formulation so that they aréonger just intriguing curiosities that yield
tantalizingly-accurate empirical results. Andsitlesirable to see if they can be extended to
make additional mass predictions and gain deepggrstanding of the particle mass spectrum.

Because the binding energy formulation in (1.4 é@n8) has its roots in the thesis that
baryons are Yang-Mills magnetic monopoles and $ipally emerges from the calculation of

energies viaE =~ [[[ 2d°x, see [11.7] of [1] et. seq., the author's previbngings will provide

us with the means to anchor the Koide relationsim@sLagrangian formulation. And, because
Koide provides a generalization of the mass mariaived by the author, these matrices will
provide us with the means to derive additional nmaksdionships as well.

Most importantly, in this paper, we shall combihe author’s previous work in [1] and
[2] as well as [5], using the generalization pr@ddy Koide triplet mass matrices of the form
(1.6), to deduce the observed rest masses 938.8 8¢ and 939.565379 MeV of the free
proton and free neutron, as a function of the updown quark masses and the Fermi vev. The
next two sections will lay the foundation for doitigs, and the mass derivation will then
commence in section 4.

nle

(1.11)

2. Statistical Refor mulation of the Koide Mass Relationship

Let us begin by couching the Koide mass relatignéh5) for the charged leptons in
statistical terms, usingy = m, m, = m, andm, = m in (1.6). First, using (1.9), we write the

average of the masses in a Koide mass tripletm,, m,, i.e., the “average of the squares” of
the matrix elements in (1.6), as:
<K2>:Tr(K2)/3:KABKBA/S:(ml+ m+ m)/3=( m. (2.1)

4



Next, via (1.10), we write the “square of the ageraof these matrix elements as:

ey TR OK) KMKBB:(M%WJL(M o +m) 22
3 9

9 9
So, combining (2.1) and (2.2) in the form of (1apws us to write:

2
Q<K>2:Tr(KDK):KMKBB:(\/ﬁ’f\/ﬁﬂ/E) - 23
(K2 Tr(K®) KgKg  mtm+m 2 '
This allows us to extract the relationship:

2 _R 1
(k) =3(K?) D5(K?), 24)

which naturally absorbs the 3 from the factor &.3/
Now, we simply use (2.4) to form the statisticatigsnceo(K) in the usual way, as:

2 2 _ R A _ (3 2 (3 1, .\ _ 2 _
o(K)=(K?*)~(K) —(1—§J<K >—(E—1J<K> _(E_ j<m>D—2<K )=(K)" =(m). (2.5)
The key relationship here, using the first and tasns, is:
o(K)O(m). (2.6)
So the average charged lepton mérqs) Is approximately (and very closely) equal to the

statistical variancef(K) of Koide matrix (1.6) for the charged leptons.isTis a much simpler

and more transparent way to express the Koide ne&sonship (1.5), and it completely absorbs
the factor of 3/2.

Of course, as noted after (1.5), this is a veoge] but still approximate relationship. The
exact relationship, also extracted from (2.5), asithg R =1.50002282¢ based on the mean
experimental data, is:
o(K)= (%— j<m> =0.999969568m) = G m), 2.7)
where we have defined the statistical coefficiérsnd the inverted relationship fBras:

3 3

C=—-1 R= : (2.8)
R 1+C
Thus, we rewrite the basic Koide relationship (Irioye generally as:
2
+ +
(vm +ym +m) _3 . 2.9)

m+m+m 1+ C
In the circumstance where the statistical coefficte=1, i.e., where the average mass is exactly
equal to the statistical variance, we ha¥e 3/ 2. So the variance of the square roots of the
three charged lepton masses is just a tiny tolsh(#.99996956) than the average of the
three masses themselves. But the factor of 3/&hank somewhat mysterious in (1.5), is now
more readily understood when we realize that itesponds witlC=1 in (2.7).

This means that the Koide relationship oy given triplet of numbers with mass

dimension Y2, may be most transparently charactebyehe coefficienC. Thus, using (2.7),
the coefficient for the charged lepton tripletuse(also includdR for comparison):

C(eur)=0.999969563] 1, R(eur)= 1.500022828 3. (2.10)

5



So what about some other Koide triplets? For thgnmos, PDG in [6] provides upper limits on
the neutrino masses whereby <2eV, m, <0.19MeV andm, <18.2MeV. If we use these
mass limits in a Koide triplet, we find thRt1.202960231, but the significance of this is more
easily seen by using (2.8) to calculate:
C(vv,v,)=1.493848031 3/2 R(vw,v,)=1.20296@ 3116/5. (2.11)
So the variance in the square roots of the neutnass limits is very close to being 50% larger
than the average of these mass limits, 8K, ) 0(3/2)(m,). This in an interesting
“coefficient migration” as between the charged andharged leptons, wherein for the charged
leptons masseR [13/ 2 to parts per 100,000, while for the neutrino lepipper mass limits,
C 03/ 2 within about 0.4%. As we shall see, it is thetstha new Koide pattern.

