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Abstract

Many clinical studies have shown that the arm movement of patients with neurological
injury is often slow. In this paper, the speed analysis of arm movement is presented,
with the aim of evaluating arm movement automatically using a Kinect camera. The
consideration of arm movement appears trivial at first glance, but in reality it is very
complex neural and biomechanical process that can potentially be used for detecting a
neurological disorder. This is a preliminary study, on healthy subjects, which investigates
three different arm-movement speeds: fast, medium and slow. With a sample size of 27
subjects, our developed algorithm is able to classify the three different speed classes
(slow, normal, and fast) with overall error of 5.43% for interclass speed classification
and 0.49% for interaclass classification. This is the first step towards enabling future
studies that investigate abnormality in arm movement, via use of a Kinect camera.

Introduction

According to the World Health Organization, essential tremor affects an estimated 10
million people in the United States [1, 2]. Essential tremor is the most common adult
movement disorder, and is as much as 20 times more prevalent than Parkinson’s disease
[2, 3]. Essential tremor is traditionally viewed as a progressive neurological disorder
that causes involuntary shaking of particular parts of the body, usually the head and
hands [4]. However, the most recognizable feature is a tremor of the arms or hands
that is apparent during voluntary movements such as eating and writing [5]. Although
essential tremor is often mild, patients with severe tremor have difficulty performing
many of their daily routine activities [6, 7]. Essential tremor usually causes slowness in
body-parts movement, which is more salient in the hand. Slowness in arm movement
is also common in many other disorders, such as Huntington’s chorea [8], Parkinson’s
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disease [9] and cerebellar diseases [10]. However the abnormality in arm movement varies
from one disease to another. Given the vast array of disorders associated with abnormal
movements, the challenge for the rehabilitation community is in obtaining high quality
evaluations at low cost.

Recently, Kinect cameras offer an extremely inexpensive and effective tool for track-
ing body movements that is very promising for the investigation of tremor and slowness
in arm movement [11]. To our knowledge, there are no studies that investigate the speed
of arm-movement joints for detecting abnormality in arm movements using Kinect or any
other depth cameras. However, several arm-movement recognition systems have consid-
ered the speed as a feature. Min et al. [12] confirmed that arm-movement recognition
is usually dependent on the trajectory of arm movement, and that position, speed, and
curvature are useful features. Campbell et al. [13] investigated ten different features for
arm-movement recognition using a Hidden Markov Model (HMM). They indicated that
speed features are superior to positional features. Yoon et al. [14] used hand speed as
an important feature for arm-movement recognition.

Other researchers estimated the speed of arm-movement using an accelerometer, for
example Rehm et al. [15] used the power of the accelerometer as a feature to classify
the arm movement into low and high speed regimes. In contrast to those studies, in
this paper we systematically explore the speed of arm-movement joints, with the aim
of improving the classification of the arm-movement speed. Our study builds upon
Rehm’s work by providing a device-free analysis of arm movement, exploring the impact
of different joints on the overall arm movement, and validating the system in a noisy
environment.

Materials and Methods

Ethics Statement

In this study, no film recordings of subjects were made. The Kinect camera outputs
numerical data that directly relate to hand movements. Only de-indentified numerical
data, representing motion vectors, are stored on the database. Volunteers are researchers
at office of the Institute for Media Innovation, NTU, Singapore. All data is available at:
http://www3.ntu.edu.sg/imi/piconflavien/autres/data-speed-arm.zip and
http://www.elgendi.net/databases.htm.

Data Collection

There are currently no standard Kinect databases for arm-movement analysis available
to evaluate our developed algorithm. However, the Institute of Media Innovation at
Nanyang Technological University has one database that contains arm movement data
of 27 healthy volunteers (6 females and 21 males); with a mean ± SD age of 29.7 ±
4.1, height of 172.9 ± 9.3, arm length of 71.3 ± 5.2. Two of them were left-handed.
The motions were measured using the Kinect camera located 2.7 meters away from the
subject at a height of 1.2 meters above the floor, cf. Figure 1. All Kinect data is acquired
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using the Microsoft Kinect SDK Beta 1 (Microsoft, 2012) at a sampling frequency of
30 Hz. The Kinect device consists of laser light source, color camera and an infrared
camera. The infrared laser source and the infrared video camera form the depth camera
function, while the colour video camera provides colour data to the depth map. The
technology was developed by PrimeSense (Tel-Aviv, Israel) and is disclosed in detail in
their patents [16].

