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Abstract 

  
In this paper we propose a new algorithm for linear programming. This new algorithm 
is based on treating the objective function as a parameter. We form a matrix using 
coefficients in the system of equations consisting objective equation and equations 
obtained from inequalities defining constraint by introducing slack/surplus variables. 
We obtain reduced row echelon form for this matrix containing only one variable, 
namely, the objective function itself as an unknown parameter. We analyze this 
matrix in the reduced row echelon form and develop a clear cut method to find the 
optimal solution for the problem at hand, if and when it exists. We see that the entire 
optimization process can be developed through the proper analysis of the said matrix 
in the reduced row echelon form. From the analysis of the said matrix in the reduced 
row echelon form it will be clear that in order to find optimal solution we may need 
carrying out certain processes like rearranging of the constraint equations in a 
particular way and/or performing appropriate elementary row transformations on this 
matrix in the reduced row echelon form. These operations are mainly aimed at 
achieving nonnegativity of all the entries in the columns corresponding to nonbasic 
variables in this matrix or its submatrix obtained by collecting certain rows of this 
matrix (i.e. submatrix with rows having negative coefficient for parameter d, which 
stands for the objective function as a parameter for maximization problem and 
submatrix with rows having positive coefficient parameter d, again representing the 
objective function as a parameter for minimization problem). The care is to be taken 
so that the new matrix arrived at by rearranging the constraint equations and/or by 
carrying out suitable elementary row transformations must be equivalent to original 
matrix. This equivalence is in the sense that all the feasible solution sets for the 
problem variables obtained for different possible values of d with original matrix and 
transformed matrix are same. We then proceed to show that this idea naturally extends 
to deal with nonlinear and integer programming problems. For nonlinear and integer 
programming problems we use the technique of Grobner bases (since Grobner basis is 
an equivalent of reduced row echelon form for a system of nonlinear equations) and 
the methods of solving linear Diophantine equations (since the integer programming 
problem demands for optimal integer solution) respectively.  
 
1. Introduction: There are two types of linear programs (linear programming 

problems):  

 1. Maximize: xCT   
Subject to: bAx ≤   
                     0≥x  
Or 

                   2. Minimize: xCT    
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Subject to: bAx ≥  
                     0≥x  
where x  is a column vector of size n×1 of unknown variables. We 

call these variables the problem variables 
where C  is a column vector of size n×1 of profit (for maximization 

problem) or cost (for minimization problem) coefficients, and TC is a row vector 
of size 1×n obtained by matrix transposition of C . 

where A  is a matrix of constraints coefficients of size m×n. 
where b  is a column vector of constants of size m×1 representing 

the boundaries of constraints. 
By introducing the appropriate slack variables (for maximization 

problem) and surplus variables (for minimization problem), the above mentioned 
linear programs gets converted into standard form as: 

Maximize:   xCT  
Subject to:   bsAx =+                                          (1.1) 
                       0,0 ≥≥ sx  
where s is slack variable vector of size m×1. 
This is a maximization problem. 
Or 

Minimize:   xCT  
Subject to:  bsAx =−                                            (1.2) 
                      0,0 ≥≥ sx  
where s  is surplus variable vector of size m×1. 
This is a minimization problem.  

In geometrical language, the constraints defined by the inequalities form a region 
in the form of a convex polyhedron, a region bounded by the constraint planes, 

ii bAx = ,  and the coordinate planes. This region is called feasible region and it 
is straightforward to establish that there exists at least one vertex of this 
polyhedron at which the optimal solution for the problem is situated when the 
problem at hand is well defined, i.e. neither inconsistent, nor unbounded, nor  
infeasible. There may be unique optimal solution and sometimes there may be 
infinitely many optimal solutions, e.g. when one of the constraint planes is parallel 
to the objective plane we may have a multitude of optimal solutions. The points 
on an entire plane or an entire edge can constitute the optimal solution set.  
                              These problems are handled most popularly by using the well 
known simplex algorithm or some of its variant. Despite its theoretical 
exponential complexity the simplex method works quite efficiently for most of the 
practical problems. However, there are few computational difficulties associated 
with simplex algorithm. In order to view them in nutshell we begin with stating 
some common notions and definitions that are prevalent in the literature. A 
variable ix  is called basic variable in a given equation if it appears with unit 
coefficient in that equation and with zero coefficients in all other equations. A 
variable which is not basic is called nonbasic variable. A sequence of elementary 
row operations that changes a given system of linear equations into an equivalent 
system (having the same solution set) and in which a given nonbasic variable can 
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be made a basic variable is called a pivot operation. An equivalent system 
containing basic and nonbasic variables obtained by application of suitable 
elementary row operations is called canonical system. At times, the introduction 
of slack variables for obtaining standard form automatically produces a canonical 
system, containing at least one basic variable in each equation. Sometimes a 
sequence of pivot operations is needed to be performed to get a canonical system. 
The solution obtained from canonical system by setting the nonbasic variables to 
zero and solving for the basic variables is called basic solution and in addition 
when all the variables have nonnegative values the solution satisfying all the 
imposed constraints is called a basic feasible solution. Simplex method cannot 
start without an initial basic feasible solution. The process of finding such a 
solution, which is a necessity in many of practical problems, is called Phase I of 
the simplex algorithm. Simplex method starts its Phase II with an initial basic 
feasible solution in canonical form at hand. Then simplex tests whether this 
solution is optimal by checking whether all the values of relative profits (profits 
that result due to unit change in the values of nonbasic variables) of all the 
nonbasic variables are nonpositive. When not optimal, the simplex method obtains 
an adjacent basic feasible solution by selecting a nonbasic variable having largest 
relative profit to become basic. Simplex then determines and carries out the 
exiting of a basic variable, by the so called minimum ratio rule, to change it into 
a nonbasic variable leading to formation of a new canonical system. On this new 
canonical system the whole procedure is repeated till one arrives at an optimal 
solution. 
                              The main computational difficulties of the simplex method 
which may cause the reduction in its computational efficiency are as follows: 
1] There can be more than one nonbasic variable with largest value for relative 
profit and so a tie can take place while selecting a nonbasic variable to become 
basic. The choice at this situation is done arbitrarily and so the choice made at this 
stage causing largest possible per unit improvement is not necessarily the one that 
gives largest total improvement in the value of the objective function and so not 
necessarily minimizes the number of simplex iterations. 
2] While applying minimum ratio rule it is possible for more than one constraint 
to give the same least ratio causing a tie in the selection of a basic variable to 
leave for becoming nonbasic. This degeneracy can cause a further complication, 
namely, the simplex method can go on without any improvement in the objective 
function and the method may trap into an infinite loop and fail to produce the 
desired optimal solution. This phenomenon is called cycling which enforces 
modification in the algorithm by introducing some additional time consuming 
rules that reduce the efficiency of the simplex algorithm. 
3] Simplex is not efficient on theoretical grounds basically because it searches 
adjacent basic feasible solutions only and all other simplex variants which 
examine nonadjacent solutions as well have not shown any appreciable change in 
the overall efficiency of these modified simplex algorithms over the original 
algorithm. 
                              Because of the far great practical importance of the linear 
programs and other similar problems in the operations research it is a most desired 
thing to have an algorithm which works in a single step, if not, in as few steps as 
possible. No method has been found which will yield an optimal solution to a 
linear program in a single step ([1], Page 19). We aim to propose an algorithm for 
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linear programming which aims at fulfilling this requirement in a best possible 
and novel way. 
  
2. A New Algorithm for Linear Programming: We start with the  

     following equation:  

                                                dxCT =                                  (2.1) 
where d is an unknown parameter, and call it the objective equation. The 
(parametric) plane defined by this equation will be called objective plane. 
                               Please note that we are discussing first the maximization 
problems. A similar approach for minimization problems will be discussed next.  
                              Given a maximization problem, we first construct the combined 
system of equations containing the objective equation and the equations defined 
by the constraints imposed by the problem under consideration, combined into a 
single matrix equation, viz., 
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Let [E, F] denote the augmented matrix obtained by appending the column vector 
F to matrix E as a last column. We then find R, the reduced row echelon form 
([2], pages 73-75) of the above augmented matrix [E, F]. Thus,  
 
R = rref ([E, F])                                                                         (2.3)  
 
Note that the augmented matrix [E, F] as well as its reduced row echelon form R 
contains only one parameter, namely, d and all other entries are constants. 
From R we can determine the solution set S for every fixed 
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 which also satisfies the nonnegativity constraints is the set of all feasible 

solutions for that d . It is clear that this subset can be empty for a particular 
choice of d that is made. The maximization problem of linear programming is to 
determine the unique d which provides a feasible solution and has maximum 
value for d , i.e., to determine the unique d , i.e. the unique optimal value for 
the objective function, which can be used to obtain an optimal solution. In the 
case of an unbounded linear program there is no upper (lower, in the case of 
minimization problem) limit for the value of d , while in the case of an infeasible 
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linear program the set of feasible solutions is empty. The steps that will be 
executed to determine the optimal solution should also tell by implication when 
such optimal solution does not exist in the case of an unbounded or infeasible 
problem.  
                              The general form of the matrix R representing the reduced row 
echelon form is                            
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The first n columns of the above matrix represent the coefficients of the problem 
variables (i.e. variables defined in the linear program) nxxx ,,, 21 L . The next 

m  columns represent the coefficients of the slack variables msss ,,, 21 L  used 
to convert inequalities into equalities to obtain the standard form of the linear 
program. The last column represents the transformed right hand side of the 
equation (2.2) during the process (a suitable sequence of transformations) that is 
carried out to obtain the reduced row echelon form. Note that the last column of R 
contains the linear form d as a parameter whose optimal value is to be determined 
such that the nonnegativity constraints remain valid, i.e. nixi ≤≤≥ 1,0 and 

mjs j ≤≤≥ 1,0 . Among first )( mn + columns of R certain first columns 

correspond to basic variables (columns that are unit vectors) and the remaining 
ones to nonbasic variables (columns that are not unit vectors).  
                                        For solving a linear program by our way we proceed 
with analysis of the R. We aim to find that value of parameter d which is optimal. 
To achieve this task we may sometimes need to transform this system further by 
either rearranging the constraint equations by suitably permuting these equations 
such that (as far as possible) the values in the columns of our starting matrix 

