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The purpose of this work was to introduce strict, comprehensive definition of perfect 
chaos, to find out its basic properties in terms of phase transitions and give connections  
for uncertainties, lying in base of perfect chaos concept. Concept of perfect chaos as 
undetermined description was introduced basing on two formalized necessary and 
sufficient conditions: finite phase space resolution and instability of phase space 
trajectories. Properties of Kolmogorov system, including phase mixing, turned out to  
be consequences of chaotic state but not its comprehensive and sufficient conditions. 
Description relativity was defined as mandatory property of perfect chaos – the same  
areas of phase space may show regular and chaotic properties depending on description       
space - time accuracy. Herewith evolution of physical system in given generalized phase 
space can be represented by consequence of regular states and intermediate transitions.  
For chaotic state with uniform diffusion it was found out that nonlinear dispersion law is 
mandatory property. One in its turn necessarily leads to space – time instability of 
probability density and appearance of probability cavities in phase space - phase space 
attractors where particles density grows up. Case of chaotic state with fixed boundary  
and diffusion was considered. It turned out that Fourier decomposition allows to derive 
relations between coordinate – momentum and time - energy definition uncertainties. It 
was shown that chaos diffusion factor is the only parameter, limiting product of 
corresponding uncertainties.  
 

Since discovery of turbulence as chaotic motion example several explanations of its 
appearance were proposed. Scientific thought generalized disorderly dynamic behavior 
and introduced abstract chaotic models. However as turbulence transitions scenarios and 
generalized chaotic mechanisms continued to compete and stayed not comprehensive 
separately. This led to necessity of testing areas of their application and correspondence to 
certain finite set of problems. For this reason goal of universal formulation of chaos and its 
basic properties became relevant. Results, represented in this article, allow receiving clear 
idea about chaos substance and ways of its appearance. They show that chaotic behavior 
depends on type of observation and has to be considered in the same space – time 
resolution for receiving comparable results. Typical problem of uniform chaotic motion in 
limited space was considered on basis of introduced formalized chaotic properties. It was 
found out that description of chaos may exist only under condition of certain resolution 
types and connections between space and time uncertainties.  
 

I. PERFECT CHAOS AND RELATIVITY 

Several scenarios of turbulence transition have been proposed since 1883 year when turbulence 
concept was introduced through experiments of English engineer Osborne Reynolds.                
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He has noticed dynamic phase transition in liquid stream, characterized by unstable vortex 
appearance and introduced two limit states of motion: laminar and turbulent. Since, several 
scenarios of turbulence transition have been developed. Among them Landau – Hopf instability 
mechanism (Ref.1), Lorenz attractor mechanism (Ref.2), scenario of Poincare – Feygebaum 
(Ref.3) and scenario of Kolmogorov - Arnold – Moser (Ref.4). Each of outlined mechanism has 
its individual area of application and basic assumptions. For this reason none of them is 
universal, moreover unambiguous connections between them are not stated yet.  
Since introduction of turbulence concept its properties were investigated and generalized. For 
now concepts of dynamic limit states themselves were generalized and transformed into states of 
regular motion and perfect chaos state. Therefore determined motion corresponds to laminar 
stream while perfect chaos – to turbulent motion state. Let us consider second limit state - the 
concept of perfect chaos. One is defined as undetermined description in given phase space 
resolution. Unpredictability of motion is consequence of two conditions realization: a) finite 
resolution of generalized phase space; b) instability of phase space trajectories.  
Concept of generalized phase space may be explained through system model consisting of M 
particles which have independent phase trajectories. If motion of each particle is determined in N 
dimensional phase space, then generalized phase is M∙N dimensional and corresponding vector 
will be system characteristic vector in Hilbert space. If connections are introduced dimension of 
generalized space will be equal to P=M∙N-d, where d is number of connection equations. Then 
resolution finiteness in at least one direction of generalized phase space then leads to uncertainty 
in initial dynamic system state. Formally this condition may be represented in the following way: 

    0min ii         Pi ,1                                                               (1) 

Here    minii x   is element of describing generalized phase space while  ix  is characteristic 
vector projection, corresponding to i direction of Hilbert phase space. If we assume that minimal 
uncertainty is isotropic,    imin  then elementary cell volume of generalized phase space is 

expressed in the following way:  
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Let’s consider second condition of perfect chaos state under suggestion that first one is satisfied. 
If initial any two system parts (particles) have instable trajectories, diverging in phase space, 
determined dynamic description of their motion comes impossible and perfect chaos state is 
reached. Instability requirement may be expressed through sum of positive Lyapunov factors 

i  
for each dimension of generalized phase space: 
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Undetermined characteristic trajectory is basic property of perfect chaos system which leads to 
two consequences. First one regards auto correlation function of dynamic value ))(( txf 