Turning to quark masses, we usg= 2.22379RMOB and m, = 4.906470338eV
developed in [9.3] and [9.4] of [2] via 1 u=931.4@&1(21) MeV/é, as well as
m. =1.275+ 0.02%eV, m, =95+ 5MeV, m =173.5¢ .6 .&eVandm = 4.1& 0.0GeV
from PDG’s [7]. For Koide triplets of a single ¥iar type, we can calculate that:
C(uct)=1.546880 3/2; Ruc)= 1.177913486 6. (2.12)

C(dsh=1.187410 6/5; R( dsh= 1.371483911 15/. (2.13)
So we now see a distinctive pattern among (2.1@utdh (2.13). For the charged leptons

in (2.10) which are the lower members of a Weakpimdoublet,R(eur) [03/2. Forthe

neutrinos which are the upper member of this dctu(avevﬂvr) 03/ 2, which migrates the

3/2 from theRto theC coefficient. Then, for the up quarks({uct) 03/ 2, which is same as

the C for the neutrinos, and both quarks and neutrimeshee upper members of the isospin
doublets. Butitis theR(uct) [16 /5 coefficient for the up quarks, that migrates to

C(dsbh 06/5 for down quarks. So the migrationi{eur) 03/2 - C(v vV ) 03/ 2 for

e’ u'r

leptons,C(v,v,v,) 03/2 - C(uct) 03/ 2 providing a “bridge” from “up” leptons to “up”

e’ u’'r
quarks, and themR(uct) 06/5 — C( dst 06/5 migrating the up to the down quarks. The net

upshot of this coefficient migration is that we nbave Koide-style close relations for all four
sets of fermions (and anti-fermions) of like electhargeQ, namely:

(\/"L(e) +\/mv(m +\/”J(r) )2 a6

R(Q=0) = (2.14)
My T Muy T M 5
R(Q=+1)= (Vm.+m, +/m) 03, (2.15)
m+m,+m 2
R(Q=%2)= (Vm +m + /) nd. (2.16)
3 m,+m+ m S
R(Q=+1) = (Y +ym +/m) oo, 2.17)
3 m, + m+ m 11



Each of these relationships takes 12 (apparemtitigpendent fermion masses and reduces by 1,
their mutual independence. So with (2.14) thro(ligh17), to first approximation, we have now
eight, rather than 12 independent fermion masses.

For some other commonly-studied Koide tripletshage:

C(udg) =0.692900 14 2; R(ud}= 1.7721053413V 31+ ). (2.18)
C(cth) =1.009390 1; R(cth) = 1.492994103 3. (2.19)
C(usg=0.86795; K usp= 1.6060423C. (2.20)

C(csh=1.027830 1; R(cs = 1.479416978 3/2 (withm, . (2.21)

C(dcg =0.81520; K dcp= 1.6527180¢. (2.22)

We note that the relationship (2.14) b(udé 01/+/2 is accurate twvithin experimental

errors. Specifically, given the empiricah, = 95 MeV, (2.14) can be made into aract

relationship to ten digits (the accuracy of theanp down masses derived in [2]) if we set
m, =98.9530349b1eV. Of course, even the relationship for the chatgptbns is a close but

not exact relationship, see the discussion follgwih5), so we ought not expect (2.14) to be
exactlyC(udg =1/+/2. But, similarly to (1.5), see also (2.10), it magll make sense to regard

this as a relationship accurate to the first tlmefur decimal places, which would improve our
knowledge of the strange quark mass by four of dirgers of magnitude.

But this main point of the foregoing is not abthe specific Koide relationships (though
(2.14) through (2.17) are important steps forwartheir own right), but about how the ratio
parameteR which for the charged lepton triplet R[13/ 2, can be reformulated famy

fermion tripletinto the coefficienC in the statistical variance relationshﬁp(K) = C<m>,

which, for the charged leptons,&[1. And, as we see in (2.14) through (2.17), thislead to
additional relationships and, indeed, a cascadiiggation of coefficients.

Turning back to the proton and neutron trlpldtag (\/_ ,\/_ ,\/7) and

dlag (\/7 “/7 ,\/_) which were so central to obtalnlng accurate bigdinergy
predlctlons in [1] and [2], we find using the masduesm, = 2.223792408eV and

m, =4.90647033beV obtained in [2] that:

C(p=duy=0.0387876019; K p= duj= 2.88798210. (2.19)
C(n=udd) =0.0298844997; R( n= udd = 2.91294800. (2.20)

For these triplets which all haveseall variance in comparison to the earlier tripletschhtross
generations, the Koide rati@ J3. In the circumstance where the variancexactlyzero
because all three quarks have the same mass,domd, for the tripletdd"" =uuu and

A™ =ddd, using the Koide mass relationship for paramea¢ion, we haveC =0; R=3.

3. Lagrangian / Energy Reformulation of the Koide M ass Relationship

The appearance of Koide triplets originating fritra thesis that Baryons are Yang-Mills
magnetic monopoles can be seen, for example, sidenng equation [11.2] of [1] for the field



strength tensor of a Yang-Mills magnetic monopaletaining a triplet of colored quarks in the
zero-perturbation limit, reproduced below:

TIE® = I[lﬂ [y oy ]‘/’R_'_l/je[y oy ]¢’G+l// [y oy ]Z/IBJ (3.1)
Pr — Mg "Pe —Mg" "Pg —M

If we generalize this to any three fermion wavetions ¢,,¢, ¢, such that (3.1) represents the

specific casey, =¢y, Y, =, andy, =y, and, as we did prior to [11.19] of [1], if we

consider the circumstance in which the interactsimswyn in Figure 1 at the start of section 3 in

[1] occur essentially at a point, thep* | - | y*,y” | approaches an ordinary commutator,

each of thep - 0, and the “quoted” denominator becomes an ordidanominator, see [3.9]
through [3.12] of [1] for further background. Ssasettingm = m,, m,=m, andm, = m,,
(3.1) generalizes for a point interaction to a Kosglyle field strength tensor:

(el e ol v e wlvy s

m m m

Then, we form a pure gauge field Lagrangigg,..= 1Tr(F F‘”) 1Tr(F EF)
in [11.7] of [1]. As discussed in section 2 of,[@)e consider both inner and outer products over
the Yang-Mills indexes o, i.e., we consider bothirF? =Tr (F,, (Fy.) = F 5 [F 5, and
Tr(FOF)=Tr(Fy (Fep) = Fa[Fee Note carefully the different index structuresfg, (F,

versusF,, [Fg;, and also contrast this to (1.7) and (1.10) is gaper, which is where we are

headed at the moment. We then use this Lagrangiealculate energies according to [11.7] of
[1], see also [1.1] of [2], which is reproduceddve]