)( nmA ×  get rearranged in the following way:  Either they are rising and then 
becoming stationary, or falling and then becoming stationary, or falling initially 
up to certain length of the column vector and then rising again. After this 

rearrangement to form transformed )( nmA × we again proceed to form its 
corresponding [E, F] and again find its R = rref ([E, F]) which will most likely 
have the desired representation in which columns for nonbasic variables contain 

nonnegative values. The idea of arrangement of the columns of )( nmA × as 
mentioned above is purely heuristic and is based on the favorable outcome 
observed during applying this idea to linear programming problems while tackling 
them. We have not tried to discover theoretical reasoning behind achieving 
favorable form for R in most of the cases and have left this problem for the reader 
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to solve and to find out the theoretical reasoning behind getting this favorable 

form. Now, even after rearrangement of the columns of )( nmA × as mentioned 
above if still some negative entries remain present in the columns of R 
corresponding to some nonbasic variables then we carry out suitable elementary 
row transformations on the obtained R = rref ([E, F]) so that the columns of 
coefficients associated with these nonbasic variables become nonnegative. We are 
doing this because as will be seen below we can then put zero value for these 
nonbasic variables and can determine the values of all the basic variables and the 
linear program will then be solved completely. It is easy to check that for a linear 
program if all the coefficients of parameter d in the last column of R are positive 
then the linear program at hand is unbounded since in such case the parameter 
d can be increased arbitrarily without violating the nonnegativity constraints on 
variables ji sx , . Also, for a linear program if all the coefficients of some 

nonbasic variable represented by a column of R are nonpositive and are strictly 
negative in those rows having a negative coefficient to parameterd that appears in 
the last column of these rows then again the problem belongs to the category of 
unbounded problems since we can increase the value of d to any high value 
without violating the nonnegativity constraints for the variables by assigning 
sufficiently high value to this nonbasic slack variable. Note that the rows of R 
actually offer expressions for basic variables in terms of nonbasic variables and 
terms of type )1(,2,1, +=+ mkedc kk L  containing the parameter d on 

the right side. The rows with a positive coefficient for the parameter d represent 
those equations in which the parameter d can be increased arbitrarily without 
violating the nonnegativity constraints on variables ji sx , . So, these equations 

with a positive coefficient for the parameter d are not implying any upper bound 
on the maximum possible value of parameter d . However, these rows are useful 
in certain situations as they are useful to find lower bound on the value of 
parameter d . The rows with a negative coefficient for the parameter d represent 
those equations in which the parameter d cannot be increased arbitrarily without 
violating the nonnegativity constraints on variables ji sx , . So, these equations 

with a negative coefficient for the parameter d are implying an upper bound on 
the maximum possible value of parameter d  and so important ones for 
maximization problems. Note that actually every row of R is offering us a value 
for parameter d  which can be obtained by equating to zero each term of the type 

)1(,2,1, +=+ mkedc kk L . Those values of d  that we obtain in this way 

will be denoted as −d  or 
+d  when then value of kc  is negative or positive 

respectively. We denote by min{ −d }, the minimum value among −d , and we 

denote by max{
+d } the maximum value among the 

+d . We now proceed to 
find out the submatrix ofR , say NR , made up of all columns of R and 
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containing those rows j  of R for which the coefficients jc  of the parameter d  

are negative. Let 
kiii ccc ,,,

21
L  coefficient of d in the rows of  R  which are 

negative. We collect these rows with negative coefficient for d to form the 
mentioned submatrix, NR , of R  given below. With this it is clear that 

coefficients of d in all other rows of R are greater than or equal to zero. 
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It should be clear to see that if NR  is empty (i.e. not containing a single row) then 

the problem at hand is unbounded. Among the first )( mn + columns of NR  first 
n  columns represent the coefficients of problem variables and next m  columns 
represent the coefficients of slack variables. There are certain columns starting from 
first column and appear in successions which are unit vectors. These columns which 
are unit vectors correspond to basic variables. The columns appearing in successions 
after these columns and not unit vectors correspond to nonbasic variables. As 
mentioned, among the columns for nonbasic variables those having all entries 
nonnegative can only lead to decrement in the value of d when a positive value is 
assigned to them. This is undesirable as we aim maximization of the value of d . So, 
we can safely set the value of such variables equal to zero. When all columns 
corresponding to nonbasic variables in NR  are having all entries nonnegative and 

further if min{ −d } ≥  max{
+d } then we can set all nonbasic variables to zero, set 

d = min{ −d } in every row of R and find the basic feasible solution which will be 

optimal, with min{ −d } as optimal value for the objective function at hand. Still 
further, When all columns corresponding to nonbasic variables in NR  are having all 

entries nonnegative but min{ −d } < max{
+d } then if ke > 0 then we can still set all 

nonbasic variables to zero, set d = min{ −d } in every row of R and find the basic 

feasible solution which will be optimal, with min{ −d } as optimal value for the 

objective function at hand, i.e. if value of ke > 0 in the expressions kk edc +  in the 
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rows of R other those in NR  that are having value of kc  > 0 then we can proceed on 

similar lines to find optimal value for d . 
                              In NR  we now proceed to consider those nonbasic variables for 

which the columns of NR  contain some (at least one) positive values and some 
negative (at least one) values. In such case when we assign some positive value to 
such nonbasic variable it leads to decrease in the value of d in those rows in which 

kc  > 0 and increase in the value of d in those rows in which kc  < 0.  We now need 
to consider the ways of dealing with this situation. We deal with this situation as 
follows: In this case, we choose and carry out appropriate and legal elementary row 
transformations on the matrix R  in the reduced row echelon form to achieve 
nonnegative value for all the entries in the columns corresponding to nonbasic 
variables in the submatrix NR  of R. The elementary row transformations are chosen 
to produce new matrix which remains equivalent to original matrix in the sense that 
the solution set of the matrix equation with original matrix and matrix equation with 
transformed matrix remain same. Due to this equivalence we can now set all the 
nonbasic variables in this transformed matrix to zero and obtain with justification 

mind  =  min{ −d } as optimal value for the objective function and obtain basic 
feasible solution as optimal solution by substitution. 
 
Let us now discuss our new algorithm in steps: 
 
Algorithm 2.1 (Maximization):  
 

1.  Express the given problem in standard form: 

             Maximize:   xCT  
             Subject to:   bsAx =+                                         
             0,0 ≥≥ sx   

2. Construct the augmented matrix [E F], where 
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               and obtain the reduced row echelon form:  
               R = rref ([E, F])  

3. If there is a row (or rows) of zeroes at the bottom of R in the first n columns 
and containing a nonzero constant in the last column then declare that the 
problem is inconsistent and stop. Else if the coefficients of d in the last 
column are all positive or if there exists a column of R corresponding to some 
nonbasic variable with all entries negative then declare that the problem at 
hand is unbounded and stop. 

4. Else if for any value of d one observes that nonnegativity constraint for some 
variable gets violated by at least one of the variables then declare that the 
problem at hand is infeasible and stop.  
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5. Else find the submatrix of R, say NR , made up of those rows of R for which 

the coefficient of d in the last column is negative.  
6. Check whether the columns of NR  corresponding to nonbasic variables are 

nonnegative. Else, rearrange the constraint equations by suitably permuting 
these equations such that (as far as possible) the values in the columns of our 

starting matrix )( nmA ×  get rearranged in the following way:  Either they are 
rising and then becoming stationary, or falling and then becoming stationary, 
or falling initially up to certain length of the column vector and then rising 

again. After this rearrangement to form transformed )( nmA × again proceed 
as is done in step 2 above to form its corresponding augmented matrix [E, F] 
and again find its R = rref ([E, F]) which will most likely have the desired 
representation, i.e. in the new NR  that one will construct from the new R will 
have columns for nonbasic variables which will be containining nonnegative 
entries. 

7. Solve 0=+
rr ii edc  for each such a term in the last column of NR  and 

find the value of 
−=
ri
dd for kr ,,2,1 L=  and find 

}min{min
−− =
ri
dd . Similarly, solve 0=+

rr ii edc  for each such a 

term in the last column for rows of R other than those in NR  and find the 

values 
+=
ri
dd for kr ,,2,1 L=  and find }max{max

++ =
ri
dd . 

Check the columns of NR  corresponding to nonbasic variables. If all these 

columns contain only nonnegative entries and if min{ −d } ≥  max{
+d } then 

set all nonbasic variables to zero. Substitute mindd =  in the last column of 
R. Determine the basic feasible solution which will be optimal and stop. 
Further, if columns corresponding to nonbasic variables contain only 

nonnegative entries and if min{ −d } < max{
+d } then check whether value 

of ke > 0 in the expressions kk edc +  in these rows of R other those in NR  

that are having value of kc  > 0. If yes, then set all nonbasic variables to zero. 

Substitute mindd =  in the last column of R. Determine the basic feasible 
solution which will be again optimal.  

8. Even after proceeding with rearranging columns of our starting matrix 

)( nmA × by suitably permuting rows representing constraint equations as is 
done in step 6, and then proceeding as per step 7 and achieving the validity of 

min{ −d } ≥  max{
+d },  if still there remain columns in NR  corresponding 

to some nonbasic variables containing positive entries in some rows and 
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negative entries in some other rows then devise and apply suitable elementary 
row transformations onR  such that the columns representing coefficients of 
nonbasic variables of new transformed matrix R  or at least its submatrix 

NR  corresponding to new transformed R  contain only nonnegative entries. 
And step 7 becomes applicable.  

