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Abstract                              
 

      The author discusses the similarity between the expression for the state function of the 

primary eigen gas representing a particle and that of the wave function. It is observed that the 

only difference between these two expressions is that in the former time appears as a real 

function while in the latter it appears as an imaginary function. He shows that the primary 

eigen gas approach which treats time as real and the quantum mechanical approach which 

treats time as imaginary are two ways of representing the same reality and points to a new 

symmetry called the Wick symmetry. He shows that the probability postulate of quantum 

mechanics can be understood in a very simple and natural manner based on the primary eigen 

gas representation of the particle. It is shown that the zero point energy of the quantum 

mechanics is nothing but the energy of the thermal bath formed by the vacuum fluctuations. 

The author shows that the quantum mechanics is nothing but the thermodynamics of the 

primary eigen gas where time has not lost its directional symmetry. 
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1 Introduction 

 

          It was earlier proposed that a particle can be represented by a confined helical wave and 

on imparting a translational velocity, its space dependent part transforms into the amplitude 

wave that gets compacted in to the internal coordinates. Such a compacted wave determines 

the intrinsic properties of the particle like its mass, spin and charge while the time dependent 

part of the confined helical wave can be identified with the plane wave [1],[2][3],[4]. It was 

shown that the plane wave which is the eigen state of the particle in the space-time 

representation may be treated as an primary eigen gas having N microstates or wavelets [5].  

We know that the probability for the primary eigen gas to occupy a state with intensive energy 

𝐸𝑜
′  in the rest frame of reference, is given by [5] 
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where Eo is the rest energy of the particle, N the number of microstates in the primary eigen 

gas state, n the number of primary gas states and θo its temperature. For such a gas the energy 

states lie in a very narrow region (Eo-ΔE) < E'o < (Eo+ΔE) with the action function possessing 

a minimum. In other words, action can be taken as a constant in the narrow region and we may 

express it using the average values of energy and momentum of the particle as 
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        In the plane wave representation of a particle, the state with energy Ei (we shall use the 

energy state instead of the momentum state for convenience) can be expressed by  
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In the rest frame  can be expressed as 
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The above equation has the same form as (2) except for the absence of the factor '2πi' in the 

exponential term. This is quite startling. What does this similarity of the plane wave with the 
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expression for the primary eigen gas mean? Let us go back to the basis of deriving the equation 

for the plane wave and compare it with the derivation of the state function for the primary 

eigen gas in order to explain the similarity between the two functions. 

          We saw that when we examine the concept of a particle from two different approaches, 

we obtain the same function but with one basic difference. In the case of the primary eigen gas 

approach, time appears as real while in the wave function approach, it appears as imaginary. 

Prima facie one may feel that since both functions represent the same system, they should be 

equivalent. However we observe that there are major differences between the two functions. 

The function  (Eo) in (4) is a periodic function representing a wave and its value oscillates as 

time progresses while W(Eo) in (2) is a probability function and the exponential factor on the 

right hand side keeps on decreasing as time progresses. Thus prima facie these two functions 

seem to represent two different realities which are fundamentally irreconcilable. But we shall 

shortly show that these differences can be reconciled. 

          When we talk about the imaginary time, the idea that immediately comes  to one‟s mind 

is Minkowski‟s four-dimensional formalism of the relativistic mechanics where time is treated 

as the fourth coordinate which is imaginary [6]. Here time is taken as an imaginary quantity 

represented by τ = ict. But the problem with this approach is that it treats energy as imaginary 

while momentum is taken as real with the result that the action function which has the 

dimension of the product of energy and time remains real. That is to say, the Boltzmann factor,  

 “exp(-Eoto/h)” in (2) will continue to remain real since both time and energy are treated as 

imaginary. Therefore, treating time as an imaginary fourth-coordinate does not help in 

resolving the problem. 

 

2  More About Real Time and Imaginary Time 

 

          On detailed scrutiny of equations (2) and (4) we observe that the two approaches differ 

in one fundamental aspect. In the case of the plane wave approach, each of the energy 

momentum states is assumed to exist at the same instant. In other words, the wave function 

represents a system where the simultaneous occupation of all energy-momentum states is 

possible. However, the system evolves without collapsing into any one state. On the other 

hand, in the primary eigen gas approach the situation is quite different. Here we had assumed 

that at every instant the system occupies a particular energy-momentum state. This is quite 

different from the approach based on the wave nature of the particle. In the primary eigen gas 

approach, since we took it for granted that the system can occupy only a single energy-

momentum state in one instant, it is equivalent to assuming that the system crystallizes into 

reality at every instant and therefore the primary gas we have been dealing with is a real gas. 

The path which has the maximum probability is the path along which system will progress for 

all practical purposes. The other paths which the system could occupy remain just as the 

probable ones. Let us examine the issue taking a specific example.  

          Let us take the case of a microsystem progressing from point A to point B (figure.1). In 

the wave picture, the particle will evolve along different paths. We know that action will have  
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                                                                                      (a)                                                                       (b)                                                                                                        

                             Imaginary time picture                                                    Real time  picture 
 

                              (a) shows the evolution of the system in the imaginary time. Here all the 

                               paths exist simultaneously. (b ) shows the corresponding picture in the 
                               real time. Here only one path out of many possible ones gets occupied. 
 

                                                                  Figure.1 
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A minimum along the classical path (shown in thick dotted lines)and it will vary only by 

second order along nearby paths. But, for paths which are slightly more removed from the 

classical path, the action changes substantially even for a slight change in the path. Therefore, 

except along the paths close to the classical paths, the amplitude of all other waves become 

zero due to the destructive interference. But close to the classical path, the waves interfere 

constructively making the amplitude of the waves maximum. This does not mean that the 

system collapses into a particular energy-momentum eigen state. 