E = ~[[] Lgued®x = £ Tr[[[F,, F*d°x. (3.3)
In the case wherg, =y, , ¢, =¢, =y, so thatF** = F*"_ represents the proton, then
depending on whether we contact indexes usiggF,, or F,, [F.;, we obtain the inner and
outer products [2.8] and [2.6] of [2], respectiveMheny, =, ¥, =@, =y, sSOF*" =F*

represents the neutron, we obtain the inner aret ubducts [2.9] and [2.7] of [2], respectively.
Using (1.6), the Koide-type generalization of thees products [2.6] and [2.7] of [2] ¥

=—m$Dd3x:%Trm F, 0P dx= 1Trm R OR, of x= 4 m FAOF, d * s T K K

Jm 0 0o} (ym 0 o0 2 3.4)
= 1%Tr o Jym o0 |0 0 Jm o0 |= 1%(ﬁ+m+\/TE‘)
(27) o o Jym] o o Jm)

while the Koide generalization of the inner prody&.8] and [2.9] of [2] is:

TIE® = - (3.2)




E=~[[[ed’x=4Tr[[[ F, F* & x=4Tr[[ B DR, & x= 4] ABDFBAQU; 7 K Ko

Jm o o)Jm o0 o0 (3.5)
= Lm0 Jym o 0 Jm o =21;(n}+r@+ )
o o Jmj o o ym) *7

This means that is now becomes possible to exfinedsoide relationship (2.9) entirely in terms
of energie€ derived from the general integral (3.3) of a Lagian density® = -1Tr(F [F)

over d*x. Specifically, combining (2.9) with (3.4) and%Ballows us to write:

izﬂjsmd&:wmavm F4 3 x m DR X KK
E - [ TR ] R DRad X Koo K

(meymeymf s

m+m+m 1+ C
This expresses the Koide mass relationship in plalforms, in terms of the energy integral of a
Lagrangian density of the general forer= —%Tr(F EF) , with the field strength given by (3.2).

(3.6)

This means that faany Koide triplet of given empiricaR, there is an energi, which vanishes

under the condition:
E.=[[[(£, - Re) Ex=Tr[[[( FO F- RF) d %0. (3.7)

This is the Lagrangian / energy formulation of Keade relationship (2.9), and although
different in appearance, it is entirely equivale8b, for example, using the symholas in
figure 1 and Table 3 of [5] to represent the thgererations of the fermions for any given
charge, the four Koide relationships (2.14) thro(@hi7) for the “pole” (low-probe energy)
masses, may be written as:

= [[](e; —2e)d**x=Tr[[[( FO F-£ F*) &®xD0. (3.8)
=] (£D—g£)d3x:Trﬂj(FD F-2 F?) d®x00. (3.9)
= [[[ (s, —2&)d*x=Tr[[[(FO F-£ F*) &*xD00. (3.10)
Ei = [[[(2, -28)’x=Tr[[[( FO F-2 F) &*x00. (3.11)

Whether these beconaaexactlyequal to zero for masses at high-probe energmeswhether there
is an underlying action principle involved heres guestions beyond the scope of this paper
which are worth consideration.

What ties all of this together, is that wedelthe radial behavior of each fermion using
the Gaussiaansatzintroduced in [9.9] of [1] which is reproduced d&lwith an added label
i =1,2,3 for each of the fermions and masses in (3.2):

% (r)=u(p)(m° )‘g‘ xn{—;(r;;))z} (3.12)

andthat we also relate the reduced Compton wavelehgtio massm via the DeBroglie
relation &, =7/ mc, see [1] following [11.18]. This is what makegdssible to precisely



calculate the energy in integrals of the form (3spkecifically making use of the basic Gaussian
mathematical relation [9.11] of [1]:

1} : ex’{‘(r;—?)g}d?’x =1, (3.13)

R}
and variants thereof. Itis (3.12) and (3.13) &ng1/m (in 7 =c =1 units) which tie
everything together when (3.2) is employed in (318pugh (3.7). And this is what leads to the
accurate mass relationship (1.1) and binding engregictions (1.2) and (1.3), as well as the
binding energy predictions féH, *H, *He and’He and the proton—neutron mass difference (1.4)
developed in [2]. And the final piece which alggstthis together, is the empirical normalization
for fermion wavefunctions developed in [11.30] df,[namely:

s_ 1 (E+mf _ 1 (E+my

N =— 2 "oy 2

n, (2mf 24 (2m)

wheren, =24 is the total number of fermions including threéocs for each quark.

Now, it is important to emphasize that the Gaumsaisatz(3.12) is not dheory, but
rather, it is anodeling hypothesithat allows us to perform the necessary integnatand
calculate energies that turn out to correlate vegl}f with empirical data. That is, in explicitlgi
[1] and implicitly in [2], wehypothesizethat the fermion wavefunctions can be modeled as

Gaussians with specific Compton wavelengthss1/m defined to match thendressed,

current quark massesve performed the integrations in (3.3), and wenfbthat the energies
predicted matched empirical binding data to — irstoases — parts per million. This, in turn,
tells us thator the purpose of predicting binding energigss possible to model thaurrent
guarks as Gaussians (which means they act assimeeohs), with masses and wavelengths
based on their undressed, current masses, andrébthobtain empirically-validated results
But, as also discussed at the end of section [ ithis use of undressed mass doesapply
when it comes predicting the short range of thdaaranteraction which we showed at the end
of section 10 in [1] is indeed short range withiandard deviation o&r :%x. For, if we use

(3.14)

the undressed fermion masses that work so wellifating energies, we findl, ~8565F and
L, ~4104F, and the predicted short range is still not skadugh. If, however, we turn to the

constituenguark masses which, at the end of section 1ledtmation, we took to be 939
MeV/3=313 MeV, then we havk ~ 63F ando =-L% ~ 45F , which tells us that the nuclear

interaction virtually ceases to be effective atwtht = 3% ~2F . This is exactly whas
observed.