 
We now proceed with some examples: 
 
Example 2.1: Maximize: yx +  
Subject to: 42 ≤+ yx  

                  1≤+− yx  
                     1224 ≤+ yx  
                     0, ≥yx  
Solution: For this problem we have 
 
=R  [      1,      0,      0,      0,    1/2,   -d+6    ] 

          [      0,      1,      0,      0,   -1/2, -6+2*d  ] 
          [      0,      0,      1,      0,    1/2, 10-3*d   ] 
          [      0,      0,      0,      1,      1, 13-3*d    ] 
 
So, clearly, 
 

NR  =  [      1,      0,      0,      0,    1/2,    -d+6     ] 
             [      0,      0,      1,      0,    1/2,  10-3*d   ] 
             [      0,      0,      0,      1,      1,   13-3*d   ] 
 

For this example the column forming coefficients for nonbasic variable 3s contains 

nonegative numbers. So, we set 03 =s . Clearly, mind  = 3.3333 = Optimal value for 
the objective function. Using this value of optimum we have  

66.0,66.2 == yx , 0,3,0 321 === sss . 
 
Example 2.2: We first consider the duel of the example suggested by E. M. L. Beale 
[3], which brings into existence the problem of cycling for the simplex method, and 
provide a solution as per the above new method which offers it directly without any 
cycling phenomenon.  

Maximize: 0.75 1x  −20 2x +0.5 3x −6 4x  

Subject to: 0.25 1x  −8 2x − 3x +9 4x 0≤  

                   0.5 1x  −12 2x −0.5 3x +3 4x 0≤  

                   03 ≤x  

                   1x , 2x , 3x , 4x 0≥  
Solution: For this problem we have the following 
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=R [1,     0,    0,    0,    −22/3,         38/3,       4/3,   (−14/3)d+4/3  ] 
         [0,     1,    0,    0,    −7/24,        11/24,      1/24, (−5/24)d+1/2  ] 
         [0,     0,    1,    0,         0,            0,              1,            1             ] 
         [0,     0,     0,   1,      1/18,         1/18,        1/9,   1/9−(1/18)d   ] 
 
So, clearly, 
 

=NR  [1,     0,      0,      0,     −22/3,         38/3,       4/3,   (−14/3)d+4/3  ] 
              [0,     1,      0,      0,     −7/24,        11/24,      1/24, (−5/24)d+1/24 ] 
              [0,     0,      0,      1,       1/18,         1/18,        1/9,   1/9−(1/18)d    ] 
 
We perform following elementary row transformations on R: Let us denote the 
successive rows of R by R(1), R(2), R(3), R(4). We change 
  

(i) R(2)  R(2) + (126/24)*R(4),  
(ii) R(1)  R(1) + 132*R(4).  
(iii) R(4)  18*R(4) 

 
This leads to new transformed R as follows: 
 
=R [1,     0,    0,     132,          0,          20,      1 6,          16-12d] 

         [0,     1,    0,     21/4,         0,          3/4,     5/8,     5/8-(1/2)d] 
         [0,     0,    1,        0,           0,            0,        1,             1       ] 
         [0,     0,    0,       18,          1,            1,        2,           2−d     ] 
 
In the transformed R we have nonnegative columns for all nonbasic variables, which 
are now those corresponding to 4x , 32 ,ss . So, by setting 4x  =  032 == ss  and 

setting all expressions of type 0=+
rr ii edc  in the last column we find 

}min{min
−− =
ri
dd = 1.25. Using this value in the last column of the newly obtained 

transformed R we have: 1x = 1.0000, 2x = 0, 3x = 1, 4x  = 0, 1s = 0.7500, 2s = 0, 

3s = 0, and the maximum value of d = 1.2500. 
 
Example 2.3: We now consider an unbounded problem. The new method directly 
implies the unbounded nature of the problem through the positivity of the coefficients 
of d in matrix R  for the problem. 
Maximize: yx 3+−  
Subject to: 2−≤−− yx  
                      02 ≤− yx  
                  12 ≤+− yx  
                         0, ≥yx  
 
Solution: The following is the matrix R : 
R  =  [          1,          0,          0,          0,       -3/5,  (1/5)d-3/5  ] 
          [          0,          1,          0,          0,       -1/5,  (2/5)d-1/5 ] 



 12

          [          0,          0,          1,          0,       -4/5, (3/5)d-14/5] 
          [          0,          0,          0,          1,        1/5,  1/5+(3/5)d] 
 
Here, all the coefficients of d are positive. So, by setting variable 3s = 0 we can see 

that we can assign any arbitrarily large value to variable d without violation of 
nonnegativity constraints for variables. Thus, the problem has an unbounded solution. 
 
Example 2.4: We now consider a problem having an infeasible starting basis. We 
see that new algorithm has no difficulty to deal with it. 
Maximize: yx 23 +  
Subject to: 4≤+ yx  
                  52 ≤+ yx  
                     24 −≤− yx  
                     0, ≥yx  
Solution: The following is the matrix R : 
R  = [           1,           0,           0,           0,         1/7,   (2/7)d-2/7  ] 
         [           0,           1,           0,           0,       -3/14,  3/7+(1/14)d] 
         [           0,           0,           1,           0,        1/14, 27/7-(5/14)d] 
         [           0,           0,           0,           1,       -1/14, 36/7-(9/14)d] 
 

=NR [           0,           0,           1,           0,        1/14, 27/7-(5/14)d] 
            [           0,           0,            0,           1,       -1/14, 36/7-(9/14)d] 
 

Clearly, min{ −d } ≥  max{
+d }. So, we perform following elementary row 

transformations on R: Let us denote the successive rows of R by R(1), R(2), R(3), 
R(4). We change 
 
(i) R(4)  R(4) + R(3) 
 
This leads to new transformed RRN ,  as follows: 
 

=NR [           0,           0,           1,           0,        1/14, (27/7)-(5/14)d] 
            [           0,           0,            1,           1,          0,       (63/7) – d    ] 
 
R  = [           1,           0,           0,           0,         1/7,   (2/7)d-2/7  ] 
         [           0,           1,           0,           0,       -3/14,  3/7+(1/14)d] 
         [           0,           0,           1,           0,        1/14, 27/7-(5/14)d] 
         [           0,           0,           1,           1,          0,       (63/7) – d  ] 
 
 
The first two columns of NRR,  correspond to basic variables yx, . Since, 

min{ −d } ≥  max{
+d }  and columns corresponding to nonbasic variables 31,ss  

contain nonnegative entries in NR , so we set these variables to zero. From last row 
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we have 02 =s  and mind  =  9. Also from first and second rows, 
0714.1,2857.2 == yx  

 
Example 2.5: We now consider an infeasible problem. 
Maximize:     yx 23 +  
Subject to:    12 −≤− yx  
                    02 ≤+− yx   
                         0, ≥yx  
Solution: The following is the matrix R : 
R  =    [        1,        0,        0,     -1/4,    (1/4)d ] 
            [        0,        1,        0,      3/8,    (1/8)d  ] 
            [        0,        0,        1,      7/8, (-3/8)d-1] 
 
Here, the coefficient of d is negative only in the last row and so  

=NR  [      0,        0,        1,      7/8, (-3/8)d-1]. 
 
We perform following elementary row transformations on R: Let us denote the 
successive rows of R by R(1), R(2), R(3), R(4). We change 
 

(i) R(1)  (2/7)*R(4) + R(1) 
 
This leads to  
 
R  =    [        1,        0,      2/7,       0, 1/7*d-2/7] 
            [        0,        1,        0,      3/8,    (1/8)d  ] 
            [        0,        0,        1,      7/8, (-3/8)d-1] 
 
and  
 

=NR  [       0,        0,        1,      7/8, (-3/8)d-1] 
 

Setting 21,ss  equal to zero, we have for consistency of last row d =  ─(8/3) and using 
this value for d we have  y =  ─(1/3). Thus, this problem is infeasible. 
 
Remark 2.1: Klee and Minty [4], have constructed an example of a set of linear 

programs with n  variables for which simplex method requires 12 −n  iterations to 
reach an optimal solution. Theoretic work of Borgwardt [5] and Smale [6] indicates 
that fortunately the occurrence of problems belonging to the class of Klee and Minty, 
which don’t share the average behavior, is so rare as to be negligible. We now 
proceed to show that there is no problem of efficiency for new algorithm in dealing 
with the problems belonging to this class. 
 
Example 2.6: We now consider a problem for which the simplex iterations are 
exponential function of the size of the problem. A problem belonging to the class 
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described by Klee and Minty containing n  variables requires 12 −n simplex steps. 
We see that the new method doesn’t require any special effort 
Maximize: 100 1x  +10 2x + 3x  

Subject to: 11 ≤x  

                  20 1x  + 1002 ≤x  

                  200 1x  +20 2x + 100003 ≤x  

            1x , 2x , 3x 0≥  
 
Solution: The following are the matrices NRR, : 
 
=R  [1,           0,           0,           0,        1/10,      -1/100, -90+(1/100)d] 

          [0,           1,           0,           0,          -1,         1/5,       1900-(1/5)d] 
          [0,           0,           1,           0,           0,          -1,        2d-10000    ] 
          [0,           0,           0,           1,       -1/10,       1/100,  91-(1/100)d ] 
 

=NR [0,           1,        0,           0,          -1,         1/5,      1900-(1/5)d ] 
            [0,           0,        0,           1,       -1/10,       1/100,  91- (1/100)d] 
 
We perform following elementary row transformations on R: Let us denote the 
successive rows of R by R(1), R(2), R(3), R(4). We change 
 

(i) R(2)  10R(1) +R(2), and   
(ii) R(4)  R(1) +R(4) 
(iii) R(1)  10*R(1)  

 
This leads to new transformed RRN ,  as follows: 
RN  =  [0,           1,           0,           0,          0,          1/10,      1000-(1/10)*d] 
           [1,           0,           0,           1,          0,             0,                  1           ] 
 
R =  [10,         0,           0,           0,          1,         -1/10,     -900+1/10*d  ] 
        [0,           1,           0,           0,          0,          1/10,     1000-(1/10)*d] 
        [0,           0,           1,           0,          0,          -1,          2*d-10000    ] 
        [1,           0,           0,           1,          0,           0,                  1            ] 

Since, min{ −d } ≥  max{
+d }  and columns corresponding to nonbasic variables 

31,sx  contain nonnegative entries in NR , so we set these variables to zero. 
 