          In the primary eigen gas approach, the situation is different. Here we assumed that at 

every instant the system occupies a particular energy-momentum state which means that the 

system crystallizes into reality at every instant. In other words, the primary eigen gas is a real 

gas. Note that the probability along the classical path will have a sharp peak along the bold line 

(figure.1-b) because the degeneracy g(E′) increases with extensive energy of the primary eigen 

gas while the Boltzmann‟s factor decreases with it and the sharp peak is obtained along the 

classical path. The probability for the occupation of the other paths will be very small. This 

means that when we take the linear sum of the primary eigen gas states that arrive at B, we end 

up with the classical path which is represented by the thick line in figure 1(b). The particle will 

progress along a single path that has maximum probability. Thus the difference between the 

two approaches can be traced to the state of crystallization of reality. This leads us to conclude 

that the imaginary time applies to the situation when we treat the system as occupying a large 

number of states simultaneously while the real time can be associated with the situation where 

we treat the system as occupying only one state at a time. This means that the wave function is 

nothing but the state function of the primary gas where real time is replaced by the imaginary 

time. This gives us a completely new insight into the nature of wave itself. We shall later see 

that there is a further twist to this argument. 
   

          In the wave representation, all states that can be occupied are occupied simultaneously. 

This raises a very serious problem. How can a particle occupy so many paths at the same time? 

Quantum mechanics tries to resolve the issue by assuming that the particle gets disembodied 

into a wave front and occupy all possible paths. But at the point of observation, the particle is 

assumed to discard the disguise of the disembodied wave front and appears as a localized 

entity. There is no explanation how the particle takes up the disguise of a wave when not 

observed off stage and how it takes on the particulate nature when on stage. But this is the best 

quantum mechanics can offer. But a deeper scrutiny in the light of the discussion in the 

previous paragraphs allows us to interpret the situation differently. Since the same particle 

occupies a large number of paths at the same time, we have to conclude that the states 

occupied cannot be real. The most logical choice is to treat these states along the paths as 

imaginary. We shall shortly show that this is equivalent to treating time as imaginary.  

          In the primary eigen gas picture the particle has the choice to occupy all paths, as shown 

in figure 1(b). But only one particular path can be occupied. All the others remain as potential 

paths. In short, the fundamental difference between the real time and the imaginary time is this. 

In the case of the real time, when the system can evolve along a large number of paths, it 

chooses one particular path. All other paths remain as potential ones which are not occupied. 

In the case of the imaginary time, the system evolves along all possible paths simultaneously. 

The more probable a path is, more often that path is occupied compared to the others. It may 

seem that the primary eigen gas picture is unworkable as it is impossible to observe each 

microstate at every instant of the evolution of the system so that it remains always crystallized 

in reality. In actual situation, the observation may be done at very long intervals only, and in 

between the system may be free to evolve without the intervention by an external observer. In 

that sense, the imaginary time picture which treats the system of a particle as a wave appears to 

be better suited for the job. However, the equivalence of the imaginary time picture and the 

real time picture in terms of the equations (4) and (2) appears to be too good to be discarded 

outright. 

          One may feel that the interference phenomenon is essentially a direct outcome of the 

wave nature which manifests only in the imaginary time. If so it may become impossible to 

explain the interference phenomenon in the primary eigen gas approach and this will come in 
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the way of striking the equivalence between the two approaches. Actually it is possible to 

explain the interference phenomenon in the primary eigen gas picture also. Here we should 

keep in mind that the primary eigen gas picture treats the plane wavelet as the basic entity or 

quantum. Therefore time gets quantized in terms of one period of the wavelet To and the 

progression in time is accounted by “NTo”, where N is the number of wavelets. This means, in 

this approach the sinusoidal structure of the wave gets pushed into the internal space of the 

wavelet. So what we have done here is just a jugglery. Now although we are treating the 

wavelet as the basic unit in the primary eigen gas approach, we have to treat the phase of the 

wavelet as its intrinsic property. Ultimately, the difference between the imaginary time 

approach and the real time approach is that imaginary time treats the wavelet as a wave while 

the real time treats it as a quantum with phase appearing as a property defined in its internal 

space. The problem of the interference phenomenon can be tackled in the primary gas picture 

with this idea of the phase defined in the internal space. We shall discuss the issue of the 

double slit interference in detail in a separate paper.  

 

3  Feynman’s Reverse Time Travel and the Primary Eigen Gas Approach 

 

          Actually there is a simple way to redeem the primary eigen gas approach and put it on 

the same footing as the wave picture. The explanation for this has been around us thanks to the 

genius of Feynman. It is based on the picture of a particle jumping into future and jumping 

back in time [7]. Feynman found that a positron can be taken as an electron traveling backward 

in time. Let us take the world lines for the electron-positron annihilation that results in the 

creation of photons as shown in figure.2. Feynman showed that taking a positron as an electron  
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                      The solid line is the world line of the electron as it goes from (x1,t1) to (xA,tA). 

                        at A(xA,tA) it collides  with  the  positron coming  from  (x2,t2) resulting in the 

                        annihilation of  both, and  emission of  two  photons. This also can be seen as 
                       the electron from 1 going backward in time after interacting with photons at A 
  

                                                            Figure.2 
 

traveling backward in time simplifies the picture substantially. He developed this idea further 

and came up with his path integral formalism which revolutionized the approach to quantum 

electrodynamics.  
 

          We shall now use this basic concept to explain the numerous paths followed by the 

system of a particle in the primary eigen gas picture in its evolution from tA to tB (figure 1). We 

know that in the plane wave representation, the evolution of the system takes place 

simultaneously along all possible paths. But in the primary eigen gas picture the system is 

more localized and can be treated as jumping forward from A to B along a particular path. The 

particle may, then, move back from B to A in a reverse time-travel. The particle may take 

another path similarly and then travel back in time again. In this manner, we can imagine that 

the particle exhausts all possible paths. More probable the path is, more number of times it 

may be traversed compared to others. Note that in this picture we are able to treat evolution 

along each path just as in the case of real time. The system is allowed to occupy only one state 

at a time. It has to jump back to the starting instant (in the reverse real time) to initiate a new 
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path of evolution. Therefore, when we deal with each path, we are able to treat it just like we 

treat it in real time. We may actually call the time in which the primary eigen gas is defined as 

the reversible real time or just the “reversible time” because the system is able to travel back in 

time here. We should keep in mind that this is not the real time which we experience in our 

daily life because there we cannot go back in time. We shall examine the difference between 

these different concepts of time later in a separate section. 