In both cases — for nuclear binding energies anthie nuclear interaction short range —
we found that the Gaussiansatz(3.12) does yield empirically-accurate resultsit #r binding
energies, it was the undressed, current quark magseh gave us the right results, while for
nuclear short range, it was the fully dressed, Stiturent” quarks masses that were needed to
obtain the correct result. Because we shall moandypembark on a prediction of the fully
dressed rest masses 938.272046 MeV and 939.5658V%kMhe free proton and free neutron,
what we learn from this is that while we might altsoable to approach these masses using the
Gaussiaransatzfor fermion wavefunctions, we will, however, ndedoe judicious in the
fermions we choose and in theasseshat we assign to the fermions. That is, the $amfuour
deliberations will be, novhetherwe can use the Gaussiansatz but onhow to select the
fermions and masses that we do use with the Gauassatz
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Now, based on all of the foregoing development)sesee how to predict the proton and
neutron masses.

4. Predicting the Proton Plus Neutron Mass Sum to within about 6 Partsin 10,000

Because we can connect any Koide matrix prodocisliagrangian via (3.4) and (3.5),
let us work directly with the Koide matrix (1.6) tietermine how to assign the massgs m,,

m, so as to predict the proton and neutron massksn, &t the end, we can backtrack using the

development in section 3 to connect these masdbgitcassociated Lagrangian. In other words,
we will first fit the empirical mass data, then w#l backtrack to the underlying Lagrangian.
Each of the proton and neutron contains threekguarhe sum of the quark masses is

2m, + m, =9.3540551M4eV for the proton an@®@m, + m, = 12.03673@2V for the neutron.

For afree proton and neutron, none of their rest mass &aseld as binding energy, and so these

quark mass sums are included\h, =  938.27R0#6 and M = 939.5653MeV

respectively, where we use an upperddge denote these fully-dressed, observed massges. A

demonstrated in sections 11 and 12 of [1] and tjirout [2], these rest masses are reduced when

the proton and neutron fuse with other nucleonst f& free protons and neutrons, the entire

rest mass is retained and all of the latent binémgrgy is used to confine quarks. Using

m, = 2.22379240MeV andm, = 4.906470338eV from [9.3] and [9.4] of [2] as earlier

introduced after (2.11), this means that the “ntas®rings”’m (using a lowercase) of the

proton and neutron, may be calculated to be:

m, = M, —-2m,—-m, =928.917915MeV , (4.2)

m, = M, —2m, —m, =927.528@57MeV . (4.2)

That is, thesen represent the observed, fully-dressed proton antton massed, less the sum

K eKga=m + m + m of the current quark masses, with= m,, m, = m, = m) for the proton,

andm =m, m, = m = m for the neutron, see (1.9). One may think of &sishe weight of the

rather heavy “clothing” over the bare quarks. $henof these two mass covers is:

m, +m = Mg+ M,-3m-3 m=1856.4663MeV . (4.3)
At the end of section 9 of [2], after deriving theutron—proton mass difference (1.4), we

noted that the individual masses for the protonradron could now be obtained by deriving

some independent expression related testimeof their masses, and then solving these two

simultaneous equations — sum equation and differegaation — for the two target masses —

proton and neutron. We shall do exactly that hémeparticular, it will be our goal to derive the

sumM, + M, of these two masses, and then use (1.4) as ataimealis equation to obtain each

separate mass. The benefit of this approach assugn, referring to the so-called mass

“toolbox” in [3.11] of [2] and also the discussiohthe alpha nuclide following [4.4] of [2], is

that in selecting mass terms to consider, we damredte any candidates that are not absolutely

symmetric undemp -~ n andu ~ d interchange, because the s, + M, contains three up

guarks and three down quarks, as well as one peoidrone neutron. The empirical target,

therefore, isM, + M, = 1877.8374R&eV, or, alternativelym, + m, =1856.44663KeV

from (4.3). This is what we seek to predict.
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Now let us return to the “clues” we laid out ingBthrough [3.8] of [5]. Let us start in
the simplest way possible by focusing our constitamaon [3.8] of [5], reproduced below, but

multiplied by a factor of 2 and separated itj]fw—n and {/vm, in the second term:

2Jv/m,m =2 vrg¢/ vmp=1803.670518veV. (4.4)
Here,ve=246.219651 GeV is the Fermi vev. Because, thabait 3% smaller tham, + m, in
(4.3) and it is closer ton, + m, than either [3.6] or [3.7] of [5], and it is symtrie under

U - d interchange, we shall see if (4.4) can be usedtsbif, to provide the foundation for
reaching the target. As we shall, see, with+ m, in (4.3) as the target, it can be so used!

Now, in (3.11) of [2], we developed a “toolkit” afasses which we used for calculating
several binding and fusion release energies with el@se precision. We shall wish to add to
this toolkit here, and in particular, will wish tefine our use of the Fermi vey=246.219651
GeV beyond what is shown in (4.4). Specifically nmted after [3.8] of [5], we need to put (4.4)
“and like expressions into the right context anthobthe right coefficients. And where do such
coefficients come from? The generators of a GUNBw, we need to use the GUT we
developed in (4.4) to obtain the needed coeffisiereded to bring (4.4) closer to the target
mass 0f1856.44663K1eV in (4.3). Because the vev that seems bring wstir@ correct
“ballpark” is the Fermi vev, we focus on the elegteak symmetry breaking which occurs at the
Fermi vev and which, in [8.2] of [5], is specifiby:

diag(®, ) = diadT'¢ )= (02 74 +4 7 E1 2 9=y diag. (4.5)
For the proton with a fermion trlpléd, u, u) , the corresponding eigenvalue entries in (4.5)

above arg-1v;,2v.,2\. ). For the neutron and i{sl, d, d) triplet, the entries are

(2ve,~1ve,~3% ). We now wish to use these to establish respekibige triplet matrices for
the proton and neutron.