. Here 
system evolution is defined by characteristic generalized function )(tx  - reverse mapping )(xt  is 
not single valued in general case. According to relations (1) and (2) ))((1 txg 

=  ))((lim 1 txf
t




 and 

))((2 txg 
=  ))((lim 20

txf
t




 are independent functions ( 1f and 2f  are arbitrary dynamic functions), 

then auto correlation characteristic function  )),(( txfR   satisfies equation (3): 
 


)),((lim txfR 


=0                                                                        (3) 



3 
 

This relation reflects called property of mixing according to terminology, introduced by G.M. 
Zaslavsky (Ref.5). In fact realization of (3) leads to execution of Slutsky criterion for ergodic 
system: 

     01)),((lim
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Here  is delay time between start and the end of system evolution observation. According to (4) 
system becomes ergodic for  . For physical systems this condition can be following 
expression: 

 instt  min       
))((

1)(
txh

txtinst 


                                               (5)    

Here mint  is finite time resolution while instt is instability increment for )(tx , that may be 
expressed through integrated Lyapunov factor (2). Satisfaction of third chaos condition allows 
receiving following equations for any dynamic function in frame of ergodic description: 
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In given relation )(tГ  and )(tT  are phase space volume, occupied by phase trajectory during 
observation time and observation time itself. For integrated Lyapunov factor given property 
allows to outline consequence of relation (2):  

   0dh     dhtxhtxh  ))(())((                                             (7) 

Here dh  is dynamic entropy of Kolmogorov – Sinai that may be expressed through entropy of 
system in given phase space representation ( Ref.5):  
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                                                            (8) 

Quantity ))(ln( tГS   is Gibbs entropy of chaotic system with account of finite phase space 
resolution and condition (5). Satisfaction of chaos conditions (1) and (2) leads to mandatory 
growth of Gibbs entropy even in case when correspondent deterministic description is 
conservative. 
Consequences (3), (6) and (7) for relations (1) and (2) in fact correspond to definition of 
Kolmogorov system (Ref.6) state (K – system) under condition that instt  min . However we 
have to notice that K – system requirements are necessary but not sufficient for perfect chaos 
state (PCS) observation.  
It may be useful to state another qualitative property of PCS – description relativity. As it was 
shown PCS is limit state of dynamic system, characterized by properties, outlined below: 

                                                                0min ii         Pi ,1                                                      (9) 
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Satisfaction inequality depends on the description parameters  imin  and ))(( txh 
. According to 

(9) and (10) magnitude of these parameters may lead to opposite limit states. They are perfect 
chaos state (PCS) and regular state (RS). Let’s consider example of physical system. Then 
finiteness of  imin  is provided by quantum uncertainty relations.                                              
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In general case  imin  is function of time resolution:  imin = )( mintf  . Finite magnitude of 

 imin  allows to leave one control parameter - integrated Lyapunov factor. Therefore regular 
state of system will be represented by group of relations (10) and (11): 

                                                               0min ii         Pi ,1                                                     (10) 
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Second relation contains time as parameter. In such a way generally transition between two limit 
states may occur at any instant of time. If evolution of physical system in given generalized 
phase space is represented by consequence of regular states and corresponding transitions, it can 
be defined as quasiregular state of motion (QRS). Transition between two regular trajectories 
(limit cycles) is realized through chaotic states. According to terminology of G.M.Zaslavsky 
(Ref.7) in phase space such type of motion is represented by ”stochastic sea with stability 
islands”. Time delay of two consequent transitions 1 jj RR  and 21   jj RR , also called 

bifurcations, jjj tt  1  in general is function of time parameter and min :  ),( min tjj .  

Let’s consider phase trajectory in three generalized phase spaces 1 , 2 and 3  such that
min

3
min

2
min

1    . Then the same phase trajectory 3 , represented through 1  and 2 , will 
have different fractions of regular state (stability islands) and transitional state (perfect chaos). 
Phenomenon of description relativity is explained by Fig.1 (a) and Fig.1 (b), where two 
dimensional phase spaces are supposed to have uniform resolution.  

 

FIG.1. a) 1 phase space representation. Chaotic phase trajectory 1→2→3→4→5→6→7→8; b) 2  phase 
space representation. Quasi captures in segments 3 and 5 – regular motion areas with finite life            
time – quasi regular stability islands. Hollow circles duplicates state points in 1  phase space 
representation.  
  
