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Abstract  It is a historical accident that we describe Pauli matrices as (2 x 2) matrices and Dirac matrices as 

(4 x 4) matrices. As it will be shown in this paper we can use (3 x 3) matrices or (9 x 9) matrices for this 

purpose as well. This hopefully will enable us one day to construct a unified geometric algebra picture 

which includes Gell-Mann matrices in an appropriate manner. 
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I.  INTRODUCTION 

In mathematical physics we have to deal with two different 
mathematical concepts which describe physical phenomena. 
First, the physics of quarks is described by the matrices of 
Gell-Mann. These matrices are (3 x 3) matrices. 

But quarks exist (as everything else we have to deal with in 
our world) in spacetime. This is the second concept. Euclidean 
space is described by Pauli matrices in geometric algebra. 
These matrices are (2 x 2) matrices. And spacetime of special 
relativity is described by Dirac matrices [1], [2], [3], [4]. These 
matrices can be identified with space-like and time-like base 
vectors [5] and are (4 x 4) matrices. 

To find a unified geometric and algebraic picture which 
embraces both mathematical concepts, it makes sense to for-
mulate both concepts on an equal footing. But to do this two 
different strategies can be followed: First, it can be tried to 
transfer Gell-Mann matrices into the mathematical language of 
standard geometric algebra, which uses (4 x 4) matrices, see 
[6], [7]. Or Pauli and Dirac matrices can be tried to translate 
into ternary (3 x 3) or (9 x 9) matrices. In this paper, this last 
strategy is followed. 

II. PAULI MATRICES AND DIRAC MATRICES 

According to [5, p. 44] Pauli matrices are usually expressed 
in standard notation as 

 x  = 








01

10
 

 y  = 






 

0i

i0
 

 z  = 








10

01
 

With the help of the direct product of Zehfuss and Kro-
necker [8], [9, chap. 11] the Dirac matrices [4, p. 278, eq. 8.67] 
can be constructed in the following way: 

 t  =  z  1  =  – (xy)  (xyz) 

 v  =  x  1  =  – (yz)  (xyz) 

 x  = – (zx)  x  =  –y  (yz) 

 y  =  – (zx)  y  =  –y  (zx) 

 z  =  – (zx)  z  = – y  (xy) 
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Please note that the time-like base vector v of eq. (5) can 
be interpreted as a vector pointing into a fifth independent di-
mension. For example this dimension can be thought of being 
the velocity dimension [10], [11] of Carmeli’s spacetimevelo-
city world of cosmological special relativity [12], [13], [14]. 

Thus these orthogonal base vectors are in standard matrix 
notation: 

 t 








1

1

0

0


























1000

0100

0010

0001

 

 v 








0

0

1

1






















0010

0001

1000

0100

 

 x 












0

0

x

x


























0001

0010

0100

1000

 

 y 

















0

0

y

y


























000i

00i0

0i00

i000

 

 z 












0

0

z

z


























0010

0001

1000

0100

 

III. GEOMETRIC ALGEBRA OF QUARKS 

Geometric algebra of quarks is a geometric algebra version 
of S3 permutation algebra [15], [16], [17]. According to this 
geometric algebra version the following (3 x 3) matrices can be 
identified with unit vectors: 

 e1  = 

















010

100

001

 



 e2  = 

















001

010

100

 

 e3  = 

















100

001

010

 

 e4  =  
3

1
i(e0 + 2e21)  =  

















i0i2

i2i0

0i2i

3

1
 

They span a three-dimensional Euclidean space. e0 is the   
(3 x 3) unit scalar: 

 e0  = 

















100

010

001

 

And the geometric products e12 and e21 of the first three unit 
vectors e1, e2, and e3 can be identified with parallelograms: 

 e12  =  e1e2  =  e2e3  =  e3e1  = 

















010

001

100

 

 e21  =  e2e1  =  e3e2  =  e1e3  = 

















001

100

010

 

Both the three unit vectors e1, e2, and e3 as well as the unit 
scalar and the two geometric products e12 and e21 add to the 
nihilation matrix N: 

 e1 + e2 + e3  =  e0 + e12 +e21  =  N 

Walking successively a step into the e1-direction, into the 
e2-direction, and into the e3-direction results in walking a step 
of zero length. Therefore the nihilation matrix N, which is the 
matrix of ones at every position (sometimes called democratic 
matrix) has to be identified with the null matrix O. And every 
multiple of N equals O too, of course. 
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   = 

