We get easy complete solution as follows: 

1x = 0, 2x = 0, 3x = 10000, 1s = 1, 2s = 100, 3s = 0, and the maximum value of d = 
10000. 
 
Example 2.7: We now consider an example for which the reduced row echelon form 
contains by itself the basic variables that are required to be present in the optimal 
simplex tableau, i.e. the tableau that results at the end of the simplex algorithm, for 
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which only nonpositive entries occur in the bottom row of the tableau representing 
relative profits. This is understood by the nonnegativity of entries in the columns of 

NR  corresponding to nonbasic variables. 

Maximize:   yx 23 +  
Subject to: 42 ≤+− yx  
                   1423 ≤+ yx  
                     3≤− yx  
                     0, ≥yx  
 
Solution: The following is the matrix R : 
=R   [          1,          0,          0,          0,        2/5,  (1/5)d+6/5 ] 

           [          0,          1,          0,          0,       -3/5, -9/5+(1/5)d] 
           [          0,          0,          1,          0,        8/5, 44/5-(1/5)d] 
           [          0,          0,          0,          1,          0,       14-d     ] 
 
So, clearly, 

=NR   [          0,          0,          1,          0,        8/5, 44/5-(1/5)d] 
              [          0,          0,          0,          1,          0,       14-d      ] 
 

Since, min{ −d } ≥  max{
+d }  and columns corresponding to nonbasic variable 3s  

contain nonnegative entries in NR , so we set these variables to zero. 
Here, the nonbasic variable columns directly contain nonnegative entries leading to 
decreasing in profit when some positive value is assigned to this variable and so we 
set this variable to zero which leads to the maximal basic feasible solution: 14=d , 

0,0,6,1,4 321 ===== sssyx . 
 
We now consider few examples in which rearrangement of constraint equations 
automatically produce suitable form for reduced row echelon form: 
 
Example 2.8:. Maximize: yx 36 +  
                         Subject to: 5≤+ yx  
                                          124 ≤+ yx  
                                         42 −≤−− yx  
                                             0, ≥yx  
 
For this problem we get following NRR ,  
 
=R  [          1,          0,          0,          0,        1/3,  2/9*d-4/3] 

          [          0,          1,          0,          0,       -2/3,  8/3-1/9*d] 
          [          0,          0,          1,          0,        1/3, 11/3-1/9*d] 
          [          0,          0,          0,          1,       -2/3, 44/3-7/9*d] 
 



 16

=NR  [          0,          1,          0,          0,       -2/3,  8/3-1/9*d] 
             [          0,          0,          1,          0,        1/3, 11/3-1/9*d] 
             [          0,          0,          0,          1,       -2/3, 44/3-7/9*d] 
 
Here some entries in the last but one column corresponding to nonbasic variable are 
mixed type, i.e. entries in the first and third rows of  NR  are negative while entry in 

the second row of NR  is positive. We now rearrange the constraints so that either 
entries in the new columns are rising and then becoming stationary, or falling and 
then becoming stationary, or falling initially up to certain length of the column vector 
and then rising again, as mentioned above. Thus, we just rewrite the problem as: 
 
Maximize: yx 36 +  
Subject to: 5≤+ yx  
                  42 −≤−− yx  
                  124 ≤+ yx  
                    0, ≥yx  

then form new )( nmA × and again proceed to find reduced row echelon form for new 
matrix which produce 
 
=R  [         1,         0,         0,         0,       1/2,  -1/6*d+6]  

          [         0,         1,         0,         0,        -1, -12+2/3*d]  
          [         0,         0,         1,         0,       1/2,  11-1/2*d]  
          [         0,         0,         0,         1,      -3/2, -22+7/6*d] 
 
 =NR  [         1,         0,         0,         0,       1/2,  -1/6*d+6] 
              [         0,         0,         1,         0,       1/2,   11-1/2*d] 
 

Since, min{ −d } ≥  max{
+d }  and columns corresponding to nonbasic variable 3s  

contain nonnegative entries in NR , so we set these variables to zero. 
Here, the nonbasic variable columns directly contain nonnegative entries leading to 
decreasing in profit when some positive value is assigned to this variable and so we 
set this variable to zero which leads to the maximal basic feasible solution: 22=d , 

0,3/11,0,3/8,3/7 321 ===== sssyx . 

Example 2.9:  Maximize: yx 23 +  
                          Subject to: 4≤+ yx  
                                          52 ≤+ yx  
                                            24 −≤− yx  
                                            0, ≥yx  
For this problem we get following NRR ,  

=R  [           1,           0,           0,           0,         1/7,   2/7*d-2/7    ] 
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         [           0,           1,           0,           0,       -3/14,  3/7+1/14*d] 
         [           0,           0,           1,           0,        1/14, 27/7-5/14*d] 
         [           0,           0,           0,           1,       -1/14, 36/7-9/14*d] 
 

=NR  [           0,           0,           1,           0,        1/14, 27/7-5/14*d] 
            [          0,           0,           0,           1,       -1/14, 36/7-9/14*d] 
 
Here some entries in the last but one column corresponding to nonbasic variable are 
mixed type, i.e. entries in the first and third rows of  NR  are negative while entry in 

the second row of NR  is positive. We now rearrange the constraints so that either 
entries in the new columns are rising and then becoming stationary, or falling and 
then becoming stationary, or falling initially up to certain length of the column vector 
and then rising again, as mentioned above. Thus, we just rewrite the problem as: 
                       
                        Maximize: yx 23 +  
                        Subject to:  52 ≤+ yx  
                                      24 −≤− yx  
                                            4≤+ yx  
                                            0, ≥yx  

then we form new )( nmA × and again proceed to find reduced row echelon form for 
new matrix which produce 
 
=R  [      1,      0,      0,      0,     -2,    d-8] 

         [      0,      1,      0,      0,      3,   12-d] 
         [      0,      0,      1,      0,      1,    9-d] 
         [      0,      0,      0,      1,     14, 54-5*d] 
 

=NR  [      0,      1,      0,      0,      3,   12-d] 
            [      0,      0,      1,      0,      1,    9-d] 
            [      0,      0,      0,      1,     14, 54-5*d] 
Since, min{ −d } ≥  max{

+d }  and column corresponding to nonbasic variable 3s  

contain nonnegative entries in NR , so we set this variable to zero. 
Here, the nonbasic variable columns directly contain nonnegative entries leading to 
decreasing in profit when some positive value is assigned to this variable and so we 
set this variable to zero which leads to the maximal basic feasible solution: 9=d , 

0,9,0,3,1 321 ===== sssyx . 
 
Example 2.10: Maximize: yx 34 +  
                        Subject to:  95.3 ≤+ yx  
                                      82 ≤+ yx  
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                                            6≤+ yx  
                                            0, ≥yx  
For this problem we get following NRR ,  

=R  [         1,         0,         0,         0,        -3,      d-18]   
          [         0,         1,         0,         0,         4,      24-d]  
          [         0,         0,         1,         0,       -11, -57+5/2*d]  
          [         0,         0,         0,         1,         2,      20-d] 
 
 =NR  [         0,         1,         0,         0,         4,      24-d]  
              [         0,         0,         0,         1,         2,      20-d] 
 
Clearly, though the second last column corresponding to nonbasic variable contains 

nonnegative entries the inequality min{ −d } ≥  max{
+d } is invalid! So, as a first 

attempt, before starting to carry out elementary row transformation on R to achieve 
nonnegativity of entries in the columns of R corresponding nonbasic variables, let us 
first try rearranging the inequalities so that either entries in the new columns are rising 
and then becoming stationary, or falling and then becoming stationary, or falling 
initially up to certain length of the column vector and then rising again, as mentioned 
above. Thus, we just rewrite the problem as:                                
                          Maximize: yx 34 +  
                        Subject to:  95.3 ≤+ yx  
                                            6≤+ yx  
                                          82 ≤+ yx  
                                            0, ≥yx  

then we form new )( nmA × and again proceed to find reduced row echelon form for 
new matrix which produce 
 
=R  [         1,         0,         0,         0,       3/2, -1/2*d+12]  

          [         0,         1,         0,         0,        -2,     -16+d]  
          [         0,         0,         1,         0,      11/2,    53-3*d]  
          [         0,         0,         0,         1,       1/2,  10-1/2*d]  

=NR  [         1,         0,         0,         0,       3/2, -1/2*d+12] 
             [         0,         0,         1,         0,      11/2,    53-3*d ]  
             [         0,         0,         0,         1,       1/2,  10-1/2*d ]  
 
For this rearrangement the second last column corresponding to nonbasic variable 

contains nonnegative entries and also the inequality min{ −d } ≥  max{
+d } is now 

valid! So, we set nonbasic variable 3s  equal to zero which leads to maximal basic 

feasible solution: 667.17=d , 
0,1665.1,0,667.1,1665.3 321 ===== sssyx  
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Example 2.11: Maximize: yx 23 +  
                          Subject to: 4≤+ yx  
                                          52 ≤+ yx  
                                            24 −≤− yx  
Solution: For this problem we have 
 =R [           1,           0,           0,           0,         1/7,    (2/7)d-2/7   ] 
          [           0,           1,           0,           0,       -3/14,  3/7+ (1/14)d] 
          [           0,           0,           1,           0,        1/14, 27/7- (5/14)d] 
          [           0,           0,           0,           1,       -1/14, 36/7- (9/14)d] 
 

=NR [           0,           0,           1,           0,        1/14, 27/7-(5/14)d] 
            [           0,           0,           0,           1,       -1/14, 36/7-(9/14)d] 
 
But, if we permute constraints as:  

(I) constraint 1  constraint 3,  
(II) constraint 2  constraint 1, and   
(III) constraint 3  constraint 2  

and form new )( nmA × and further find out new NRR ,  then we get  
 
=R [      1,      0,      0,      0,     -2,    d-8    ] 

         [      0,      1,      0,      0,      3,   12-d   ] 
         [      0,      0,      1,      0,      1,    9-d    ] 
         [      0,      0,      0,      1,     14, 54-5d  ] 
 

=NR  [      0,      1,      0,      0,      3,   12-d  ] 
             [      0,      0,      1,      0,      1,    9-d    ] 
             [      0,      0,      0,      1,     14, 54-5d  ] 
 

Since, min{ −d } ≥  max{
+d }  and column corresponding to nonbasic variable 3s  

contain nonnegative entries in NR , so we set this variable to zero and we directly get 

the optimal basic feasible solution from =R : 9min == dd , 3,1 == yx , 

0,9,0 321 === sss . 
 