          A detailed study will reveal that even the wave picture also has to take into account the 

reverse time travel by the particle. This is represented by Ψ*. But here, the particle traveling in 

the reverse direction (the anti-particle) is assumed to exist as a shadow of the real particle 

everywhere [4]. Therefore, the need to treat the particle traveling in the reverse direction in 

isolation never arises. However when the probability of observing the particle is to be 

calculated, then Ψ* becomes an essential part of the computation. Therefore, we may say that 

the wave picture and the primary gas picture are two ways of looking at the same process. In 

the wave picture, the system of the particle is assumed to evolve simultaneously along all 

probable paths while the corresponding reverse motion in time is accounted in terms of the 

anti-particle that exist as a shadow particle. On the other hand, in the primary gas approach, the 

particle is assumed to evolve along one path at a time and then travel backward to the starting 

point in time and then again travel forward along another path and back and so on. This means 

that the physical content of both approaches are the same. The difference will be only in the 

interpretation of the process involved. Before we make the equivalence between the two 

approaches to be total there are many other issues which will have to be resolved. For example, 

the property of the interference cannot be explained without invoking the wave nature which is 

an imaginary time property. We shall explain these aspects as we go on. 

          In the primary eigen gas approach, the microstate is assumed to be real as these states 

are assumed to be occupied successively. This makes time real. On the other hand, in the plane 

wave representation, the microstates (wavelets) denoted by N are occupied simultaneously and 

the only way this can be accounted will be by assuming that these states are imaginary ones. 

We shall now modify the definition of the extensive time given in the earlier paper [5] using 

the relation 
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From the above equation it is clear that when we take N to be imaginary, it means that we are 

treating extensive time te to be imaginary. This is the basis behind the quantum superposition. 

This shows that the quantum superposition which emerges from the wave nature is a direct 

consequence of the imaginary nature of time.            

          In the light of this interpretation of imaginary time, we may have a better understanding 

of the confined helical (CH) wave structure of the particle. We saw in the earlier paper [2] that 

a moving particle is represented by a CH wave which may be aligned along any direction, and 

by the process of quantum superposition it is possible to assume that the confinement could 

take place in all possible directions at the same time. In this manner, with the concept of 

imaginary time we are able to retrieve the spatial symmetry of the particle in the rest frame of 

reference. 

         We now notice that along with time, spatial coordinate also has to be treated as 

imaginary. This is because the spatial coordinate is defined by the relation [5] 
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Compare this treatment with the four-dimensional (Euclidian) formalism of the special theory 

of relativity where only the time coordinate is taken as imaginary while the space coordinate is 

treated as real. In the present approach since N is imaginary all extensive quantities become 

imaginary. Needless to say, action and Langrangean also will have to be treated as imaginary. 

 

4  The Wick Symmetry 
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          We know that the concept of Wick rotation where real time is converted into imaginary 

time was introduced as an adhoc procedure to facilitate easy manipulation of certain functions 

in quantum field theory [8]. It is not clear why such an adhoc procedure works, but all the 

same it became an established procedure. We shall now show that this is actually a new 

symmetry and points to the equivalence of the wave and the primary gas representations of a 

particle. Let us now examine the issue of the action-entropy equivalence proposed in the 

earlier paper [5]. Actually, when we study the issue in depth, we observe that there is one 

major difference between action and entropy which is not discussed in that paper. The 

difference is that while action is defined in the imaginary time, entropy is defined in the real 

time. This calls for further clarification. Let us now introduce an operator called Wick‟s 

operator denoted by R


which operates on a function f(u, 2iN) such that 
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This means that operator 𝑅  replaces 2πiN by N wherever it appears. Since t = nNT, we have  
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Note that in the quantum field theory, the Wick rotation operates only on t and converts the 

function “exp(-iħ-1Eoto)” to “exp(-ħ-1Eoto)” and leaves the space coordinates unchanged. On the 

other hand, the Wick operator defined here operates on 2πiN, the number of microstates with 

the result that it rotates time and spatial coordinates at the same time. This difference does not 

affect the computational aspects as one can always transform the system to the proper frame of 

reference where the action function is free of the spatial coordinates. This may provide the 

theoretical justification why Wick rotation works. Note that we may define a reverse Wick 

operator such that 
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          Let us write now the amplitude of the plane wave in a more general form without 

altering its basic properties as 
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Note that the exponential factor in this equation will always be unity as N and n can take only 

integral values. Therefore, the introduction of the exponential factor in the right hand side of 

(9) does not alter B in any way. Let us now apply the Wick‟s operator in (4) to obtain 
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          Here while the first exponential function increases with nN, the second one decrease 

with nN with the result that we obtain a sharp maximum for the probability function. Thus, for 

large values of nN, all possible primary eigen gas states crowd around the average value of the 

internal energy. Since we know [5] that to = nNTo =  nNh/Kθo, taking  Bi e 
nN

 = gi , (10) may be 

expressed as 
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This shows that the plane wave state on undergoing Wick rotation becomes the state function 

of the primary eigen gas. When viewed from a moving frame of reference, (11) will become 
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          We have to now understand what the implication is of Wick‟s operator Ř on i*. Since 

the operation of Ř on i yields the probability function for the forward evolution, on the same 

logic, operation of Ř on i* should yield the probability function for the reverse evolution 

(reverse jump) in time. 
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Here Bi exp(-nN) = gi 
c
 , is the degeneracy of the state and Wi 

c
 represents the probability density 

function when nN takes negative values. Note that we have assumed Bi is a real function so that 

Bi
*
 = Bi. On first scrutiny, the function on the right hand side of (13) appears unsuitable to 

represent a probability function as the Boltzmann‟s factor “exp[nNEo/Kθo]” is a divergent 

function and will keep on increasing as nN increases. Note that this function represents the 

reverse time evolution of the system. But here we should remember that correspondingly the 

exponential factor constituting the degeneracy denoted by “𝐵𝑖𝑒
−𝑛𝑁  ” keeps on decreasing. 

Now the net result is similar to what we obtained when time evolved in the positive direction. 

There the Boltzmann‟s function given by “ 𝑒−𝑛𝑁𝐸𝑜/𝐾𝑜  ” was decreasing with nN while the 

degeneracy factor  “𝐵𝑖𝑒
𝑛𝑁

 ” was increasing correspondingly. In the case of the reverse time 

evolution, only the roles of the Boltzmann‟s factor and the degeneracy factor are interchanged.  

The net result remains unchanged. In fact, the situation described here is similar to a system 

having negative temperature. 

          The concept of the negative temperature is quite well understood in thermodynamics [9]. 