111

111

111



















000

000

000

 

Because of these strange relations (21) and (22) we do not 
necessarily need a minus sign in this mathematical framework. 
Instead all we usually do with minus signs can now be done 
with the \ominus matrix ϴ: 

 ϴ  =  e12 + e21  = 

















011

101

110

 

In geometric algebra of quarks we live in a mathematical 
purely positive world, enriched by imaginary numbers 

 I  =  
3

1
e1 (e1 + 2e2) e4  =  i e0  = 

















i00

0i0

00i

 

with (see warning in [15, sec.1, eq. 2] ): 

 I
2
  = 

2

i111

1i11

11i1























 = 

















011

101

110

ϴ 

And as it is common in geometric algebra this pseudoscalar 
or imaginary unit scalar I can of course be identified with a 
three-dimensional oriented unit volume element. 

IV. CONSTRUCTION OF (9 X 9) DIRAC MATRICES (PART I) 

(3 x 3) Pauli matrices can be imagined and thought as a re-
presentation of three orthogonal unit vectors. As there are 
indefinitely many possibilities to do this, only the two of them 
presented in [17, chap. 6] will be discussed in this paper. 

According to eq. (6.63), (6.64), and (6.65) of [17] (3 x 3) 
Pauli matrices can be written as: 

 x  =  e1  = 

















010

100

001

 

 y  = 
3

1
e1 + 2e2)  = 

















012

120

201

3

1
 

 z  =  e4  = 

















i0i2

i2i0

0i2i

3

1
 

Using eq. (26), (27), and (28), the (3 x 3) Pauli bivectors 
and the (3 x 3) Pauli trivector can be found: 

 xy  = 
3

1
(e0 + 2e12)  = 

















120

012

201

3

1
 

 yz  =  i e1  = 

















0i0

i00

00i

 

 zx  =  
3

1
i(e1 + 2e2)  = 

















0ii2

ii20

i20i

3

1
 

 xyz  =  i e0  = 

















i00

0i0

00i

 

As expected eq. (32) is identical to eq. (24). According to 
eq. (4), (5), (6), (7), and (8) the five Dirac matrices of geo-
metric algebra of quarks can now be constructed as the 
following (9 x 9) matrices: 

 t  =  e4  e0  =  

















00

00

00

ee2

e2e

e2e

3

i

O

O

O

 

 v  =  e1  e0  =  

















OO

OO

OO

0

0

0

e

e

e

 
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x  =  ϴ
3

i
(e + 2e2)  e1  = 

3

i
(e + 2e3)  e1 

      = 

















11

11

11

e2e

ee2

e2e

3

i

O

O

O

 

y  =  ϴ
3

i
(e1 + 2e2)  (e1 + 2e2)  = 

3

1
(e1 + 2e3)  (e4e1) 

      = 

















1414

1414

1414

ee2ee

eeee2

ee2ee

3

1

O

O

O

 

z  =  ϴ
3

i
(e + 2e2)  e4  = 

3

i
(e + 2e3)  e4 

      = 

















44

44

44

e2e

ee2

e2e

3

i

O

O

O

 

These (9 x 9) Dirac matrices should meet the basic relations 
of Dirac algebra: Base vectors are normalized and anti-
commutative. This will be shown in section VI. 

V. MULTIPLE REPRESENTATION OF MATHEMATICAL 

OBJECTS 

In standard (4 x 4) Dirac algebra we do not notice any 
differences in different constructions of the unit scalar. Both 
ways of constructing the (4 x 4) unit scalar 14 

14  =  1  1  = 








10

01
  









10

01
=  





















1000

0100

0010

0001



and 

14  =  (– 1)  (– 1)  = 












10

01
  













10

01


 = 









































































10

01

10

01
0

10

01
0

10

01

 

 

=  





















1000

0100

0010

0001



result in the same matrix representation of the (4 x 4) unit 
scalar. 