                              We now see that we can proceed with in exactly similar way and 
deal successfully with minimization linear programming problems. A problem of  
minimization goes like:  

                           Minimize: xCT    
Subject to: bAx ≥  
                     0≥x  

we first construct the combined system of equations containing the same objective 
equation used in maximization problem (but this time we want to find minimum 
value of parameter d defined in the objective equation) and the equations defined 
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by the constraints imposed by the problem under consideration, combined into a 
single matrix equation, viz., 
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Let [E, F] denote the augmented matrix obtained by appending the column vector F 
to matrix E as a last column. We then find R, the reduced row echelon form of the 
above augmented matrix [E, F]. Thus,  

 
R = rref ([E, F])                                                                            (2.3)  
 

Note that the augmented matrix [E, F] as well as its reduced row echelon form R 
contains only one parameter, namely, d and all other entries are constants. From R 
we can determine the solution set S for every fixed 
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 which also satisfies the nonnegativity constraints is the set of all feasible 

solutions for that d . It is clear that this subset can be empty for a particular choice of 
d that is made. The minimization problem of linear programming is to determine the 
unique d which provides a feasible solution and has minimum value, i.e., to 
determine the unique d which provides an optimal solution. In the case of an 
unbounded minimization linear program there is no lower bound for the value of d , 
while in the case of an infeasible linear program the set of feasible solutions is 
empty. The steps that will be executed to determine the optimal solution should also 
tell by implication when such optimal solution does not exist in the case of an 
unbounded or infeasible problem.   
                              The general form of the matrix R representing the reduced row 
echelon form is similar as previously discussed maximization case:                           
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The first n columns of the above matrix represent the coefficients of the problem 
variables (i.e. variables defined in the linear program) nxxx ,,, 21 L . The next m  

columns represent the coefficients of the surplus variables msss ,,, 21 L  used to 
convert inequalities into equalities to obtain the standard form of the linear program. 
The last column represents the transformed right hand side of the equation (2.2) 
during the process (a suitable sequence of transformations) that is carried out to obtain 
the reduced row echelon form. Note that the last column of R contains the linear form 
d as a parameter whose optimal value is to be determined such that the nonnegativity 
constraints remain valid, i.e. nixi ≤≤≥ 1,0 and mjs j ≤≤≥ 1,0 . Among 

first )( mn + columns of R certain first columns correspond to basic variables 
(columns that are unit vectors) and the remaining ones to nonbasic variables 
(columns that are not unit vectors). For solving the linear program we need to 
determine the values of all nonbasic variables and the optimal value of d , from 
which we can determine the values of all the basic variables by substitution and the 
linear program is thus solved completely. For a linear program if all the coefficients 
of parameter d in the last column of R are negative then the linear program at hand is 
unbounded (since, the parameter d can be decreased arbitrarily without violating the 
nonnegativity constraints on variables ji sx , ). For a linear program if all the 

coefficients of some nonbasic slack variable represented by a column of R are 
nonpositive and are strictly negative in those rows having a positive coefficient to 
parameter d that appears in the last column of these rows then we can decrease the 
value of d to any low value without violating the nonnegativity constraints for the 
variables by assigning sufficiently high value to this nonbasic slack variable and the 
problem is again belongs to the category of unbounded problems. Note that the rows 
of R actually represent equations with variables nixi L,2,1, = and variables 

mjs j L,2,1, = on left side and expressions of type 

)1(,2,1, +=+ mkedc kk L  containing the variable d on the right side. The 

rows with a negative coefficient for the parameter d represent those equations in 
which the parameter d can be decreased arbitrarily without violating the 
nonnegativity constraints on variables ji sx , . So, these equations with a negative 

coefficient for the parameter d are not implying any lower bound on the minimum 
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possible value of parameter d . However, these rows are useful to know about upper 
bound on parameter d . The rows with a positive coefficient for the parameter 
d represent those equations in which the parameter d cannot be decreased arbitrarily 
without violating the nonnegativity constraints on variables ji sx , . So, these 

equations with a positive coefficient for the parameter d are implying a lower bound 
on the minimum possible value of parameter d  and so important ones in this respect. 
So, we now proceed to find out the submatrix of R, say PR , made up of all columns 

of R and containing those rows j  of R for which the coefficients jc  of the parameter 

d  are positive. Let 
kiii ccc ,,,

21
L are all and are only positive real numbers in the 

rows collected in PR  given below and all other coefficients of d in other rows of R 
are greater than or equal to zero. 
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If PR  is empty (i.e. containing not a single row) then the problem at hand is 
unbounded. There are certain columns starting from first column and appear in 
successions which are unit vectors. These columns which are unit vectors correspond 
to basic variables. The columns appearing in successions after these columns and not 
unit vectors correspond to nonbasic variables. As mentioned, among the columns of 

PR  for nonbasic variables those having all entries nonnegative can only lead to 

increase in the value of d when a positive value is assigned to them. This is 
undesirable as we aim minimization of the value of d . So, we desire to set the values 
of such variables equal to zero. When all columns corresponding to nonbasic 
variables in PR  are having all entries nonnegative and further if the inequality 

min{ −d } ≥  max{
+d } holds then we can set all nonbasic variables to zero and set 

d = max{
+d } in every row of R and find the basic feasible solution which will be 

optimal, with max{
+d } as optimal value for the objective function at hand. Still 

further, When all columns corresponding to nonbasic variables in PR  are having all 

entries nonnegative but min{ −d } < max{
+d } then if ke > 0 then we can still set all 

nonbasic variables to zero, set d = max{
+d } in every row of R and find the basic 
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feasible solution which will be optimal, with max{
+d } as optimal value for the 

objective function at hand, i.e. if value of ke > 0 in the expressions kk edc +  in the 

rows of R  rather those in PR  that are having value of kc  > 0 then we can proceed 

on similar lines to find optimal value for d . 
                              In PR  we now proceed to consider those nonbasic variables for 

which the columns of PR  contain some (at least one) positive values and some 
negative (at least one) values. In such case when we assign some positive value to 
such nonbasic variable it leads to decrease in the value of d in those rows in which 

kc  > 0 and increase in the value of d in those rows in which kc  < 0.  We now need 
to consider the ways of dealing with this situation. We deal with this situation as 
follows: In this case, we choose and carry out appropriate and legal elementary row 
transformations on the matrix R  in the reduced row echelon form to achieve 
nonnegative value for all the entries in the columns corresponding to nonbasic 
variables in the submatrix PR  of R. The elementary row transformations are chosen 
to produce new matrix which remains equivalent to original matrix in the sense that 
the solution set of the matrix equation with original matrix and matrix equation with 
transformed matrix remain same. Due to this equivalence we can now set all the 
nonbasic variables in this transformed matrix to zero and obtain with justification 

maxd  =  max{ +d } as optimal value for the objective function and obtain basic 
feasible solution as optimal solution by substitution. 
 
Algorithm 2.2 (Minimization):  
 

1. Express the given problem in standard form: 

             Maximize:   xCT  
             Subject to:   bsAx =−                                         
                                   0,0 ≥≥ sx   

2. Construct the augmented matrix [E F], where 

              E   = 












− ××

××

)()(

)1()1( 0

mmnm

m
T
n

IA
C

 , and  F   =   







b
d

  

               and obtain the reduced row echelon form:  
               R = rref ([E, F])  

3. If there is a row (or rows) of zeroes at the bottom of R in the first n columns 
and containing a nonzero constant in the last column then declare that the 
problem is inconsistent and stop. Else if the coefficients of d in the last 
column are all positive or if there exists a column of R corresponding to some 
nonbasic variable with all entries negative then declare that the problem at 
hand is unbounded and stop. 
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4. Else if for any value of d one observes that nonnegativity constraint for some 
variable gets violated by at least one of the variables then declare that the 
problem at hand is infeasible and stop.  

5. Else find the submatrix of R, say PR , made up of those rows of R for which 

the coefficient of d in the last column is positive.  
6. Check whether the columns of PR  corresponding to nonbasic variables are 

nonnegative. Else, rearrange the constraint equations by suitably permuting 
these equations such that (as far as possible) the values in the columns of our 

starting matrix )( nmA ×  get rearranged in the following way:  Either they are 
rising and then becoming stationary, or falling and then becoming stationary, 
or falling initially up to certain length of the column vector and then rising 

again. After this rearrangement to form transformed )( nmA × again proceed 
as is done in step 2 above to form its corresponding augmented matrix [E, F] 
and again find its R = rref ([E, F]) which will most likely have the desired 
representation, i.e. in the new PR  that one will construct from the new R will 
have columns for nonbasic variables which will be containing nonnegative 
entries. 

7. Solve 0=+
rr ii edc  for each such a term in the last column of PR  and 

find the value of 
−=
ri
dd for kr ,,2,1 L=  and find 

}min{min
−− =
ri
dd . Similarly, solve 0=+

rr ii edc  for each such a 

term in the last column for rows of R other than those in NR  and find the 

values 
+=
ri
dd for kr ,,2,1 L=  and find }max{max

++ =
ri
dd . 