The best example of the negative temperature is obtained when the external field acting on a 

paramagnetic material is reversed. In this situation, the system exists in a state of maximum 

energy. Suppose initially all the molecules in the paramagnetic material were aligned in the 

direction of the external magnetic field. Now on reversal of the magnetic field, the state of the 

maximum energy of the material possesses only one way of arranging the molecules among 

themselves, treating them as indistinguishable. But for slightly lower energy, the number of 

ways of the arrangement of the molecules increases. In other words, the degeneracy increases 

as energy decreases. In the case of an ideal gas, we know that  
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But in the case of a system under negative temperature 
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We know that the entropy S depends on the level of randomness of the system. In the case of   

the system under negative temperature, the degree of randomness decreases as temperature 

increases. When we take n to be negative as is the case in (13), we end up getting a system 

having negative temperature. Therefore, the function on the right hand side of (13) is a well 

defined function and is well suited as a probability density function. 

          Now we can afford a guess that the quantum mechanical systems can be understood in 

terms of the thermodynamics of the primary eigen gas. This means that when we replace 2πiN 

in the quantum theory by N, then for each law in quantum mechanics we may have an 

equivalent law in thermodynamics so that the physical reality remains unchanged. In other 

words, for every law which determines the dynamics of a particle in the imaginary time, there 

should be an equivalent law in the real time. We shall first of all take the case of action in the 

imaginary time. Action is the most important function because we can derive the entire 

dynamical equations of classical and relativistic mechanics using the least action principle. We 

are already familiar with the equivalence of action to entropy from the earlier paper [5]. We 

see that the least action principle can be directly related to the second law of thermodynamics 

which is based on the maximization of entropy. In other words, Fermat‟s principle of least 
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action is nothing but a restatement of the second law of thermodynamics. We shall establish 

this equivalence of quantum mechanics to thermodynamics of the primary eigen gas in more 

detail in the following sections. Before that, we should have a clear concept of the various 

aspects of time as we know it. 

          Here we have to keep in mind that the localization of a particle which is easily 

understood in the wave picture in terms of the superposition of a group of waves is not easily 

explained in the primary eigen gas approach. This is because the interference is a purely 

imaginary time phenomenon and cannot be explained in the real time of the primary Eigen gas. 

Therefore, it amy seem that the primary Eigen gas has no option but to be spread in space over 

N number of successive plane wavelets. We shall resolve this issue in a separate paper when 

the probability postulate will be interpreted in terms of the primary eigen gas. 

 

5   The Imaginary Time, Reversible time and the Progressive Time 

 

          Before we proceed further with our investigation it is necessary to have a clear 

understanding of what is meant by the imaginary time, reversible time and the progressive time 

that we experience by our senses. We already saw that when a particle occupies microstates 

simultaneously, these states have to be treated as imaginary. This results in time and space 

acquiring imaginary nature. In such an approach, a particle will be represented by a plane 

wave. When we transformed the wave function of a particle by the Wick‟s operator, R


 we 

obtained a probability function. In this picture, various paths of progression of a particle are 

occupied successively one at a time. But, since the system is able to jump back in time in such 

an approach, ultimately all paths get occupied simultaneously. In other words, the end results 

of using the wave picture and the primary eigen gas picture are the same. But since only one 

path is occupied in the primary eigen gas approach in one channel of progression, notionally it 

can be treated as a real time process. The probability function gives only the density of 

occupation of the states. Since the particle is able to jump forward and backward in time with 

equal felicity, primary eigen gas picture may also be called the reversible time picture. 

          In our everyday experience, a reverse jump in time is not possible. For example, when 

we throw a dice, we obtain only one outcome at a time. Other outcomes will occur when the 

experiment is repeated. In other words, the other outcomes cannot occur simultaneously. They 

can occur successively. Therefore, the reversible time obtained by the operation of R


 on the 

imaginary time is not the time with which we are familiar in our experiences with our senses. It 

pertains to a different category altogether. Actually reversible time is so named because the 

system can occupy all possible paths successively only if it can jump back in time and again 

start the forward jump again. This is the only way the system can occupy all possible paths. 

We know that such a picture has already been introduced by Feynman who created a whole 

new formalism based on it. This is a very important property which will help us to differentiate 

the reversible time from the progressive time.  
 

          One may feel that the interference phenomenon is essentially a direct outcome of the 

wave nature which manifests only in the imaginary time. If so it may become impossible to 

explain the interference phenomenon in the primary eigen gas approach and this will come in 

the way of striking the equivalence between the two approaches. Actually it is possible to 

explain the interference phenomenon in the primary gas or reversible real time picture. Here 

we should keep in mind that the primary gas picture treats the plane wavelet as the basic entity 

or the quantum. Therefore time gets quantized in terms of one period of the wavelet T and the 

progression in time is accounted by “NT”, where N is the number of wavelets. This means, in 

this approach the sinusoidal structure of the wave gets pushed into the internal space of the 

wavelet. So what we have done here is just a jugglery. Now although we are treating the 

wavelet as the basic unit in the primary gas approach, we have to attribute phase as an intrinsic 

property of the wavelet. Ultimately, the difference between the imaginary time approach and 

the reversible time approach is that imaginary time treats the wavelet as a wave while the 

reversible time treats it as a quantum with phase appearing as a property defined in its internal 

space.  The problem of the interference phenomenon could be tackled in the primary gas 
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picture with this idea of the phase defined in the internal space. We shall discuss the issue of 

the double slit interference in detail in a separate paper.  

          Time as we experience in our daily life is the progressive time. Time progression and the 

increase in entropy are two sides of the same coin. For example, if we play backwards a very 

short video recording of the collisions of the billiard balls on a billiards table during a short 

time interval, then their motion will appear as natural. This is because the laws of mechanics 

are invariant to time reversal. Actually, this invariance is an idealization. The progressive 

nature of time will leave its imprint to some extent, even if the time interval involved is  not 

too small. For example, in the experiment with the billiard balls, if we play back the video 

recordings for slightly longer duration, we will observe that the balls which were standing 

stationary start moving by themselves and gain momentum. Balls may even pop up from the 

pockets and come into play on the board. This may appear quite absurd and against the laws of 

mechanics. This is the reason why we have to segregate time into two categories. The time in 

which the mechanical laws operate and the time which we perceive in our day to day 

experience. The time which we experience in our day today experience may be called the 

progressive time. In this time, entropy keeps on increasing. In fact, we may use the increase in 

entropy as a marker to measure the progression of time. 