During the experiment, the body of the subject faces the sensor with an angle of 45◦

to the right of the Kinect sensor (as seen in Figure 1). The reason behind the 45◦ angle
is to prevent the arm joints from intersecting with the body joints, as shown in Figure 2.
This will generate reliable arm motion in order to study the impact of each joint of the
arm on the overall speed of the right arm movement more precisely. These collected arm
movements are used as a benchmark for effective speed detection of an arm movement.
Measurements were taken with each subject standing vertical, with an initial position
where both arms extended along the body side. Then, the subject is asked to raise a
right arm up. Each subject performs three sets of trials: ‘slow’, ‘normal’, and ‘fast’;
with five arm movements for each set. Therefore the number of recorded movements is
405 (27 subjects × 5 movements × 3 speeds).

For the slow movement, the subject is instructed to raise an arm as if there is a
heavy weight being lifted to simulate a typical indicator of Bradykinesia (a symptom of
nervous system disorders, particularly Parkinson’s disease). On the other hand, the fast
arm movement indicates healthy motion, while the normal speed represents an average
condition. Capture of the arm movement is carried out manually. In other words, the
subjects wait for a signal from the recording person to start their movement and then
they maintain their arm up until they get a signal to come back to the initial position.
Each recording is played back, checked, and annotated as being in one of three classes
‘slow’, ‘normal’, or ‘fast’. Two independent annotators annotated the speed category of
each recorded movement; when two annotators disagree, the result is discarded and the
subject is asked to repeat the experiment. The annotations were stored in a file to be
compared automatically later with the speed features that will be discussed in the next
section.

Methodology

The proposed arm-movement classification type algorithm consists of three main stages:
pre-processing (resultant of coordinates as instantaneous velocity and low-pass filter-
ing), feature extraction (calculating the first and second derivative and their mean and
standard deviation) and classification (thresholding). The structure of the algorithm is
shown in Figure 3.

Pre-Processing

The Kinect body tracking software API provides the real-time position of the body joints
of each user [17]. Even though we focus mainly on the skeletal joints of the arm we chose
to record the positions of all skeletal joints: center of gravity or legs movements are also
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potential speed indicators. With 20 joints and 3 floating point values (real numbers)
representing the x, y, z positions for each joint, each motion frame is expressed as a 60-
element vector. The recorded joints cover all parts of the body but we focus mainly on
the arm joints: shoulder, elbow, wrist and hand. Since the features only rely on the
dynamics of the motion there are no differences in processing data from the left or right
arm. Therefore we may process data from the joints of each subject’s dominant arm (25
right-handed and 2 left-handed).

The 3D position (x, y, z) of a joint is expressed in the coordinate system of the Kinect
and the units are meters [18]. Again, the selected features rely on motion dynamics so
our system is view-independent: we do not have to express the positions in the coordinate
system of the subject’s body. The dynamic of each joint is computed using the variation
of position of the joint over time. In the first step, each joint motion, sequence of 3D
positions, is replaced by the distance between each frame as in Eq. 1. In Figure 2, the
x, y, z coordinates are the positions vectors of a particular joint that vary 0 to n; where
n is the number of frames in a performed motion. The instantaneous velocity of motion
for a particular joint are calculated as the resultant of x, y, z positions over all frames
that represents a motion. The instantaneous velocity (uinst) for a given 3D motion is
computed as follows:

uinst[n] =
dx, y, z

dt

∣∣∣∣
t=nT

=
1

T

√
(x[n] − x[n− 1])2 + (y[n] − y[n− 1])2 + (z[n] − z[n− 1])2,

(1)
where T is the sampling interval and equals the reciprocal of the sampling frequency,
and n is the number of motion data points.

As shown in Figure 4, the informative part of the motion lies below 6 Hz for all
joints with different speed types. Thus, a low-pass filter has been applied. A first order,
zero-phase bidirectional, Butterworth low-pass filter with cutoff frequency of 6 Hz is
implemented. Figure 5, shows an example of the original data uinst, at top-left, and the
filtered data (Vinst), at top-right, with no phase distortion. Note that the low frequencies
will play a major role in identifying hand movement speed, and ultimately hand tremors.
The first order filter has been selected to avoid over-smoothing the acquired motion. This
has been carried out empirically to find a condition where the substantial part of the
motion is preserved while sensor errors were strongly reduced. We decided to record the
raw data, i.e. without using the pre-defined filter provided in the Kinect SDK. By doing
so, we have more control over the data analysis. We then have freedom to examine the
affect of filtering on the classification rate.