Check the columns of PR  corresponding to nonbasic variables. If all these 

columns contain only nonnegative entries and if min{ −d } ≥  max{
+d } then 

set all nonbasic variables to zero. Substitute maxdd =  in the last column 
of R. Determine the basic feasible solution which will be optimal and stop. 
Further, if columns corresponding to nonbasic variables contain only 

nonnegative entries and if min{ −d } < max{
+d } then check whether value 

of ke > 0 in the expressions kk edc +  in these rows of R other those in PR  

that are having value of kc  > 0. If yes, then set all nonbasic variables to zero. 

Substitute maxdd =  in the last column of R. Determine the basic feasible 
solution which will be again optimal.  

8. Even after proceeding with rearranging columns of our starting matrix 

)( nmA × by suitably permuting rows representing constraint equations as is 
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done in step 6, and then proceeding as per step 7 and achieving the validity of 

min{ −d } ≥  max{
+d },  if still there remain columns in PR  corresponding 

to some nonbasic variables containing positive entries in some rows and 
negative entries in some other rows then devise and apply suitable elementary 
row transformations onR  such that the columns representing coefficients of 
nonbasic variables of new transformed matrix R  or at least its submatrix PR  
corresponding to new transformed R  contain only nonnegative entries so that 
step 7 becomes applicable.  

 
We now consider few examples for minimization problems: 
 
Example 2.12: This example for minimization is like Example 2.6 for maximization 
in which the reduced row echelon form contains by itself the basic variables that are 
required to be present in the optimal simplex tableau, i.e. the tableau that results at the 
end of the simplex algorithm, for which only nonnegative entries occur in the bottom 
row of the tableau representing relative costs. This is understood by the nonnegativity 
of entries in the columns of PR  corresponding to nonbasic variables.  

                        Minimize:  13x− + 2x + 3x  

                         Subject to: 1x− + 2 2x − 3x ≥  −11 

                                          14x− + 2x +2 3x ≥  3 

                                              12x − 3x ≥  −1 

                                           12x− + 3x ≥  1 

                                                0,, 321 ≥xxx  
 
Solution: For this problem we have  
 
=R [     1,     0,     0,     0,    -1,     0,     1,  -d+2   ]  

         [     0,     1,     0,     0,    -1,     0,     2,     1     ] 
         [     0,     0,     1,     0,    -2,     0,     1, 5-2d    ]  
         [     0,     0,     0,     1,     1,     0,     2, 6+3d   ]  
         [     0,     0,     0,     0,     0,     1,     1,     0     ] 
 
It is clear from separately equating each entry in the last column of R that the 

expected inequality, min{ −d } ≥  max{
+d }, holds good. Also, 

  
=PR [     0,     0,     0,     1,     1,     0,     2, 6+3d] 

 
Since all the entries in the columns corresponding to nonbasic variables in PR  are 

positive so we put 0,,, 4321 =ssss . Also, we put 2)max( −== +dd . By 

further substitutions, we have 9,1,4 321 === xxx . 
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Example 2.13: We now consider a minimization primal linear program for which 
neither the primal nor the dual has a feasible solution. 
Minimize: yx 2−  
Subject to: 2≥− yx  
                 1−≥+− yx   
                      0, ≥yx  
Solution: For this problem we have 
  
=R  [   1,   0,   0,   2, 2-d] 

          [   0,   1,   0,   1, 1-d] 
          [   0,   0,   1,   1,  -1 ] 
 
Here, PR  is an empty matrix. So, there is no lower limit on the value of d . But, 
from the last row of R  it is clear that (for any nonnegative value of nonbasic 
variable, 2s  ) the value of 1s is negative and so the problem is thus infeasible. 
Similarly, if we consider the following dual, viz, 
 
Maximize: yx −2  
Subject to: 1≤− yx  
                 2−≤+− yx   
                      0, ≥yx   
 
then we have  
=R   [    1,    0,    0,    1, -2+d] 

           [    0,    1,    0,    2, -4+d] 
           [    0,    0,    1,    1,   -1  ] 
 

=NR [    1,    0,    0,    1, -2+d] 
            [    0,    1,    0,    2, -4+d] 
which implies a zero value for 2s  and d = 2. But again from the last row of R  it is 

clear that (even for any nonnegative value of nonbasic variable, 2s  ) the value of y is 
negative and so the problem is infeasible. 
 
Example 2.14: We now consider a minimization linear program for which the primal 
is unbounded and the dual is infeasible. 
Minimize:  yx −−  
Subject to:      5≥− yx  
                        5−≥− yx   
                        0, ≥yx  
Solution: For this problem we have  
=R   [          1,          0,          0,       -1/2, -5/2-(1/2)d ] 

           [          0,          1,          0,        1/2, (-1/2)d+5/2] 
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           [          0,          0,          1,         -1,        -10       ] 
Clearly, pR  is empty so there is no bound to the value of d on the lower side and by 

giving value 10≥ to nonbasic variable 2s we can avoid negativity of 1s , so the 
problem is unbounded. Also, let us apply following elementary transformations on R: 
Let us denote the successive rows of R by R(1), R(2), R(3), R(4). We change 
 

(i) R(1)  R(1) +R(2), and   
(ii) R(3)  2R(2) +R(3)  

 
=R   [          1,          1,          0,          0,          -d       ] 

           [          0,          1,          0,        1/2, (-1/2)d+5/2] 
           [          0,          1,          1,          0,       -d -5      ] 
 
So, by setting ,02 =s 5−≤d  we can check that this problem in unbounded below. 
 
Now, if we consider the following dual, viz, 
Maximize: yx 55 −  
Subject to: 1−≤+ yx  
                 1−≤−− yx   
                      0, ≥yx   
We have 
 
=R  [          1,          0,          0,       -1/2, 1/2+(1/10)d] 

          [          0,          1,          0,       -1/2, 1/2-(1/10)d] 
          [          0,          0,          1,          1,         -2        ] 
 

=NR  [          0,          1,          0,       -1/2, 1/2-(1/10)d] 

Again from the last row of R  it is clear that even for any nonnegative value of 
nonbasic variable, 2s  the value of 1s is negative and so the problem is infeasible. 
 
Example 2.15: Minimize:     421 34 xxx ++  

                         Subject to:     32 4321 ≥+−+ xxxx  

                                          242 1321 ≥++−− xxxx  

                                                0,, 321 ≥xxx  

We have following PRR,  for this problem: 
=R  [       1,       0,       0,      -1,     -16,    -4, -7*d+56] 

          [       0,       1,       0,       1,       4,       1, -14+2*d] 
          [       0,       0,       1,       0,      -7,     -2,  25-3*d ] 
 

=PR  [       0,       1,       0,       1,       4,       1, -14+2*d] 
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Since it is clear from separately equating each entry in the last column of R that the 

expected inequality, min{ −d } ≥  max{
+d }, holds good. Also, since all the entries 

in the columns corresponding to nonbasic variables in PR  are positive so we put 

0,, 214 =ssx . Also, we put 7)max( == +dd . By further substitutions, we 

have 4,0,7 321 === xxx . 
 
Remark 2.1: It is clear from the discussion made so far that our aim should be to 
achieve the situation in which all the columns corresponding to nonbasic variables in 

NR , PR  contain nonnegative entries. This situation corresponds to directly having 
the possession of maximal/minimal basic feasible solution. By achieving this one gets 
directly the optimal basic feasible solution by simply setting all the nonbasic variables 
to zero and finding the basic solution. This is the situation in a sense of having 
directly the optimal simplex tableau for which one sets all the nonbasic variables to 
zero as they in fact lead to decrement/increment in the otherwise maximal/minimal 
value of d for maximization/minimization linear programming problems under 
consideration. Thus, we can find the solution of any maximization/minimization 
linear program by properly analyzing the PN RRR ,,  matrices, and taking the 
relevant actions as per the outcomes of the analysis. 
 
Remark 2.2: Instead of shuffling rows of matrix bA ,  to form new  E, F  without 
changing the content of the problem, we can also achieve the same effect of 

rearrangement of constraint by simply shuffling rows of identity matrix mmI ×  in E 
and proceed with formation of new E, F  without changing the content of the problem 
and achieving same effect in the sense that the corresponding reduced row echelon 
form will automatically produce same effect.  
 
Remark 2.3: The nonnegativity of the entries that are present in the columns of 
nonbasic variables of the concerned reduced row echelon form NR  or PR  is in 
effect similar to obtain the optimal simplex tableau, i.e. the tableau at which the 
simplex algorithm terminates and where the basic feasible solution represents the 
optimal solution.  
 