          We should keep in mind that all those states which remain as probable for occupation in 

the progressive time actually get occupied in the reversible time and the imaginary time. The 

probability function only gives the frequency of occupation, or to be more specific, the density 

of occupation of a certain states. Here we may compare the picture that emerges from the 

imaginary time with that of the reversible time. We saw that in the imaginary time, a particle 

has to be described in terms of a group of waves progressing in time along all paths. Or in 

other words, we have to use the wave picture to describe the particle. On the other hand, when 

we use the reversible time, we describe the particle in terms of the primary eigen gas which 

occupy states successively by traveling forward and backward in time along all possible 

pathways. In the wave picture, there is no need to imagine the forward and backward jumps. 

The square of the amplitude of the wave represents its energy density and therefore it is 

identified with the particle density or the probability density for observing the particle. In the 

case of the reversible time and the progressive time which are both defined in the real time, the 

common feature is that the primary gas states are occupied successively. This means that only 

one state is occupied at one instant. It is a different issue that in the case of the reversible time, 

by the process of reverse jump in time the system is able to occupy all possible states at the 

same instant. 

          In the progressive time, time gains the directional property and because of this property 

it is no more possible to jump back in time. In that sense, the progressive time picture is 

identical with the primary eigen gas picture provided the reverse jumps in time are disallowed. 

Note that in the imaginary time picture, the particle disembodies into a large number of waves 

and they get back the particulate nature only at the instant of observation. This sudden change 

has been one of the most discussed topics in quantum mechanics and known as the collapse of 

the wave function. It is also the least understood. One advantage of the reversible time picture 

over the imaginary time picture is that we do not have to disembody the particle and therefore, 

there is no sudden change to the structure of the particle at the time of observation. But then 

we have to pay a price by way of allowing the reversible jumps in time. Actually, the concept 

of the reverse jump exists in the wave picture also. In fact, when we take the complex 

conjugate of the wave function, Ψ*, we are dealing with a wave which is travelling backwards 

in time. But in the wave picture, Ψ* represent the anti-particle which is assumed to exist as a 

shadow of the real particle. This shows that the Wick rotation has not created anything new. It 

only changed the method of accounting the states. In the wave picture, the forward and the 

reverse waves are taken together, the reverse wave being treated as a shadow of the forward 

wave. Therefore, when the system evolves, it evolves along all possible paths simultaneously. 

In the primary gas approach, the forward jumps and the reverse jumps are segregated and 

accounted separately. Of course, there is one more difference in that time is quantized in the 

reversible time picture with the quantum of time being period of the plane wave. 
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          The problem we face in taking the increase in the entropy as a marker for the progressive 

time is that we do not have a process which can be taken as a norm for the purpose on hand. If 

we take the case of a billiard ball rolling over the surface and coming to a standstill, then we 

know that the kinetic energy of the ball is converted into heat energy due to friction. If we 

denote the increase in the heat energy by dq and the temperature of the board as θ, then the 

increase in entropy in the slowing down of the billiards ball will be dq/θ. But this creation of 

heat depends on so many factors that it becomes virtually impossible to use it as a norm to 

measure the progression of time. But we know that the rest mass can be taken as a measure of 

the internal heat of the particle [5]. Therefore, it is logical to conclude that the progressive time 

should be in some way related to the most basic process which results in the creation of the rest 

mass of a particle. We shall study the relationship of the rest mass with the progressive time in 

a separate paper and show how gravitation and the progressive time and the expansion of the 

universe are all the outcome of the same basic process which causes the rest mass of the 

particles to increase.  

          The Wick symmetry shows that it is possible to study the evolution of a micro-system 

either in the imaginary time in which case quantum mechanical laws will apply or in the 

reversible time in which case the laws of thermodynamics will apply. This means that apart 

from the canonical approach and the path integral approach we have a third option in the 

primary eigen gas approach to study the quantum behavior. It is well known that the path 

integral formalism is eminently suited to solve the problems of quantum electrodynamics while 

the canonical approach has its own high points. In a similar manner, the primary eigen gas 

approach may be ideally suited to resolve some of the conceptual problems of quantum 

mechanics and quantum field theory. We shall examine these aspects as we go on. 

          Here it is interesting to note that Feynman had used the basic idea of replacing „t‟ by     

„-iħ/Kθ‟ to interpret the path integral formalism on the basis of statistical mechanics [10]. He 

obtained the value of the density matrix ρ which is the sum of all contributions from each 

motion, considering all possible paths, or motions, by which the system could travel between 

the initial configuration in time to  t =  ħ/Kθ  as 
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Here u is a parameter having the dimension of time and Dx(u) relates to the individual path 

taken. He comments about the above result in following words. “ This is very amusing result, 

because it gives the complete statistical behavior of a quantum-mechanical system as a path 

integral without the appearance of the ubiquitous i so characteristic of quantum mechanics. 

This path integral (in reversible time) is much easier to work with and visualize than the 

complex integrals which we have studied previously. Here it is easy to see why some paths 

contribute very little to the integral; for there are paths for which the exponential is very large 

and thus the integrand is negligibly small. Further more, it is not necessary to think about 

whether or not nearby paths cancel each other‟s contributions, since in the present case all 

contributions add together with some being large and others small.”  

          We can interpret the mathematics behind the equation given in (16) as follows. The 

number of paths that can be taken by a system Dx(u) to move from a point A to another point 

B in a certain time interval will increase as the energy of the system increases. Note that the 

particle may take all circuitous paths and still make it to point B from A in the given time if it 

travels faster in the intervening period. But these paths would belong to states of higher energy 

and momentum. But for the higher energy states, the exponential term within the bracket on 

the right hand side in (16) will have a lower value. Thus we observe that while Dx(u) increases 

with energy, the exponential term would decrease with the increase in energy. In fact, the 

integral will have a maximum along the classical path. We know this is exactly what happens 

in the primary eigen gas approach provided we take Dx(u) as representing the degeneracy g.  

       Actually, the path obtained in the primary Eigen gas (reversible real time) approach may 

not be as sharp as the one obtained by the imaginary time approach. To that extent the 

equivalence between the two approaches may be inexact. In the case of the imaginary time, the 
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amplitudes for all other paths get destroyed completely leaving us with only the classical path. 

In the case of the reversible time approach, there is no destruction of the degeneracy of paths. 