Feature Extraction

Before continuing the discussion of the joint signals, it is important to know what fea-
tures can be extracted from a hand movement first. In the literature, the instantaneous
velocity and acceleration have been used in diagnosing arm movements. Almeida et al.
[19] examined individuals with Parkinson’s disease through the analysis of the upper-
limb movement at different movement frequencies, and with different external timing
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conditions using the instantaneous velocity. However, Helsen et al. [20] used the in-
stantaneous velocity and acceleration to investigate the movements of the finger, elbow,
and shoulder during a speed aiming movements. In this paper, two features are investi-
gated: the instantaneous velocity and acceleration. The mathematical definition of the
instantaneous velocity (uinst) in 3D motion before filtering is described in Eq. 1, while
the instantaneous acceleration (Ainst) is defined as:

Ainst[n] =
dVinst

dt

∣∣∣∣
t=nT

=
1

T
(Vinst[n] − Vinst[n− 1]). (2)

Although the Kinect camera has received increasing attention recently, it neverthe-
less suffers from noise, low resolution sensors, lack of color information, and occlusion
problems [21]. Therefore, it is crucial that we filter the signal to improve the classi-
fication accuracy, especially if the main goal is to determine the speed type. In our
study, we computed the instantaneous velocity and instantaneous acceleration for each
arm joint. Then, we extracted the following features: average (mean) and standard
deviation (SD). Figure 5 demonstrates the signal shape of four different joints of a arm
movement based on the instantaneous velocity and acceleration. This is particularly
interesting as it confirms that joints of a same limb have the same dynamics, especially
for the hand and wrist signals. As the variance of the hand and wrist joint signals are
quite higher compared to the elbow and shoulder signals, it is expected that the hand
or the wrist signal would score higher accuracy in the classification of arm movements.

Classification

In this section, we check the linear velocity separability (based on the annotated files)
over the calculated features in both filtered and non-filtered signals. Each motion con-
tains a category parameter that was defined during the recording. We use this classifi-
cation parameter to compare with the results of the feature classification. We perform
inter subject classification: the process consists in 1) compute the feature value for each
motion, 2) sort the motions based on the selected feature 3) compute the classification
accuracy by counting the number of misclassified motions over total number of motions.
For automated speed-type detection, two classifiers have been run in order to specify
the exact value of the thresholds. The first classifier is fast/medium against slow, while
the second classifier is fast against medium/slow. Figure 6 demonstrates the thresholds
determination for inter- and intera -class speed classification. The two valleys reflect the
thresholds that will be used for training the automatic speed detection. For example,
in case of interaclass speed classification, the slow-medium threshold is 0.73 while the
medium-fast threshold is 1.67 in non-filtered condition as shown in Figure 6 (top-left).

Results

The statistical Kruskal-Wallis and ANOVA tests allow us to investigate whether the
hand-movement speed feature takes different values among the three speed classes. Low
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p-values indicate large difference in the medians of the three speed classes for the Kruskal-
Wallis test, while low p-values indicate large difference in the means of the three speed
classes in the case of the ANOVA test. Both tests find that the three hand-movement
speeds are significantly different, as the p-values were less than 0.05 in the case of filtered
and non-filtered features. The very small p-value indicates that differences between the
three speed classes are highly significant.

In Table 1, as expected, the hand joint was successfully classified into different speed
types with the lowest error rate (0.49% for non-intra classification and 1.48% for inter
classification). This result confirms the observation, shown in Figure 5, which is that the
the mean of the instantaneous velocity for the hand motion contains more information
compared to the other three joints in both cases filtered and un-filtered data. As can
be seen, the hand joint is the most reliable for detecting speed in arm movement. It
is interesting to note that features based on standard deviation perform better than
those based on mean. Interestingly, the results of filtered and non-filtered hand-joint
signal are relatively close. However, the filtered hand-joint signal scored a slightly lower
classification error compared to the non-filtered signal.