3. A New Algorithm for Nonlinear Programming: We now proceed show that we 

can deal with nonlinear programs (nonlinear constrained optimization problems) 
using the same above given technique used to deal with linear programs. The 
algorithms developed by Bruno Buchberger which transformed the abstract 
notion of Grobner basis into a fundamental tool in computational algebra will be 
utilized. The technique of Grobner bases is essentially a version of reduced row 
echelon form (used above to handle the linear programs made up of linear 
polynomials) for higher degree polynomials [7]. A typical nonlinear program can 
be stated as follows:  

      Maximize/Minimize: )(xf  

       Subject to: mjxh j ,,2,1,0)( L==  
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                  pmmjxg j ,,2,1,0)( L++=≥  

                   nkxk ,,2,1,0 L=≥  
Given a nonlinear optimization problem we first construct the following nonlinear 
system of equations: 

0)( =− dxf                                                                            (3.1) 

mjxh j ,,2,1,0)( L==                                                       (3.2)                                                          

pmmjsxg jj ,,2,1,0)( L++==+                          (3.3) 

where d is the unknown parameter whose optimal value is to be determined subject 
to nonnegativity conditions on problem variables and slack variables. For this to 
achieve we first transform the system of equations into an equivalent system of 
equations bearing the same solution set such that the system is easier to solve. We 
have seen so far that the effective way to deal with linear programs is to obtain the 
reduced row echelon form for the combined system of equations incorporating 
objective equation and constraint equations. We will see that for the nonlinear case 
the effective way to deal with is to obtain the equivalent of reduced row echelon form, 
namely, the Grobner basis representation for this system of equations (3.1)-(3.3). 
We then set up the equations obtained by equating the partial derivatives of d with 
respect to problem variables ix  and slack variables is to zero and utilize the standard 
theory and methods used in calculus. We demonstrate the essence of this method by 
solving certain examples. where d is the unknown parameter whose optimal value is 
to be determined subject to nonnegativity conditions on problem variables and slack 
variables. For this to achieve we first transform the system of equations into an 
equivalent system of equations bearing the same solution set such that the system is 
easier to solve. We have seen so far that the effective way to deal with linear 
programs is to obtain the reduced row echelon form for the combined system of 
equations incorporating objective equation and constraint equations. We will see that 
for the nonlinear case the effective way to deal with is to obtain the equivalent of 
reduced row echelon form for the set of polynomials, namely, the Grobner basis 
representation for this system of equations (3.1)-(3.3). We then set up the equations 
obtained by equating the partial derivatives of d with respect to problem variables ix  

and slack variables is to zero and utilize the standard theory and methods used in 
calculus. We demonstrate the essence of this method by solving an example: 
These examples are taken from [8], [9]. These examples sufficiently illustrate the 
power of this new method of using powerful technique of Grobner basis to 
successfully and efficiently deal with nonlinear programming problems.  
 

Example 3.1: Maximize: 21
2
1 24 xxx ++−  

                          Subject to:   421 ≤+ xx  

                                            52 21 ≤+ xx  

                                           24 21 ≥+− xx  
Solution: We build the following system of equations: 
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                  024 21
2
1 =−++− dxxx   

                      04121 =−++ sxx  

                    052 221 =−++ sxx  

                    024 321 =−−+− sxx  

such that:         0,,,, 32121 ≥sssxx  
We now transform the nonlinear/linear polynomials on the left hand side of the above 
equations by obtaining Grobner basis for them as follows: 

0836161881486 2
3323

2
22 =−−+−−− ssssssd      (3.1.1) 

 0599 321 =−+− sss                                                            (3.1.2) 

0929 232 =+−+− xss                                                        (3.1.3) 

09418 132 =+++− xss                                                      (3.1.4)  

Setting   0
2
=

∂
∂
s
d

 and 0
3
=

∂
∂
s
d

 we get equations: 

18832 32 −=+ ss  

  3628 32 =+ ss  

a rank deficient system. Note that for maximization of d  if we set 0
2
=

∂
∂
s
d

 we get 

the value of 2s  that maximizes d , namely, )32/8()32/18( 32 ss −−= , a 

negative value for any nonnegative value of 3s . So, we set 02 =s . Similarly, for 

maximization of  d  if we set 0
3
=

∂
∂
s
d

 we get the value of 3s  that maximizes d , 

namely, )18(418 23 =−= ss , setting 02 =s . But, by setting 02 =s  in the 

second equation above the largest possible value for 3s  that one can have (is obtained 

by setting  01 =s and it) is 9, when 02 =s . Thus, setting 9,0 32 == ss  in the 

first equation we get d = 9. From third and fourth equation we get 1,3 12 == xx .  
 

Example 3.2: Maximize: 21
2
2

2
1 5624168 xxxx ++−−   

                          Subject to:   421 ≤+ xx                           

                                              52 21 ≤+ xx  

                                             24 21 ≥+− xx  

                                                0, 21 ≥xx  
Solution: We build the following system of equations: 

                  05624168 21
2
2

2
1 =−++−− dxxxx   
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                        04121 =−++ sxx        

                     052 221 =−++ sxx         

                    024 321 =−−+− sxx  
We now transform the nonlinear/linear polynomials on the left hand side of the above 
equations by obtaining Grobner basis for them as follows: 

                    08561689504 2
33

2
22 =−+−+− ssssd            (3.2.1) 

                     0599 321 =−+− sss                                                 (3.2.2) 

                     0929 232 =+−+− xss                                            (3.2.3) 

                     09418 132 =+++− xss                                          (3.2.4) 

from first equation (3.2.1), in order to maximize d , we determine the values of 

32 ,ss  as follows: 

If we set 0
2
=

∂
∂
s
d

 we get the value of 2s  that maximizes d , namely, 
4
1

2 =s . 

Similarly, if we set 0
3
=

∂
∂
s
d

 we get the value of 3s  that maximizes d , namely, 

2
7

3 =s . Putting these values of  32 ,ss  in the first and second equation we get 

respectively the maximum value of 67=d  and the value of  
4
3

1 =s . Using 

further these values in the third and fourth equation we get 75.1,5.1 21 == xx . 
 

Example 3.3: Minimize: 2
2

2
1 )4()3( −+− xx  

                        Subject to: 32 21 =+ xx  
Solution: We form the objective equation and constraint equations as is done in the 
above examples and then find the Grobner basis which yields:  

                        01025 1
2
1 =+−− xdx  

                        032 21 =−+ xx  

Setting  0
1
=

∂
∂
x
d

 we get the value of 1x  that minimizes d , namely, 2.01 =x . 

This yields 8.9=d  and 6.22 =x  
 

Example 3.4: Minimize: 2
2
1 xx −  

                        Subject to: 621 =+ xx  

                                          11 ≥x  
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                                          262
2

2
1 ≤+ xx  

Solution: We form the objective equation and constraint equations as is done in the 
above examples and then find the Grobner basis which yields: 
                                     08142 21 =+−− ssd  

                                     0512 =−+ sx  

                                        0111 =−− sx  

                                    028 2
112 =+−− sss  

For minimizing d  we should set the values of 21,ss  equal to zero (as they have 

signs opposite to d ) which yields 4−=d . From other equations we get 
5,1 21 == xx . 

Example 3.5: Minimize: 2
221

2
11 2226 xxxxx +−+−  

                        Subject to: 221 ≤+ xx  
Solution: We form the objective equation and constraint equations as is done in the 
above examples and then find the Grobner basis which yields: 

                        0422666 1
2
1212

2
2 =−−+−+− ssxsxdx   (3.5.1) 

                         02121 =−++ sxx                                           (3.5.2) 

Setting   0
2
=

∂
∂
x
d

 and 0
1
=

∂
∂
s
d

 we get equations: 

6612 12 =+ sx  

  246 12 =+ sx  

There solution gives 11 −=s , which is forbidden so we first set 01 =s  in the 

initial equations (3.5.1) and (3.5.2) and again set  0
2
=

∂
∂
x
d

 which yields the value 

of 2x  that minimizes d , namely, 
2
1

2 =x . This in turn produce 
2
3

1 =x  and 

2
11

−=d .  

 
4. A New Algorithm for Integer Programming: We now proceed to deal with 

integer programs (integer programming problems) using the same above given 
technique used to deal with linear programs. The essential difference in this case 
is that we need to obtain integer optimal solution. A typical integer program is just 
like a linear program having a linear objective function to be optimized and the 
optimal solution to be determined should satisfy linear constraints, and 
nonnegativity constraints, and in addition, imposed integrality of values for 
certain variable. When all problem variables are required to be integers the 
problem is called pure integer program, when only certain variables are needed 
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to be integers while certain others can take nonintegral values the problem is 
called mixed integer program. When all variables can only take 0 or 1 values the 
problem is called pure (0-1) integer program. When only certain variables are 
needed to satisfy take 0 or 1 value the problem is called mixed (0-1) integer 
program. This additional integrality condition on the problem variables makes it 
extremely difficult to solve. The optimal solution obtained by relaxing the 
integrality conditions and by treating it as a linear program is called LP-
relaxation solution. There are two main exact methods to solve integer 
programs: The branch and bound method and the cutting plane method but 
unfortunately they both have exponential time complexity. We will be propossing 
Two New Methods to deal with integer programs. 

 
                      Two types of integer programming problems are:  

 1. Maximize: xCT   
Subject to: bAx ≤   
                     0≥x , and integers. 
Or 

                   2. Minimize: xCT    
Subject to: bAx ≥  
                     0≥x , and integers. 
Where x  is a column vector of size n×1 of unknowns. 
Where C  is a column vector of size n×1 of profit (for maximization 

problem) or cost (for minimization problem) coefficients, and TC is a row vector 
of size 1×n obtained by matrix transposition of C . 

Where A  is a matrix of constraints coefficients of size m×n. 
Where b  is a column vector of constants of size m×1 representing 

the boundaries of constraints. 
By introducing the appropriate slack variables (for maximization 

problem) and surplus variables (for minimization problem), the above mentioned 
linear programs gets converted into standard form as: 

Maximize:   xCT  
Subject to:   bsAx =+                                          (4.1) 
                       0,0 ≥≥ sx  and integers. 
Where s is slack variable vector of size m×1. 
This is a maximization problem. 
Or 

Minimize:   xCT  
Subject to:  bsAx =−                                            (4.2) 
                      0,0 ≥≥ sx  and integers. 
Where s  is surplus variable vector of size m×1. 
This is a minimization problem.  