This introduces differences between the two approaches. A deeper analysis of the problem 

shows that this difference can be reconciled if we keep in our mind that in the reversible time a 

plane wavelet is taken as the basic unit and therefore, the phase of the wave gets compacted 

into the internal coordinates. Therefore, when two micro-states plane wavelets) of the primary 

Eigen gas occupy the same region in space, the interference phenomena would kick in and the 

result will be exactly the same as what we obtain the case of the imaginary time approach.  

      The imaginary time approach does not bring out in a simple manner the exponential 

decrease in the amplitude of the paths as they move away from the classical one. Such an 

exponential decrease in the degeneracy in the states representing the paths as they move away 

from the classical path is very clear in the primary Eigen gas approach. This shows that the 

imaginary time approach and the reversible time approach are essentially two self-consistent 

ways of looking at the same basic reality.         

6  The Probability Postulate and the Wick Symmetry 

 

         We know that quantum theory deals with probability of observing a particle in given 

state and does not deal with the path of progression of the particle. On the other hand, 

Feynman‟s path integral formalism (see Annexure) is based on the idea that the particle 

evolves along various paths. Of course, instead of the particle, it is the probability amplitude 

which is assumed to evolve along various paths. This is similar to the primary eigen gas 

approach where each path of evolution is taken in isolation. The only difference is that path 

integral formalism treats time as imaginary. This is to say that it accounts for the phase of the 

wavelet in the laboratory coordinate system itself without compacting it into its internal space. 

But for this, the two approaches are similar, making it possible to use the tools of path integral 

formalism in the other one. We shall now re-examine Feynman‟s approach to the probability 

postulate in the light of the forward and reverse evolution in time. Keeping this purpose in 

view we shall take up the special case of the evolution of a system from the initially observed 

eigen state (xa,ta) to the final state (xb ,tb ) where tb > ta. Note that the eigen state represented by 

a plane wave in the wave picture will become the primary eigen gas state in the reversible real 

time approach. Since the wave function Ψ(xb ,tb) by definition represents the total amplitude 

arriving at the point (xb,tb), in the case on hand it will represent only the amplitude arriving at 

(xb ,tb) from just (xa,ta). In other words, 
 

                                           ),;,(),( aabbbb txtxKtx    .                                (17) 

 

where K(xb,tb; xa,ta ) denotes the probability arriving at the space-time point (xb ,tb) from (xa,ta). 

Similarly, taking the complex conjugate, we obtain   
 

                                        ),;,(*),(* aabbbb txtxKtx                                 (18) 

 

Here Ψ* represents the probability amplitude for the system to devolve from the state (xb ,tb) to 

the earlier state (xa,ta). Thus the function Ψ*Ψ represents the probability amplitude for  
 

                                                                         (x1,tb)                                             

                                                                         (x2,tb) 

                                    (xa,ta)                          (x3,tb) 

                                                                        (x4,tb)  

                                                                         (x5,tb) 
 

                                                                 The figure shows the evolution of the system from a single initial state at 
                           instant ta to a large number of states at a subsequent instant tb  and back. 
 

                                                               Figure.3 
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evolving from the state (xa,ta) to the state (xb,tb) and then back to the state (xa,ta). Note that we 

have taken only (xa,ta) as fixed while (xb,tb) stands for a large number of states as shown in 

figure.3. Therefore, when the system evolves from (xa,ta) to the states denoted by (xb,tb), it  

takes place along a number of paths. We may say that in any observation at the instant tb, the 

system may be caught in any one of the (say) five paths as shown in figure 3. Since the system 

will be in any one of the five paths at the instant tb, we may take the probability for the system 

to be in the first path to be 
 

                                 ),(),(*),( 111 bbb txtxtxP                                       (19) 

 

provided we take Ψ as normalized such that Σ Ψ*(xb,tb) Ψ(xb,tb) = 1. Here we have taken the 

initial state (xa,ta) to be the eigen state which is given. Actually, the entire chain of reasoning 

will hold good even if the initial state (xa,ta) is not a single eigen state but a large number of 

eigen states. This means that the system is not observed in any particular eigen state at the 

instant tA but retains its potential to occupy a large number of eigen states.  

          The arguments put forward in the case of the path integral formalism can be extended to 

the case of the eigen gas approach without any problem. We have to use the probability 

function W(xb,tb) instead of Ψ(xb,tb). In that case (17) and (18) will become 
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where K̂ is the real time equivalent of K and cK̂  that of K*. The path of evolution will be 

exactly as shown in figure 3 except that these paths will represent the frequency of occupation 

rather than the probability amplitude. Ultimately both imply the same. The probability for the 

system to occupy the first path in figure 3 will be given by 
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          The evolution of the quantum mechanical system into future and back may appear quite 

absurd, but then we should keep in mind that in the microcosm, time has not lost its directional 

symmetry unlike in the case the macroscopic world. As a result, the system may evolve into 

future and back to the present and again into future and so on. In other words, in the imaginary 

time or reversible time, a particle can be in many places simultaneously. However, when the 

system comes into contact by way of an observation with the macroscopic world which exists 

in the progressive time, it will be caught in one of the possible locations. This is because in the 

progressive time, a particle can be only in one place at an instant. One may say that the 

observation is a process by which a micro-system shifts from the imaginary time to the 

progressive time. Note that if the micro-system were to evolve in the progressive time, then it 

has to be under continuous observation. Therefore, the probability to occupy the state (x2,tb) 

will be given by the probability to jump from (xa,ta) to (x2,tb) only. There is no possibility of a 

reverse jump here. On the other hand, in the imaginary time, we have to take both forward and 

the reverse jumps to arrive at the probability to occupy the state (x2,tb). Thus the basis of the 

probability postulate can be traced to the fact that a micro-system exists in a time with its 

reversibility or directional symmetry intact.  

          We shall now try to find out what is the quantity which is conserved in the Wick 

symmetry. We know that if the Wick symmetry is a universal symmetry, then there should be 

an invariant property of the system associated with this symmetry. It appears that the 

probability density is the quantity which remains invariant in the Wick rotation. Let us apply  

Wick‟s operator on the wave function to yield 

 

                       
ii

c

iiii PWWRPR  ][ *


                            (23) 

 



[13] 
 

But from (13) we know that KsNnnN

i

c

i eeBW

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Note that Wi 

denotes the probability of the primary eigen gas which progresses in time while 𝑊𝑖
𝑐  denote the 

probability for regression in time. From the above analysis it is obvious that the probability 

density Pi is conserved in the Wick rotation provided Bi is taken as real. In other words, we may 

take the conserved quantity connected with the Wick symmetry to be the probability density. 