Looking at (4.4) and the vacuum tripldtsiv,, 2v. 2\ ) and (2v.,—3v. ,—1v ), we
see that to obtain the proper mass dimension detines with¢/vm, and ¢/vm, and use these as

Koide triplets, we will need to take the fourth to®of these triplets. Let us do exactly that, and
pair these triplets with the mass tripléts,, m, n3) and(m,, m;, m), for which we also take

the fourth root. Thus, we define two Koide triglebne for the proton and one for the neutron:

4/—1vm), 0 0 i°41vm 0 0

Ke(P=| 0 42vm 0 |=| 0o 4zvg 0 | (4.6)
0 0 4zvm, 0 0 4zvm
Havm, 0 0 J2vm 0 0
Ke(N)=| 0 4-1vm 0 |[=| 0o Fivm 0o | (4.7)
0 0 4-ivm, 0 0 i*4ivm

We see that because of the negative charge ofothie duark, each of these triplets contains
i :%(1+i) which is a complex number. In recent years, @®rsition has been given to
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havingnegativesquare root terms in Koide mass relations, seexample (2.16) in which one
uses—,/m, to derive a close relation for ti{esh) triplet. The above, (4.6) and (4.7) take this a

step further, because they raise the spectenpdétsiwithcomplexsquare roots! In the next
section we shall explore the implication of thesmplex components, which arise from the
opposite charges of the up and down quarks. Buh@8smoment, let us ignoii€ in the above
so we can look at magnitudes only, and let us filverKoide matrix product with® excised:

{ivmy 0 0 {2 vm 0 0

K e(P)Kga(N) = Tr 0 42 vm 0 0 ¥z vm 0
0 0 {2vm, 0 0 4ivm |- (4.8)

= 3@[3 lvQ/m,m =1857.570635MeV

Comparing to (4.3) which tells us that, + m, =1856.446637 MeV we see that we have hit the
target to within about 0.06%! That is:

K ,s(P)Kga(N) _ 1857.570635 MeV
(m+m),,..., 1856446637 MeV

This is extremely close, and in particular, we rs®e that to within about 6 parts in 10,000, the
sum of the proton and neutron masses may be ergressnpletely as a function of the up and
down quark masses and the Fermi vev! So if wethiseclose relationship to hypothesize that a

meaningful relationship is given yn, + m,)_ . 0 K,;( P Ky,( N, then sing the above with
(4.3), we now see that to within about 0.06%:

2
M M, = 3 3mO30= 3 3r. )
N FMo=my+m+3m+3m E(fg\/\ﬂl/mw M3 (4.10)

This expression is symmetric undeider p - n andu ~ d interchange, and as a sum of the
proton and a neutron mass, it is formed by takiregriner product K . (P) K;,(N) between a Koide

=1.000605457! (4.9)

proton matrixdiagK, )= ((‘/évrn, ,(‘/% vim </§ vm) which employs electric charge and mass

magnitudes for one down and two up quarks, diatyK,, )= (‘\‘/évmJ ,(‘/—é vm ,(‘/—g Vrg) which is a

Koide neutron matrix employing electric charge amaks magnitudes for one up and two down quarks.
Furthermore, if we divide (4.8) by 2, we see that:

3_/2
K (P)KL(N)/2==0[}—= =928.7 174/kV. .
o (PY Ko (N)/ ZE{E\/VQ/WW 928.7853174/k (4.12)

This actually falldbetweenm, =928.9179918eV and m, =927.528645KeV from (4.1)

and (4.2), and so (4.10) clearly appears to beahect expression for the leading terms in the
proton and neutron masses. Based on this closirence and “threading the needle” between
the proton and neutron masses with (4.11), we mgard (4.10) as meaningful(rather than
coincidental) close expression ftt, + M, to 0.06%, and embark in the next section on the

task of overcoming this final 0.06% and developamgxactexpression foM, + M. Then,
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we shall be able to use that in combination with M(n)— M(p) difference (1.4) to specify the

proton and neutron masses individually, as a fonadif the up and down quark masses. That, in

turn, will enable us to return to relationshipsisas [7.1], [7.3], [7.5] and [7.6] in [2] which Bti

contain the proton and neutron masses, and exiresaiclear weights of these compo

®H, *He and'He nuclides, and others developed in the futurigtistin terms of quark masses.
Now, let us see how to close the remaining 0.06% g

5. Exact Characterization of the Proton and Neutron Masses, with a Phase Parameter ¢

In (4.8) we neglected the factors iéf:%(lﬂ) in order to examine the magnitude of
the predictedm, + m,. If we now restore this factor, (4.8) becomes:

i°g3vm 0 0 )[42vm 0
Kas(P)Kga(N) = Tr 0 14/% vim 0 0 P 4/% vm

0 0 Y2vm, 0 0 i°42vm, ||- (5.1

= 3%(1+ i) [{E‘ NvQ/mm, = %(h i) (1857.30 85MeV

Having now found the right magnitude, we could mage of a/2 factor and continue to match
the empirical data by Writing/i Re( Kas PKea (N )) Om,+ m,. But this just sidesteps some

guestions because a) it introduces a substantagimary component to this mass sum and b) it
does not help us past the 0.06% difference tHatestnains. Let us therefore deal with the

i®=—1(1+i) factor a little differently.