In (9 x 9) geometric algebra of quarks they are different 
however: We find two clearly distinguishable matrix re-
presentations of the (9 x 9) unit scalar. In analogy to eq. (38) 
the unit scalar is represented by 

19  =  e0  e0  = 

















100

010

001

  

















100

010

001



                 =  



































100

010

001

000

000

000

000

000

000

000

000

000

100

010

001

000

000

000

000

000

000

000

000

000

100

010

001




 

And in analogy to eq. (39) the (9 x 9) unit scalar is re-
presented by 

19  =  ϴ  ϴ  = 

















011

101

110

  

















011

101

110

 

                 =  



































000

000

000

011

101

110

011

101

110

011

101

110

000

000

000

011

101

110

011

101

110

011

101

110

000

000

000




 

Both (9 x 9) matrices of eq. (40) and (41) have the same, 
identical mathematical meaning: They represent the unit scalar. 
Thus they are equal: 

 19  =  e0  e0  =  ϴ  ϴ 

The same strange multiple representation or bifocalisation 
can the seen when we construct the /ominus matrix re-
presenting negative entities or pseudoscalars or oriented 
volume elements. In standard (4 x 4) geometric algebra we 
always get one and only one matrix representation: 
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(– 1)4  =  (– 1)  1  =  1  (– 1)  = 





























1000

0100

0010

0001



In (9 x 9) geometric algebra of quarks there are two 
different and clearly distinguishable matrix representations: 

     ϴ  e0  = 

















011

101

110

  

















100

010

001



                 =  



































000

000

000

100

010

001

100

010

001

100

010

001

000

000

000

100

010

001

100

010

001

100

010

001

000

000

000




 

And there is 

     e0  ϴ  = 

















100

010

001

  

















011

101

110



                 =  



































011

101

110

000

000

000

000

000

000

000

000

000

011

101

110

000

000

000

000

000

000

000

000

000

011

101

110




 

Both (9 x 9) matrices of eq. (44) and (45) have the same, 
identical mathematical meaning: They represent the \ominus 
matrix as negative of the unit scalar. Thus they are equal. 

 (– 1)9  =  ϴ  e0  =  e0  ϴ 

And the same bifocalisation applies to every other matrix. 
Therefore it is possible to find a second matrix representation 
for the (9 x 9) Dirac matrices of eq. (33) to (37): 

 t  =  (ϴ e4)  ϴ  =  

















θθ

θθ

θθ

2

2

2

3

i

O

O

O

 

 v  =  (ϴ e1)  ϴ  =  

















θθ

θθ

θθ

O

O

O

 

x  = 
3

i
(e + 2e2)  (ϴ e1)  = 

3

i
(e + 2e2)  (e2 + e3) 

      = 























O

O

O

3232

3232

3232

ee)ee(2

ee)ee(2

)ee(2ee

3

i
 

y  = 
3

i
(e1 + 2e2)  (ϴ (e1 + 2e2))  = 

3

i
(e1 + 2e2)  (e1 + 2e3) 

      = 























O

O

O

3131

3131

3131

e2ee4e2

e2ee4e2

e4e2e2e

3

i
 

z  = 
3

i
(e + 2e2)  (ϴ e4) 

      = 

















O

O

O

44

44

44

ee2

ee2

e2e

3

i

θθ

θθ

θθ

 

As these different explicit matrix representations are a little 
bit confusing, in the following explicit (9 x 9) matrix re-
presentations are avoid and only the algebraic relations are 
given. As the /ominus matrix and the unit pseudoscalar I 
commute with every element of (9 x 9) geometric algebra of 
quarks, it is possible to shift them without problems inside 
these algebraic formulae at every position. 

VI. CONSTRUCTION OF (9 X 9) DIRAC MATRICES (PART II) 

As an alternative, (9 x 9) Dirac matrices can be constructed 
in an aesthetical more appealing way. This time, Pauli matrices 
are identified with the following expressions according to [15, 
eq. 57, eq. 58, eq. 59] or [17, eq. 6.71, eq. 6.72, eq. 6.73]: 

x  =  431 e3)e2e(2
3

1
  

      =  10 iee2
3

1
 (e1 + 2e3) = 

3

1
(e4 + 2 i e4e1)  
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y  =  412 e3)e2e(2
3

1
  

      =  20 iee2
3

1
 (e2 + 2e1) = 

3

1
(e4 + 2 i e4e2)  

z  =  423 e3)e2e(2
3

1
  

      =  30 iee2
3

1
 (e3 + 2e2) = 

3

1
(e4 + 2 i e4e3)  


The first expressions of these vectors x, y, and z show 

the fundamental representations with positive coefficients only 
as a minimal linear combination of three of the five unit vectors 
e1, e2, e3, e4, and ϴe4. The first expressions in the second line of 
these vectors show the paravector-like representations with 
complex coefficients as a minimal linear combination of only 
two of the three unit vectors e1, e2, and e3. 