 

7  Zero Point energy as the thermal energy of vacuum fluctuations 

 

          We shall now investigate the concept of the zero point energy of quantum mechanics 

and look out for the equivalent law in the reversible time. According to Quantum Mechanics, 

vacuum is taken as zero energy state or the ground state. This does not disallow the existence 

of fluctuations in the energy and momentum of the vacuum state. We know that the CH wave 

is created by its interactions with the vacuum fluctuations [4]. Note that this CH wave is in 

thermal equilibrium with the vacuum fluctuations. In other words, the vacuum fluctuations act 

like a thermal bath and the energy of the particle is equal to the energy of the vacuum 

fluctuations confining it. Here we should keep in mind that a CH wave has two degrees of 

freedom, one is due to the oscillations in one plane and the other is on account of spin [2]. 

Therefore, for one degree of freedom, we have  
 

                                                      hE
2
1                                                         (24) 

 

And if we take the both degrees of freedom, we obtain      

  

                                                     hE                                                              (25)                                           

 

This is the energy of the vacuum fluctuations which confines the helical wave resulting in the 

formation of the particle.  

          We should keep in mind that if the vacuum fluctuations interacting with the CH wave 

did not have the same energy, then it would have lost out its energy to the vacuum and faded 

away. But since the CH wave is in equilibrium with the vacuum fluctuations, we should 

assume that the rest energy of the particle and the energy of the vacuum fluctuations are 

perfectly matched. But we have νo = 1/Teo, where Teo is the period of oscillations of the CH 

wave. Therefore, we have 
 

                                                   
eoo ThE                                                          (26)                                       

   

But Teo, which is the intrinsic time of the particle in its rest frame of reference is related to the 

temperature of the primary eigen gas by the relation Teo = h/Ko [5]. Therefore, we have 

 

                                                   
oo KE                                                            (27)   

 

This result makes sense because the CH wave has got two degrees of freedom and we know 

that the thermal energy for unit degree of freedom is given by Kθo. In other words the zero 

point energy is nothing but the energy of the vacuum fluctuations acting as a thermal bath. 

          In the light of equation (27) let us examine the action function of a free particle 

expressed in terms of the extensive time of the particle given by 

 

                                            
ooee tExEt  )þ(                                             (28)    

  

Let us replace the extensive space and time coordinates in the above equation by the intrinsic 

coordinates (given by  te = nNTe  and xe = nNXe) to obtain 
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But using (26), the above equation can be written as 
 

                                 hEhEXET ooee  /)þ(                           (30) 
   

This shows that whatever be the nature of particle, the intrinsic action is a universal constant 

denoted by h. Therefore  

 

                             hTEnNhtEhA eoooo         

 

                                                                nN                                                    (31)       

 

But since    KShA # ,    we have nNKS # .                  (32) 

 

8  Conclusion 
 

          In view of what is discussed above it is quite obvious that quantum mechanics is nothing 

but the thermodynamics of the primary eigen gas that exists in the reversible time. In the next 

paper, we shall examine each of the postulates of quantum mechanics and show how it 

conforms to the primary eigen gas approach. We shall also show how the localization of the 

particle and the results of Young‟s double slit experiment can be explained in the primary 

eigen gas approach. We already saw here how the probability postulate has its origin in the 

reversibility of time. The idea that an elementary particle is in thermodynamic equilibrium 

with the vacuum fluctuations provides us with a simple picture of the inner structure of the 

elementary particle and in a sense takes us to the concept that all elementary particles as some 

sort of vortices created by electromagnetic and other composite waves. Descartes was not too 

much of the mark! But we are still far from understanding why only certain rest energies are 

allowed for the particles. Could it be understood in terms of the relative strengths of the basic 

fields?   

          When we examine Feynman‟s path integral formalism, it is quite surprising to note that 

how close he came to the real time approach. He even arrived at the similarity between the 

imaginary time approach and the real time approach as discussed in section 4. He had already 

introduced the concept of the forward jump in time and the reverse jump in time. The only 

reason why he couldn‟t arrive at the Wick symmetry may be traced to the fact that he couldn‟t 

think up the concept of the primary eigen gas. His mind was too busy solving the problems of 

quantum electrodynamics using the newly discovered path integral formalism.  

          It is interesting to examine the emergence of the space-time from the interactions of the 

particles with the vacuum fluctuations. Remember that these interactions are undergone by all 

particles and the universal nature of these interactions is the basis behind the perception of a 

universal background of time and space. By the same reasoning, we may attribute space-time 

for other short range interactions. But the only problem is that such a space-time would not 

form a continuum. We will have to treat them as space-time which gets compacted and warped 

into itself. It is worthwhile to note that string theory uses the concept of 10 dimensional space 

where the higher dimensions get warped and compacted into infinitesimally small regions [12].  
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Annexure 
 

Feynman’s Path Integral Formalism 

 

          Before attempting to understand the basis of the probability postulate, it is necessary to 

go through Feynman‟s path integral formalism briefly. The path integral formalism is a 

completely new way of looking at the quantum phenomena. In Feynman‟s approach, a particle 

evolves from one point in space-time to another along various paths and each path may be 

associated with certain probability amplitude [11]. According to Feynman if φ[x(t)] is the 

probability amplitude for a particle to reach a point (xb,tb) from point (xa,ta) along a particular 

path defined by x(t), then 

 

                                           )]([),( txabK                                                    (I) 

 

where K(b,a) is the probability amplitude for the particle to move from (xa,ta) to (xb,tb). The 

summation means that all paths from (xa,ta) to (xb,tb) contributes to the probability amplitude. 