0
0

Instead, let us write this factor =%(1+i) in terms of a phasé such that:
i®=—+(1+i)=expid)= coP+i sid ;=7 /- (5.2)
So now, we write the proton plus neutron mass $uf) @s:

my + M, = K 5(P)K 5i(N) =3exp(id) Et/%/vﬂ/mj m = exg §) 01857.5@B5MeV, (5.3)

with 0 =7/ 4. Now, let us rotate the proton and neutron matssadlifferent phasé - J&
such that the real part of the rotated mass swerastly equal tan, + m, =1856.44663KeV
from (4.3). In other words, we rotate the phasghgbat:

: o [2
(M, + M) = K( P Ko N =3exp( B’)Ei/;/ v/ m m = exif d)[1857.57063M eV 5.4

=(cosd +i siny’) [1857.57063BeV =1856.446637MeV +isind' [ 185370635MeV
Above, we have highlighted tlempirical value in bold type. This means th@twill, for now,
need to be aempirical phase parameteefinedsuch that:

_ 1856.44663MeV _ ; 599394909 (5.5)
1857.5735MeV

It is fortunate, and a further indication that @).is indeed a meaningful and not merely a
coincidental relationship, that the predictey + m, is larger than the empiricah, + m,,
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because this satisfies the required constraintdbsd’ < 1. Had the prediction beemaller,
then we would haveosd’ > 1, which is mathematically impossible without usintaginary
arguments to convert over to hyperbolic cosines fr&n (5.5), we readily deduce:

& =0.0347894 rag- 1.99328E. (5.6)
Consequently, we hav&nd = 0.03472383, so that (5.4) becomes:
(m, +m,) =1856.44663KleV + i[] 64.61073342¢V . (5.7)

The real part of this expression, by design, nogcisely matches the empirical data.
Now let us solve the simultaneous equations @&ndi)(1.4) to obtain theeparatemasses
of the proton and neutron. First, as in (4.10),add the quark masses back in to (5.4), and also

we remove the primes from (5.4) and thus estallist1.9932858 rather than the original
o0 =11l 4 (see (5.2)) as the unprimed phase angle. Thuseeast (5.4) as:

M, + M, =3exp(id) Ei/%./v 1/m,m, + 3m+ 3m. (5.8)

Now, we simultaneously solve (5.8) and (1.4) tcagbthe separate expressions:

3m, + 2, -3
M, :%LSexp(iJ) E{/%/v m,m, + 4m+ 3m- m n)lgng m}. (5.9)

(2r)
M, :%EBexdiJ) E{/:SJV m,m, + 2m+ 3rrg+3mj * ("2?);@ —Sm} (5.10)

Now, as a double check, let us solve for the phasey the separatebservednasses of
the neutron and proton in each of (5.9) and (5.13ing I' to represent the magnitude of the
imaginary term that arises from the phase, resgagtiwe first obtain:

M, =939.565378MeV + ",

=% 3(cos§+isin§)[</gm+ am + 3@-3%+22/2T_3m : (5.11)
M, =938.272046MeV + I,

- 3(cOsa+isir6)E(EW+ o+ 3@+3W+2(JZT‘3W - (5.12)
Then we segregate out the real terms and reavderite and calculate:
939.5653788/Iev—;[4rrh cam, -0 %(/ZT ~3m

cosd = =0.99939490 . (5.13)
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Because (1.4) for the neutron—proton mass differdras been defined as an exact relationship
with all other masses adjusted to ensure thissseion 9 of [2], the numerical value 06s0 is
exactly the same in each of the above, and alsohasthe magnitude calculated in (5.5). So
our check confirms that all of the calculationgdiggether correctly.

Now, usingsind =0.03472383, see just after (5.6), the magnitudesf the imaginary
portion of (5.11) and (5.12) may be calculated via:

3m, + -3
r, :%Lgsinacﬁ Nofmm, + 4an, +3m, -8 - S nDJ:43.6474265MeV, (5.15)

3m, + 2./ -3
938.272046Mev—1(2mJ +3m, + il T :g i

cosd = } =0.99939490 . (5.14)

(2n)°
3 -3
r, :%{BSindE{/:;/vﬂ/mjmj 4 am +3m 4o (zn;f);@ m] = 42.54094MeV . (5.16)

Note that the differencé, -, = 1.29333@8V is also the same as the neutron minus proton
mass differencéVl, — M. Finally, usingd =0.0347894 ra from (5.6), our theoretical
expressions (5.11) and (5.12) for the proton androe masses become:

M, = %(Bexp( @.034789‘95{/%\/\/7 Lymm, + 4m + 3m - Ll Z(JZT = m] (5.17)

=(939.5653788 i 43.641269MeV

3m, + 2/ -3
M, :%LSexp( [@.0347894E</%m +2m+ 3m+ m (2”)1);3 m} (5.18)
By T , :

=(938.2720466-i 42.3®947)MeV

with 6 =0.0347894 rad& /90.30315 being arempirical parameter, and with the real part of

the masses matching precisely what is observedv IBtous discuss some of the implications of
these results.