Is it possible to predict the speed type before the completion of a full hand movement?
To answer this, we investigated the percentage of the hand-movement from the start of
the motion that contributes the most to the classification error. The results of this
investigation are shown in Figure 7. For the interclassification, the first 50% of the hand
instantaneous velocity provides classification error 18.7% and 8.8% for both features
mean and SD, respectively. While in case of interaclass speed classification, the error
rate scored by the first 60% was 4.4% for the mean and 7.4% for the standard deviation
of the hand instantaneous velocity, without filtering. This is an interesting observation
as the first 50% of a motion provides low classification error and relatively close in
terms of performance to the whole motion. Knowing this fact can lead to an effective
prediction, which can be even done in realtime without waiting for the whole motion
to be completed. What portion of a hand-movement signal contributes the most to the
classification error? Which 10% portion of the motion’s signal contains the most useful
information to distinguish the speed types?

Figure 8 shows the error rate for a sequential 10% of the motion signals. It can be
seen, in the case of interclass speed classification; the portion 50–60% of the mean of
the hand instantaneous velocity provides the lowest error rate of 6.4%. This is intuitive
as the beginning of motion is the phase where the subjects is reaching a certain poses.
Moreover, the interaclass analysis shows that a 0% error rate can be achieved if the
50–60% portion of the mean of the instantaneous velocity is used, instead of the whole
hand movement. This confirms that the main characteristics of a motion is determined
within 50–60%, and can be used for analysis or/and prediction.

Limitations of Study and Future Work

We recommend that future work examine our method on patients that suffer from hand
tremor as the thresholds calculated in this study are based on healthy subjects. However,
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mimicking unhealthy motion provides intial values for the system before assessing real
patients at a hospital/clinic. A larger sample size and a diverse set of tremor movements
are needed in order to generalize the findings of this study. To our knowledge, there is no
available Kinect database measured from patients with hand tremor. In future studies
it may be advisable to test the optimal distance for positioning Kinect as sometimes
subjects cannot be detected if they are relatively close to the camera. It would be also
useful to know how accurately the Kinect can estimate speed of arm movement compared
the speed of arm movement with a benchmark standard (such as three dimensional
analysis system, e.g. Vicon, optotrak, etc.). Technically, exploring simple features such
as the mean and standard deviation of a motion is promising in terms of computational
complexity and efficiency. However, this can be further improved by investigating other
features in time and frequency domain.

Conclusion

In this paper we presented a speed analysis of arm movement. Results show that: 1)
the instantaneous velocity provides more reliable classification compared to the instan-
taneous acceleration, 2) the mean is a better feature compared to the standard deviation
for the instantaneous velocity, and 3) the hand joint is the most efficient joints for speed
detection in an arm motion. Moreover, a low-pass filter improves the interclass speed
classification but has no effect on the intraclass classification. For interclass speed clas-
sification, the mean of non-filtered instantaneous velocity scored 0.49% error rate in
detecting the speed type over 405 motions; while the standard deviation of filtered in-
stantaneous velocity scored 5.43% during the interaclass classification. Moreover, the
first 60% provides a classification error relatively close to the use of a whole motion,
can be used for predicting the speed type in realtime. Furthermore, the most important
10% of a whole motion is the 50–60%. The results are promising and this approach can
be implemented in a human-computer-interaction system for interactive tremor diag-
nosis, specifically measuring hand-related disability and improvement. In our approach
we asked healthy subjects to mimic abnormality by moving slowly, however testing this
approach on patients with Parkinson’s disease or any hand tremors remains as a task
for future work.
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Tables

Table 1: Error rates for non-filtered and filtered arm-movement signals. SD is
the standard deviation; Vinst is the instantaneous velocity where Ainst is the instantaneous
acceleration. Filtering is achieved using a Butterworth low-pass filter with a cutoff
frequency of 6 Hz.