Using eq. (52), (53), and (54), the (3 x 3) Pauli bivectors 
and the (3 x 3) Pauli trivector can be found: 

 xy  = 
3

1
(e1 + e2 + 2 ie0) (e3 + 2e2)  =  i z 

 yz  = 
3

1
(e2 + e3 + 2 ie0) (e1 + 2e3)  =  i x 

 zx  = 
3

1
(e3 + e1 + 2 ie0) (e2 + 2e1)  =  i y 

 xyz  =  i e0  =  I 

As again expected eq. (58) is identical to eq. (24). 
According to eq. (4), (5), (6), (7), and (8) the five Dirac 
matrices of geometric algebra of quarks can now be 
constructed as the following (9 x 9) matrices: 

 t  =  z  e0  = 
3

1
(e4 + 2 i e4e3)  e0 

 v  =  x  e0  = 
3

1
(e4 + 2 i e4e1)  e0 

x  =  (xz)  x  =  (ϴ iy)  x 

                      = 
3

1
(ϴ ie4 + 2 e4e2)  (e4 + 2 i e4e1) 

y  =  (xz)  y  =  (ϴ iy)  y 

                      = 
3

1
(ϴ ie4 + 2 e4e2)  (e4 + 2 i e4e2) 

z  =  (xz)  z  =  (ϴ iy)  z 

                      = 
3

1
(ϴ ie4 + 2 e4e2)  (e4 + 2 i e4e3) 

These (9 x 9) Dirac matrices should meet again the basic 
relations of Dirac algebra, which will be shown in the next 
section. 

VII. (9 X 9) DIRAC ALGEBRA 

To show normalization and orthogonality of (9 x 9) Dirac 
matrices the multiplication rule for direct Zehfuss-Kronecker 
products of four matrices A, B, C, and D [8, p. 16] will be 
helpful. 

 (A  B) (C  D)  =  (A C)  (B D) 

Now the normalization of the Dirac matrices can be 
evaluated: 

 t
2
  =  (z  e0)

2
  =  e0  e0 

 v
2
  =  (x  e0)

2
  =  e0  e0 

 x
2
  =  ((xz)  x)

2
  =  (xzxz)  e0  =  ϴ  e0 

 y
2
  =  ((xz)  y)

2
  =  (xzxz)  e0  =  ϴ  e0 

 z
2
  =  ((xz)  z)

2
  =  (xzxz)  e0  =  ϴ  e0 

Thus t and v are time-like unit vectors as they square to 

the (9 x 9) unit scalar (e0  e0). And x, y, and z are space-like 
unit vectors, as they square to the (9 x 9) \ominus matrix        

(ϴ  e0). In a similar way anti-commutativity can be shown: 

tv =  (z  e0) (x  e0)  =  (zx)  e0 

             =  (ϴxz)  e0  =  (ϴ e0) (x  e0) (z  e0) 

             =  (ϴ  e0) vt  

tx =  (z  e0) ((xz)  x)  = (zxz)  x 

             =  (ϴxzz)  x 

             =  (ϴ e0) ((xz)  x) (z  e0) 

             =  (ϴ  e0) xt  

ty =  (z  e0) ((xz)  y)  = (zxz)  y 

             =  (ϴxzz)  y 

             =  (ϴ e0) ((xz)  y) (z  e0) 

             =  (ϴ  e0) yt  

tz =  (z  e0) ((xz)  z)  = (zxz)  z 

             =  (ϴxzz)  z 
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             =  (ϴ e0) ((xz)  z) (z  e0) 

             =  (ϴ  e0) zt  

vx =  (x  e0) ((xz)  x)  = (xxz)  x 

              =  (ϴxzx)  x 

              =  (ϴ e0) ((xz)  x) (x  e0) 

              =  (ϴ  e0) xv  

vy =  (x  e0) ((xz)  y)  = (xxz)  y 

              =  (ϴxzx)  y 

              =  (ϴ e0) ((xz)  y) (x  e0) 

              =  (ϴ  e0) yv  

vz =  (x  e0) ((xz)  z)  = (xxz)  z 

              =  (ϴxzx)  z 

              =  (ϴ e0) ((xz)  z) (x  e0) 

              =  (ϴ  e0) zv  

xy =  ((xz)  x) ((xz)  y)  = (xzxz)  (xy) 

              =  (xzxz)  (ϴ yx) 

              =  (e0  ϴ) ((xz)  y)(xz)  x) 

              =  (ϴ  e0) ((xz)  y)(xz)  x) 