6. Vacuum-Amplified (Constituent) Quark M asses, M eaning of the Phase Parameter o,
and the Lagrangian Formulation of the Proton Plus Neutron Mass Sum

The expressions (5.17), (5.18) for the neutron@otbn masses are exact expressions,
but in order to close the 0.06% gap between thandyexperiment that emerged at the end of
section 4, we were required to utilize a phaseeanith anempirically, not theoretically-
obtainedvalue ofcosd =0.9993990%8, which, becausé/ coso = 1.00060545, essentially
represents and closes this 0.06% gap. So whil@revable tgredictthe proton plus neutron
mass sum to 6 parts in 10,000, we needed an ealgacameted to represent and close the
balance of this gap. This also has the consequ&Eringoducing an imaginary component for
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each of the proton and neutron masses. Thus, stddstiscuss this phase angle, and try to gain
some sense as to how this phase might itself berstwbd from a theoretical viewpoint.
Theoretically, of course, this phase angle is @stgd on in any way, but naturally results
from the fact that the down quark has a negatigetet charge (or more accurately, a charge
that is oppositely-signed from that of the up qiaakid so is a consequence of Koide matrices

.0) an ) wit complex components generalaad™ =—=(1+1) - expll wnicn are
(4.6) and (4.7) with | lidad® = L (1+i i 5) which

associated with the down quark mass. Sce#stenceof this phase angle has a fully theoretical
basis, but its actual valuasd = 0.9993949098 is what is empirical and so requires close
consideration. Especially, the question arisethissphase anglersewparameter, or is related
in some way to a phase parameter thatrsady known to exigisewhere in elementary particle
physics? The obvious candidate foradready existing phasis the phase angle that is
responsible for CP violation, and which ariseshim €abibbo-type mixing of quarks and leptons
for three generations. Might there be some défmitelationship between the phase uncovered
here, and this phase that arises from generatioixahg, so that they are really one and the same
in different guises? Certainly, economy would sgjghat this question be explored.

While it is beyond the scope of this paper to f@kplore this question, let us at least
explore its plausibility. We start with the Koideatrices (4.6) and (4.7) from whence this phase

originated, use the replacemerit= % (1+i) - explid) =4/ exy 49) , and connect this, in turn,
to the generalized Koide matrix (1.6) to write:

41exp( 45)vm, 0 0 Jm o o
K s(P) = 0 42vm, 0 (=] O m 0 | (6.1)
0 0 {zvm 0 0 Jm
2vm, 0 0 Jm o0 0
Kie(N)=| 0 gfiexp(43)vm, 0 = 0o Jm 0. (6.2)
0 0 4% exe( 45)vm, 0 0 m

Let us then develop a correspondence between thedehe generalized Koide matrix (1.6) as
applied in (1.7) and (1.8) to obtain nuclear bigdamergies, namely:

Jm 0o o) (Jfm o o0
Ke(P)=Kpe=| 0 ym 0 |=| 0 Jm 0O (6.3)
o o ym| o o /m

Jm o o) (Jm o o0
Ki(N)=Kpg=| 0 Jm 0 o Jm 0 (6.4)
o o0 Jm o o Jm

Comparing (6.1) with (6.3) we see the corresponeérc ):
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m = sexp(40)vm < m

(6.5)
m=m=Jivmp - m
Similarly, comparing (6.2) with (6.4):
m =43VvMm n (6.6)

m, = m =, 3exp(48) v - g
This leads to several points. First, lede$inewhat we shall refer to as the “vacuum-
amplified” massesM, and M, for the up and down quarks according to:

M, =,/3vm, =604.175134BleV -~ m. (6.7)

M, = /ivm, =634.578446BlV ~ m. (6.8)

These should be compared to [3.6] and [3.7] ofylich in the above have now acquired the
desired coefficients based on the magnitude of tlectric charges. With this, we start to use
the other two “clues” that we left in [3.6] to [3.8f [5]. Now we make use of (6.7) and (6.8) to
rewrite (6.1) and (6.2) as:

expioyM, 0 0 ) (Jm O
0

Kw(P)=| 0 M,
0 0o M,
M, 0 0 Jm o o
Kus(N)=| 0 expid) M, 0 = 0o Jm O (6.10)
0 0 exp(id) M, 0 O f

So we see that indeed, the Koide matrices now banglexcomponents, associated in
particular with the vacuum-amplified down quark ses This takes yet another step in the
development of the Koide relationships, by intradgaccomplex mass square roots.

Second, the correspondences in (6.7) and (6.8)maybe written as:

exp( 29),/ivmy = exg D)M, = m,
Javm, =M, - m |

So the vacuum-amplified down quark mass with tiveespondencexp( 20)M, = m, now
carries a phase. But in the Cabibbo mixing schiemguarks with three color€ = R, G, B, the
down quarks mix according to [7.14] of [5], namely:
de G G §3 d
de=| £ |=|-36 €66~ ss5 L8 ste| & U (6.12)
b)) ss -¢s¢¢s® - £58 el ¢
This is of course one of several mixing parameg¢ions and is well-known. But in [5], the
author derived the vemxistenceof three generations and their mixing on a strittteoretical

foundation based on the GUT symmetry breaking dld(8) octuplet of fermions which
removes two degrees of freedom which are then issdtle horizontal freedom of three

(6.9)

(6.11)
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generations. While this particular parameteriza{®12) places all of the phase into the strange
and bottom quarks. andh, this is simply one representation, and it alsesuhe convention

in which all of the mixing occurs for the lower,rgas the upper, members of the weak isospin
doublets(u, d). Additionally, as to the up and down quarks, whatters is not that the down

guark has a negative charge and the up quark iyeosharge, but the fact that these have
oppositecharges. That is what injects the complex phaige(6.9) and (6.10). The signis a
matter of convention, and were we to reverse tipe sbnvention, the vacuum-amplified up
guark masses would instead be the ones with aiatsd complex phase.

So, speaking in representation and convention-iel@gnt language, each of the
observed quark wavefunctions (and each of the heyt/efunctions given that the neutrino
mass is noéxactlyequal to zero) do carry a complex component iir thavefunctiorwhich
emanates from a phase that is indicative of weakiGBtion. This phase should then be
expected to appear in theasse®f the fermions as well. And, with that being ttese, when
using conventions which reflect the phase in therdquarks (and elsewhere), one would expect
these phases to make their way through into theuraeamplified down quark mass, which
appears aexp( ZJ)Md < m, in the Koide matrices. So it is indeed plaustblexpect that the
phase) developed here, will come to be understood agrgeardirect and precise relationship
to the weak CP-violation phase, and thus is n@waparameter, but enownparameter
stumbled upon via the independent line of inquiryt we have developed here to obtain the
proton and neutron masses on a fully theoreticsisbdn short, the phase we came upon here,
may well be an indication of CP violation arrivédr@am a completely different direction.