Hand Wrist
Vinst Ainst Vinst Ainst

Mean SD Mean SD Mean SD Mean SD
error(%) error(%) error(%) error(%) error(%) error(%) error(%) error(%)

Intra
Non-filtered 0.49 0.98 58.27 24.69 1.48 4.44 55.80 31.85

Filtered 0.49 2.46 58.27 11.35 1.48 4.44 55.80 15.55

Inter
Non-filtered 8.39 6.41 60.74 30.86 10.37 12.34 58.02 41.97

Filtered 8.39 5.43 60.74 22.71 10.86 9.38 58.02 26.17

Elbow Shoulder
Vinst Ainst Vinst Ainst

Mean SD Mean SD Mean SD Mean SD
error(%) error(%) error(%) error(%) error(%) error(%) error(%) error(%)

Intra
Non-filtered 1.48 6.41 53.82 21.72 4.44 11.60 36.04 12.83

Filtered 1.48 5.18 53.82 11.85 4.44 11.85 36.04 15.30

Inter
Non-filtered 11.35 17.53 51.60 34.32 27.40 31.35 38.51 33.58

Filtered 11.35 14.56 51.60 27.90 27.40 31.11 38.51 32.09
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Figures

Figure 1: Experimental Setup: the user is facing the camera at angle of 45◦

to the right of the sensor. Every arm movement is recorded at fixed 2.7 m distance
from the camera; where the camera is placed at height of 1.2 m above the floor.
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Figure 2: Front and lateral view, of a subject, computed from the sensor data.
This plot represents the middle of the motion and was traced using Python 2.7 and the
plotting module Matplotlib 1.1.0 [22]. The instantaneous velocity will be calculated
using the x, y, z coordinates shown in the figure. The green lines represent arms, red
represents legs and blue represents the torso.

Kinect

x, y, z

First 

Derivative

uinst[n]

Low Pass

Filter

First

Derivative

Vinst[n] Ainst[n]

Thresholding

Calculate 

Features

(Mean, SD)

Slow Normal Fast

Figure 3: Flowchart for the arm-movement type classification. This is the
proposed algorithm that consists of three main stages: pre-processing (importing Kinect
signals and first derivative), feature extraction(lowpass filter, first derivative, and calcu-
lating features) and classification (thresholding).
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Figure 4: Power spectra of the three speed motions: slow, normal and fast.
The dotted cureve represents the PSD of a slow hand movement, while the dotted
curve cureve represents the PSD of a medium hand movemnt. The PSD of a fast hand
movement is the solid curve.
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Figure 5: Comparison of instantaneous velocity and acceleration, non filtered
(at left) and filtered (at right) of a slow motion for four joints: shoulder,
elbow, wrist and hand of the right arm. The plots are done for one motion of
one subject. For a clearer graph, extra vertical space has been added between the plots,
however the scale ratio has been preserved. From bottom to top are shoulder, elbow,
wrist and hand respectively. The cutoff frequency of the Butterworth low-pass filter is
6 Hz.
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Figure 6: Threshold of classification. The top two figures represents the intraclass
speed classification for mean and SD, left to right respectively, while the bottom two
figures represents the interclass speed classification for the two features: mean and SD
of the hand instantaneous velocity. The top two intraclass figures are made by superim-
posing the figure from each subject and computing thresholds using the average values
of each subjects thresholds. The two dashed lines point to the two vallies in figure; and
their x-axis values are the used thresholds. The feature at the top-right supposed to
filtered SD of the hand instantaneous velocity, however, we demostrated the non-filtered
feature as it provides lower error rates based on Table 1.
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Figure 7: Classification error rate of the speed types based on the percent-
age of the whole motion used. The top two figures represents the intraclass speed
classification for mean and SD of the hand instantaneous velocity, left to right respec-
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subjects. The two interclass scatters show the exact error rate over all subjects. The
portion 0–50% present a comparable error rate to the whole motion. The feature at
the top-right supposed to filtered SD of the hand instantaneous velocity, however, we
demostrated the non-filtered feature as it provides lower error rates based on Table 1.
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Figure 8: Classification error rate of the speed types based on a sequential
10% cuts of the whole motion. The top two figures represents the intraclass speed
classification for mean and SD of the hand instantaneous velocity, left to right respec-
tively, while the bottom two figures represents the interclass speed classification for the
same two features (mean and SD). The two intraclass boxplots show the variation within
subjects, while the two interclass scatters show the exact error rate over all subjects.
First we can observe that the classification error diminishes in the middle of the curve,
this seems to indicate that the most meaningful section of the motion is at the middle.
The smallest error in the portion 50–60% for both intera- and inter- class speed classifi-
cation. The feature at the top-right supposed to filtered SD of the hand instantaneous
velocity, however, we demostrated the non-filtered feature as it provides lower error rates
based on Table 1.
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