              =  (ϴ  e0) yx  

xz =  ((xz)  x) ((xz)  z)  = (xzxz)  (xz) 

              =  (xzxz)  (ϴ zx) 

              =  (e0  ϴ) ((xz)  z)(xz)  x) 

              =  (ϴ  e0) ((xz)  z)(xz)  x) 

              =  (ϴ  e0) zx  

yz =  ((xz)  y) ((xz)  z)  = (xzxz)  (yz) 

              =  (xzxz)  (ϴ zy) 

              =  (e0  ϴ) ((xz)  z)(xz)  y) 

              =  (ϴ  e0) ((xz)  z)(xz)  y) 

              =  (ϴ  e0) zy  

And the handedness can be checked by 

vtxyz 

   = (x  e0) (z  e0) ((xz)  x) ((xz)  y) (xz)  z) 

   = (xzxzxzxz)  (xyz) 

   = e0  (i e0)  =  i (e0  e0)   

Of course these equations look like the equations of (2 x 2) 
Pauli algebra and of (4 x 4) Dirac algebra. But these equations 

are equations which contain (3 x 3) Pauli matrices and (9 x 9) 
Dirac matrices. 

VIII. OUTLOOK 

(9 x 9) Dirac matrices give us the time-like and space-like 
base vectors of the four- or five-dimensional world we live in. 
The next step should be to include the nonion algebra or 
ternary Clifford algebra of Kerner [18] and Suzuki [19] into 
this picture to represent quarks mathematically in this world. 

It seems that at least the two sums 

 j + j
2
 + 1  =  0 

(see [18, p. 154], [20, slide 21 & 42] ) and 

 j
2
 + j  =  – 1 

(see [18, p. 159], [20, slide 83] ) can be identified with the 
nihilation matrix N of eq. (22) and the \ominus matrix ϴ of eq. 
(23) in this paper. 

But the obvious philosophical differences between the ideas 
followed in [18], [19] or [20] and the ideas of this paper should 
not be underestimated. In this paper all matrices are seen as 
geometrical objects according the basic concepts of geometric 
algebra. They act not only as operators (representing generators 
of reflections, rotations or linear combinations of reflections 
and rotations), but they are seen here as operands (representing 
always scalars, vectors, bivectors, trivectors, quadrovectors, 
pentavectors or linear combinations of these objects) as well. 

While Kerner sees spacetime emerging from quark algebra 
in [20], I urgently like to see quark algebra as emerging from 
spacetime algebra. Not only we as human beings live in space-
time; quarks live in spacetime too. 

Please note that this view follows the philosophy of John 
Snygg, when he describes the history of the electron and its 
algebra: “It was necessary to attribute to the electron a spin of 

½ and a periodicity of 4. In recent years, it has become more 
widely recognized that objects larger than electrons also have 

4 periodicities” [9, p. 11]. In the same way the Dirac belt trick 
demonstrates that extended macroscopic objects “in some 
sense loosely attached to its surroundings” [9, p. 12] show the 

4 symmetry of electrons, I am convinced another belt-like 
trick will show us quark symmetry one day. 

It should be only a matter of time to find a way demon-
strating quark symmetry with extended macroscopic objects, 
revealing the geometrical simplicity of quark algebra. 
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X. ADDITIONAL REMARKS 

This paper was uploaded at the internet preprint arxive of Cor-

nell University (www.arxiv.org) at 2. Dec. 2012 with the tem-

porary submission identifier arXiv:submit/0605626 after being 

endorsed by a colleague engaged in Clifford algebra research. 

At 4. Dec. 2012 I was informed by the arxiv administration 

that this submission “has been removed upon a notice from 

our moderators, who determined it inappropriate for arXiv.” 

Therefore I now decided to upload this paper at www.vixra.org. 

Meanwhile I have written another paper about geometric alge-

bra of quarks [21, second part]  in which I prefer yet another 

Dirac matrix construction based on some ideas presented in 

[22] as “quarks should be regarded as entities having abso-

lutely no rectangular symmetry” [21, footnote 2]. Nevertheless 

the present paper about  Pauli matrices and Dirac matrices in 

geometric algebra of quarks is surely of some interest, as the 

discussion of multiple representations of mathematical objects 

in chapter 5 is important and cannot be found in my other 

papers. 

 

I myself still ponder over the consequences of these multiple 

representations for physics, and there even is a slight possi-

bility that different representations might indeed represent 

different physical objects being not distinguishable in standard 

matrix algebra or standard geometric algebra. 

 