Third, we note via (6.7) tha¥l, /2= 302.0873BTeV; M, /2=317.289222MeV .

So if we add these two numbers and multiply by &fiwd 3(M, + M) /2=1858.1303TMeV .
This is not far from the empiricah, + m, =1856.44663KeV of (4.3) or the predicted

m, + m, =1857.57063MeV of (4.8). This suggests that (6.8) may be diyeelated to the

constituenimasses of the up and down quarks which specifyrmaeh of the proton and
neutron masses arise from the down quarks andittteractions with the vacuum, versus from
the up quarks and their interactions with the vatuu

Finally, we as noted at the start of section 4cese connecany Koide matrix products
to a Lagrangian via (3.4) and (3.5). Now that \mgéhobtained a theoretical expression for the
proton and neutron masses up to a phase thattodiesrelated to the CP-violating phase of
weak interactions among three generations, itng tio backtrack using the development in
section 3 to connect these masses to their assddiagrangian expression.

To start, we use (6.9) and (6.10) together witid)(énd (6.8) and (5.8) to write:

expioyM, 0 0 | yM, 0 0
Kas(P)Keu(N)=Tr| 0 JM, 0 0 exdid) M, 0
0 o JM, | © 0 exfio) M,
=3exp oMM, = 3expdy/\/Zvm JIvm, = 3ex@ 32w/ mm  (6.13)
=M, +M; -3m, -3m,
Referring to (3.4) and (3.5), this means that wewste the mass surim, + m, as:
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(27) 6 =—(2n)* [ d°x=1(27) T[[8,, PF* (N)S x= 2(27)" T[[ 6 (PFoo (N A -
1(27) [[[ 516 (P) Foa(N) & x= K,o( P Ko( N

expioM, 0 0 (M, 0 0 (6.14)
=Tr 0 M, 0 exf(io)yM 0
0 0 JM, 0 exgio)yM
=My +M,-3m -3m, =m,+ m
by introducing two new field strength tensors definn the manner of (3.2), namely:

0
0

Trg“"(P)E—{qu[y;yv]wd +2”’”[V:/;V]”’“}, (6.15)
Tr&"’”(N)z—i(%[y:/’lV]w“+2%[y;yv]wd} (6.16)

Above, the “vacuum-amplified” massé&$, and M, are defined as in (6.7) and (6.8), &g
and W, represent wavefunctions for the vacuum-amplifipcgand down quarks (which as noted

just above should bear a relationship to the sleadtonstituent quark” wavefunctions). Lastly,
we apply the Gaussiansatz(3.12), in the form:

W, (r)=u (HKUZ)_; exp[—;(r ;;02“)2], (6.17)
W, (r) =D(77’<d2)_‘§1 exr{—;(r;(r‘)zd)z}, (6.18)

and for the reduced Compton wavelengtis we also make uskl, and M defined in (6.7) and
(6.8), to specify
K,=hIM,c=1/M,, (6.19)
K, =nIM,c=1/M,. (6.20)
So, referring back to the discussion at the dragction 3, as was the case with the short
range of the nuclear interaction, we can indeedhsé&aussiaansatzto model fermion
wavefunctions as Gaussians and obtain the fullgs#r@ proton and neutron masses. But to do
S0, we are not using the undressed “current” guatksh yielded binding energies in [1] and
[2], but are instead using vacuum-amplified quagv@functions and masses and wavelengths
associated with the fully-dresseambnstitueniguark masses, which also are responsible for
yielding the correct magnitude of the short ranfyeuzlear interactions. So here too, it is not a
guestion ofwhetherwe can use a Gaussiansatz but rather, it is a question which
wavefunctions witlwhichmasses and wavelengths we need to use in the iGaassatz in
order to obtain a precise concurrence with emgidata. So, insofar as fully covered protons
and neutrons are concerned, it looks as itthestitueniquarks are behaving as free fermions, in
contrast to when we derived nuclear binding ensrfiewhich thecurrentquarks behave as
free fermions. This underscores the role of thessmnansatzas a modeling tool use to derive
effective concurrence with empirical data, rathemtas a part of the theory per se. The theory is
centered on baryons being Yang-Mills magnetic moiex) and nucleons which release or
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retain binding energies based on a their resonapiepties which in turn depend upon the
current quark content of those nucleons. For taticuns which involve the components and
emissions of protons and neutrons such as therkgj@ad their binding energies, thgrent
guarks can be modeled as free fermions to obtapirerally-accurate results. For other
calculations which involve the bulk behavior of fmmos and neutrons, accurate results may be
obtained by modelingonstituenguarks as free fermions.

7. Conclusion

We have shown how the Koide relationships anda@ated triplet mass matrices can be
generalized to derive the observed sum of thedremn and neutron rest masses in terms of the
up and down current quark masses and the Ferntovax parts in 10,000, whicdumcan then
be solved for the separate neutron and proton rmasseg the neutron—proton maserence
earlier derived in [2]. The opposite charges efulp and down quarks are responsible for the
appearance of a complex phase e¥pfihich in turn can be used to adjust these mass
relationships to unlimited accuracy. For the motnphase anglé=1.9932858is an empirical
parameter, but it does appear to be possibly cklatthe CP-violating phase of weak
interactions for three fermion generations. Thédé@eneralizations developed here enable
these proton and neutron mass relationships taviea @ Lagrangian formulation based on
proton and neutron field strength tensors thataiordonstituent quark wavefunctions and
masses. In the course of development, we haveualswvered new Koide relationships for the
neutrinos, the up quarks, and the down quarks.
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