 
                              We begin (as done previously) with the following equation:  

                                                dxCT =                                  (4.3) 
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where d is an unknown parameter, and call it objective equation. The (parametric) 

plane defined by this equation will be called objective plane. Let TC be a row vector 
of size 1×n and made up of integer components nccc ,,, 21 L  , not all zero. It is 
clear that the objective equation will have integer solutions if and only if gcd (greatest 
common divisor) of nccc ,,, 21 L  divides d . We discuss first the maximization 
problem. A similar approach for minimization problem can be developed on similar 
lines.      
                              Given a maximization problem, we first construct the combined 
system of equations containing the objective equation and the equations defined by 
the constraints imposed by the problem under consideration, combined into a single 
matrix equation, viz., 
 

                












××

××
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)1()1( 0

mmnm
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
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


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






b
d

                               (4.4) 

 
and obtain LP-relaxation solution. This LP-relaxation solution provides the upper 
bound that must be satisfied by the optimal integer solution.  Then we proceed to form 
and solve a system of Diophantine equations as follows: In order to solve this 
system as Diophantine system of equations we use the standard technique given in 
([10], pages 212-224). First by appending new variables )(21 ,,, nmuuu +L  and 

carrying out appropriate row and column transformations discussed in ([10], pages 
217, 221) we obtain the parametric solutions for the system. Thus, we start with the 
following table:   
 

                         





















+×+

××

××

)()((

)()(

)1()1( 0

nmnm

mmnm

m
T
n

I

bIA
dC

                (4.5) 

 
and transform the system of equations into an equivalent system that is diagonal. 
Thus, we have the following parametric solution: 
 

duk =  (for some k ) 

rr ii hu = (where 
rih are constants for 1=r  to n , kir ≠ ), and 

i

n

r
jiji rr
ux δα += ∑

=1
 (where iijr δα ,  are constants.) 

i

n

r
jiji rr
us ηβ += ∑

=1
 (where iijr ηβ ,  are constants.) 
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Important Points: 
 

(1) The parametric solution is in terms of variables  ku , ri
u , ix , and is out of 

these variables ix , and is  must satisfy nonnegativity and integrality for their 

values. Nonnegativity is not imposed on ku , ri
u but some of them are 

forced to satisfy integrality because of their built-in relation with variables 

ix , and is  on which requirement of fulfilling integrality condition in the 
statement of the problem. 

(2) These Diophantine equations, representing parametric solution for ix , and 

is , produce the following set of inequalities through imposed nonnegativity 

of variables ix , and is . Thus,  

(i) Nonnegativity of ix  produce following inequalities: 

            i

n

r
jij rr
u δα +≤∑

=1
0  

(ii) Nonnegativity of ix  produce following inequalities: 

i

n

r
jij rr
u ηβ +≤∑

=1
0   

(3) Our aim is to find nonnegative integer values for ix such that the objective 
function as a parameter, d , has optimal value.  

 
First Method (Maximization): 

 
1) We first solve the underlying linear programming problem and find the related 

LP relaxation solution for the problem.  
2) We rewrite the equations giving parametric solution such that in all equations the 

coefficients of parameter d has negative value, i.e. we keep those equations as 
they are for which the coefficient of parameter d have negative value and 
multiply those other equations by (─1) in which coefficients of parameter d are 
positive. 

3) We rearrange further this new set of equations having negative value for 

parameter d such that all the variables iii usx ,, are on the left side while 

terms like ii edc +  are on the right side of these equations. 
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4) From these equations we construct a table of rows and columns such that the 

number of rows are equal to number of equations (for ix , and is ), and number 

of columns equal to number of variables iii usx ,, andd . 
5) We use this table to find the least upper bounds satisfied by various variables 

using the values of coefficients for the se variables in the table constructed in 
earlier step and using the obtained bound in the first step by LP relaxation 
solution on the value of parameterd . 

6) We carry out search for the optimal value of parameter d over the range of 
allowed values and determine the optimal solution by comparison of the feasible 
values generated by searching over the finite set of values for variables offered by 
the least upper bound on the values of these variables.  

       
                           We now proceed to illustrate the procedure by examples from [11]: 
              
Example 4.1: Maximize: 21 10xx +−   

                        Subject to: 255 21 ≤+− xx  

                                           242 21 ≤+ xx  

                                             0, 21 ≥xx , and integers. 
Solution: We first find the LP-relaxation optimal value, which is 58.636 for this 
problem. And the complete optimal solution is  
( 2121 ,,, ssxx ) = (8.6364, 6.7273, 0, 0)  

Thus, the upper limit for optimal value for integer program, say .optd , can be 58 .  

Starting with the table (4.5) mentioned above and carrying out the appropriate row-
column transformations we get the following parametric solution: 

du −=1  

253 =u  

244 =u  

21 10udx +−=  

22 ux =  

255 21 ++−= uds  

24212 22 +−= uds  
After rewriting these equations as per the step2 and rearranging them as per step 3 we 
have: 

dux −=− 21 10  

022 =− ux  

255 21 +−=− dus  

24221 22 −−=−− dus  
From these equations we get the following table as per step 4: 
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1x  2x  1s  2s  1u  2u  ii edc +  

1 0 0 0 0 -10 d−  
1 0 0 0 0 -1 0 
0 0 1 0 0 -5 25+− d  
0 0 0 -1 0 -21 242 −− d

 
Using the upper limit on the optimal value, we have 58. == optdd . In order to 

maximize the value of parameter d the value of variable 2u  should be increased as 
much as possible. But, from the last row of table above we see that the maximum 
value that 2u  can take (to maintain nonnegativity of 2s ) is  6., so we put 2u  = 6 and 
see that the optimal solution for the integer program is 

6,5,8,0,55 22121 ====== uxxssd .  
 
Example 4.2: Maximize: 52321 4323 xxxxx ++++  

                        Subject to: 122234 52321 ≤−+−+ xxxxx  

                                           15332 52321 ≤++++ xxxxx  

                                           205223 52321 ≤++++ xxxxx  

                                           25642 52321 ≤++++ xxxxx  

                                                                 3x                      3≤  

                                            All  0,,, 521 ≥xxx L , and integers. 
Solution: As per step 1 in the above algorithm for integer programs, we first find the 
LP-relaxation optimal value, which is 26.20 for this problem. And the complete 
optimal solution is  
( 432154321 ,,,,,,,, ssssxxxxx ) = (4.0723, 0, 3.0041, 1.1146, 0.5100, 0, 0, 0, 
6.6536) 
As per step 2, we find the parametric solution equations, which are: 

du =5  

126 =u  

157 =u  

208 =u  

259 =u  

310 =u  

11 ux =  

22 ux =  

33 ux =  
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44 ux =  

dxxxxx +−−−−= 43215 4323  

12657 43211 ++−−−−= dxxxxs  

152 43212 +−++−= dxxxxs  

2051814812 43213 +−+++= dxxxxs  

25222 43214 +−−+−= dxxxxs  

335 +−= xs  
After rewriting these equations as per the step2 and rearranging them as per step 3 we 
get the following table as per step 4: 
 
                  

1x  2x  3x  4x  5x  1s  2s  3s  4s  5s  ii edc +  

-3 -2 -3 -4 -1 0 0 0 0 0 d−  
-7 -5 -1 -6 0 -1 0 0 0 0 12−− d  
-12 -8 -14 -18 0 0 0 1 0 0 205 +− d
-1 1 -2 1 0 0 1 0 0 0 15+− d  
-1 2 -2 2 0 0 0 0 1 0 25+− d  
0 0 1 0 0 0 0 0 0 1 3 

 
Using the LP relaxation bound on parameter d we can easily determine the least 
upper bound on variables as follows: 

3,6,4,2,5 54321 ≤≤≤≤≤ sxxxx .  
As per step 6, we try and find the following integral solution: 
( 5432154321 ,,,,,,,, sssssxxxxx ) = (3, 0, 3, 2, 0, 2, 0, 4, 4,0), which produces the 

value of d  = 26, which is optimal!  
 
Second Method (Maximization): 
 

1) As is done in previous method we first solve the underlying linear 
programming problem and find the related LP relaxation solution for the 
problem.  

2) As is done in previous method in step 3, we rearrange this new set of 

equations such that all the variables iii usx ,, are on the left side while 

terms like ii edc +  are on the right side of these equations. 

3) Now we process the system of equations to eliminate the parameterd from all 
equations and arrive at a set of Diophantine Equations. 

4) We then form dual problem of given linear programming problem and 
proceed identically to form equation (4.4), table (4.5) and obtain parametric 
solution for the dual problem and as is done in previous method in step 3, we 

rearrange this new set of equations such that all the variables iii usx ,, are 
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on the left side while terms like ii edc +  are on the right side of these 
equations for dual problem. 

5) Now we process this system of equations for dual problem to eliminate the 
parameterd from all equations and arrive at a set of Diophantine Equations. 

6) We now solve this combined system of primal and dual problem and find out 
nonnegative integral solution which produce value closest to LP relaxation 

solution wbxC TT == .  
 
Example 4.3: We consider here the same example above (Example 4.2). After 
rewriting the equations as per step 2 of the second method we get these equations in 
tabular form as follows, where last column represents the right hand side of these 
equations: 
               

1x  2x  3x  4x  5x  1s  2s  3s  4s  5s  ii edc +  

3 2 3 4 1 0 0 0 0 0 d  
7 5 1 6 0 1 0 0 0 0 12+d  

-12 -8 -14 -18 0 0 0 1 0 0 205 +− d
-1 1 -2 1 0 0 1 0 0 0 15+− d  
-1 2 -2 2 0 0 0 0 1 0 25+− d  
0 0 1 0 0 0 0 0 0 1 3 

 
Carrying out the following elementary row transformations, viz, 
(i)  R(3)  R(1)+R(3) 
(ii) R(4)  5R(1) + R(4) 
(iii) R(5)  R(1) + R(5) 
 
rows R(3), R(4), R(5) transform to 
 
               

1x  2x  3x  4x  5x  1s  2s  3s  4s  5s  ii edc +
2 3 1 3 1 0 1 0 0 0 15 
3 2 1 2 5 0 0 1 0 0 20 
2 4 1 6 1 0 0 0 1 0 25 

 
It is easy to check that the integral solution obtained above, viz, 
( 5432154321 ,,,,,,,, sssssxxxxx ) = (3, 0, 3, 2, 0, 2, 0, 4, 4,0) satisfy these 
equations! 
  
5. Conclusion: Condensing of the linear form (to be optimized) into a new parameter 
and developing the appropriate equations containing it is a useful idea. This idea is 
useful not only for linear programs but also for nonlinear as well as integer programs 
and provides new effective ways to deal with these problems.  
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