On the other hand the probability for the same movement is given by 
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The interesting aspect of these paths is that the adjacent ones vary substantially in phase 

because a change as low as h can alter the phase by 2π. So ultimately all amplitudes cancel 

each other out except those, which lie very close to the path having least action. Here, a small 

change in the path creates changes in the phase only in the second order. So the classical path 

gets maximum amplitude and becomes the observable path. Therefore, in the classical limit 
. 
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Based on this simple line of reasoning, Feynman shows that 

 

                                          cdxacKcbKabK ),(),().(                              (IV) 

 

where (xc,tc) is a point lying between (xa,ta) and (xb.tb). Equation (IV) represents a basic 

property of the probability amplitude. A wave function by definition represents the total 

amplitude arriving at the point (x,t). It does not specify the previous state from which it is 

coming. In other words, a wave function does not give any information about the past history 

of the particle or system. If a system is in the initial state with coordinates (xa,ta) which is not 

fixed, the wave function for the state (xb,tb) will be given by 
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                              aaaaabbbb dxtxtxtxKtx ),(),;,().(                        (V)                                                                           

 

In other words, the wave function ψ(xb,tb) which is the total amplitude to arrive at (xb,tb) is the 

sum of or integral over all amplitudes from all possible points (xa,ta) which are prior to (xb,tb). 

Note that ta < tb. If ta > tb, then it is tantamount to assuming that future events are affecting the 

present which is not acceptable. 

          Now we shall try to express the amplitude K(xb,tb; xa, ta) in terms of the state functions at 

b and a. We know from equation (V) that ψ*(xb,tb) can be expressed as 

 

                      aaaaabbbb xdtxtxtxKtx ),(*),;,(*).(*                     (VI)                                                                           

 

It is implicit here that the integral sign represents integration over the region from - to + . 

Now post multiplying both sides of (VI) by ψ(xb,tb) dxb and integrating, we have 
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This represents the conservation of the probability. For this relation to hold good for arbitrary 

values of Ψ, we must have 
 
 

                      )(),;,(),;,(* aabaaabbaabb xxdxxdtxtxKtxtxK              (VIII) 

   

That is, in order to interpret  as probability amplitude, the kernel must satisfy equation (VIII). 

To know what K*(xb,tb; xa',ta) stands for let us multiply (VIII) by K(xa,ta; xc,tc) and integrate 

over xa, to obtain 
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                     ),;,(),;,(),;,(* ccaabccbbaabb txtxKdxtxtxKtxtxK                      

     

Note that the underlying assumption here is that tb > ta > tc. Replacing (x′a,ta) by (xa,ta), we 

obtain 

 

                        ),;,(),;,(),;,(* ccaabccbbaabb txtxKdxtxtxKtxtxK               (IX)               

 

Keeping in mind that the above relation holds good only if  tb >  ta  > tc , let us compare it with 

the following equation based on the property given by (IV) 

 

                        ),;,(),;,(),;,( ccaabccbbbbaa txtxKdxtxtxKtxtxK                 (X) 

 

where ta > tb > tc. The process behind the second relation can be explained as follows. Starting 

from at tc , K(xb ,tb; xc,tc) gives us the amplitude at a later time tb. If we still want to go to a later 

time ta, we may do so using the kernel K(xa,ta;xb,tb). On the other hand, if having the amplitude 

at tb, we want to work back to find it at an earlier time ta < tb, we may do this using the 

function K*(xb,tb; xa,ta). In other words, K*(xb,tb; xa,ta) is undoing the work of K(xa,ta; xb,tb). 

Another way of looking at this is that while K(xa,ta; xb,tb) stands for movement of amplitude in 

the direction of the time evolution which is from tb to ta where ta > tb, K*(xb,tb; xa,ta) represents 

movement of amplitude going back in time from tb to ta where tb > ta. This means that ψ*(xb,tb) 

given by 
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represents the total amplitude going back from the states (xb,tb) to (xa,ta). To put things in 

proper perspective, while ψ(xb,tb) represents the probability to arrive at the state (xb,tb) from all 

past states, ψ*(xb,tb) represents the probability to go back from (xb,tb) to all past states. Thus we 

may state that while Ψ(xb,tb) represents the probability amplitude for evolving from the past 

states to the state (xb,tb), Ψ*(xb,tb) represents the probability amplitude to go back in time to the 

past states from the state (xb,tb). We shall see that this interpretation is ideally suited for the 

proposed idea of the Wick symmetry.  

          If n represents a set of eigen functions which are orthogonal to each other, and En the set 

of eigen values of energy, then we know that the state function can be expanded as 
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If we now take two points in space time (y,t1) and (x,t2) where  t2 > t1, then it can be easily 

shown that 
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n(y) represents the n
th

 eigen states of the wave function at the point (y,t1). It is possible to 

express the eigen functions as 
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With this expression for n(x), we may write (XIII) as             
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for t2 > t1. Let us suppose that the states denoted by En and þn are lying very close so that we 

may take the distribution as a continuous one. Let us now denote by x and y the four vector 

space-time coordinates and by þ the four vector energy momentum coordinates. Now for 

notational convenience we may switch over to the natural units where ħ = 1 and c = 1. In that 

case (XV) becomes 
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The constant (1/2π)
4

  has been introduced for normalizing purpose. It is quite obvious that in a 

field free situation K(x,y) should be equal to δ(x-y) because that is the only way that ψ(x) will 

retain the same form as ψ(y) as the system moves from y to x. This is possible only if |φ(y)| 

does not dependent on þ.  
 

          In quantum field theory K(x,y) is called the propagator and is denoted by G (x-x′ ). It is 

worthwhile to note that the propagator depends only on the interval in the coordinates, which is 

(x-x′) and the notation brings this out explicitly. In the general case, equation (XVI) may be 

written as 
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Note that G(þ) will change according to the field acting on the system. The wave function is 

nothing but the sum total of all such eigen states weighted with their amplitudes. We see from 

(XVII) that the weightage factor G(þ) remains unity if the field acting is zero. But when a field 
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acts on the system, in the journey from x to x′, the weightage factor for each eigen state of þ 

undergoes a change due to the action of G(þ) and thus the wave function gets altered.  

          In Feynman‟s approach Ψ(xb,tb) represents the sum of the probability amplitude reaching 

the state (xb,tb) from the past, while ψ*(xb,tb) represents the sum of all amplitudes starting from 

the state (xb,tb) and going back to the past. This sort of an interpretation is in-built in the 

Feynman‟s picture. Such an interpretation means that evolution of a system backward in time 

is equally possible and therefore one may treat forward and backward evolution in time 

symmetrically. But in real world, time progresses only in one direction. This may be the reason 

why Feynman never attempted to seek an alternate interpretation for the probability postulate 

based on his path integral formalism. 

 