Each system dynamic state is represented as point inside corresponding cell, which limits phase 
space uncertainty. Transitions between enumerated states are symbolically designated as straight 
line – we don’t take into account phase ways of corresponding bifurcations.  
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In given figure the same segments 3 and 5 of phase trajectories are defined as chaotic motion - 
Fig.1 a) or quasiregular motion - Fig.1 (b) - with finite life time – quasi regular trajectories 
symbolically shown in Fig.1 (b) inside large cells. In general, duration of system existence, i.e. 
life time 0i (i=1,2,…,8), in any macroscopic dynamic state is arbitrary. Regular motion 
appearance may lead to space - time stabilization of system. If stabilization occurs for i state, 
then i . In other case current stabilization is temporary and quasi capture is realized 

(Ref.7). In this case regular trajectory is stable during finite time length i . After this time quasi 
regular torus comes unstable, deforms and may finally disappear.  
Increase of generalized phase space resolution may lead to appearance of new quasi regular areas 
or overall space - time stabilization of trajectory. In first case some portion of particles in cells 
(representation of coarsened resolution) turns out to transform into toruses with finite or infinite 
life time. One is defined by total time of system observation – “infinite” life time will correspond 
in this case stable existence of regular area during all observation time. As we can see space – 
time relativity allows receiving qualitatively different chaotic (regular) properties for the same 
part of given dynamic system. 
  
 
II. NONLINEARITY AS MANDATORY PROPERTY OF PERFECT CHAOS 

In equation (3) deriving we used property of independence for arbitrary dynamic functions 1f
and 2f  if instt  min . Let’s assume that considered system consists of M subsystems – particles, 

characterized by corresponding probability densities )( kk x , Mk ,1  (k=1,…,M). Then, if

)( kkk xf 
 , for perfect chaos system we have generalized relation (3): 

  0),(),(lim 



 llkk xxC     kl                                           (12)      

Here C is correlation function. Property (12) may be called correlation decay or system memory 
loss.  
One of approaches applied for characterization of transitional properties in given frame is based 
on Fokker - Plank - Kolmogorov model (Ref.8). One allows obtaining basic equation of transport 
from Chapman - Kolmogorov equation (13). 
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Integration is made for phase volume occupied by system phase trajectory. Upper indexes of 
characteristic vector )(tx  correspond to consequent time moments 1t , 2t , 3t : 123 ttt  . Function 

),,( 1
1




r
r

r
r txtx 

  ( 3,2,1r ) is conditional probability density with fixed initial condition

1
1, 


r
r tx . Let’s recall basic assumptions made for derivation of Fokker - Plank – Kolmogorov 

equation (Ref.8). 

1. ),,(),,(),,( 1
1
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1
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r
r

r txxttxxtxtx 






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
 . Given condition means that 

probability of bifurcation doesn’t depend on absolute magnitude of initial time point: instt  min . 
This limitation is satisfied if (1), (2) and (5) relations for chaos are valid. Equation (5) is realized 
necessarily if we speak about formed instability; 
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coordinate vector. In terms of characteristic generalized function )(tx  this condition is valid as 
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 . For finite phase space cell and 

time account this expression can be realized for rtt  min and minxxd 
 ; 

 
4. Initial distribution density is defined by Dirac delta function: )(x  )0( , i.e. initial 
coordinate can be defined accurately (in frame of phase space finite resolution Dirac delta 
function corresponds to rectangular function); 
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for existence of second derivative of Dirac function it is necessary for rt  to satisfy following 

condition: min2 ttr   in frame of certain resolution phase space (1). Coefficients ),( 1
r

r txa 
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r
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On basis of relation (15) second transport coefficient can be introduced: 
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Given assumptions allow to formulate known, not parametric form of Fokker Plank Kolmogorov 
equation (FPK equation): 
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It can be shown that in relations (16) and (17) time is hidden parameter (Ref.8). Let’s represent 
energy of system mass unit: 
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According to (17) second transport factor can be expressed in the modified form (19) - 
superscripts are omitted.  
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In relation (18) tx,  are generally independent arguments for energy expression. Indeed, because 
of phase trajectory mixing (3) specific energy and coordinate may not have mutual 
correspondence.  
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Then for conditional probability density we have modified equation: 
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At the same time derivative of probability ),( tx  can be represented, using Chapman 
Kolmogorov equation (21) in the following way: 
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In this equation ),,( 1
r

rr txx 


  is transitional probability density. Substitution of (20) into 
relation (21) gives extended FPK equation (EFPK) (Ref.8): 
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Variation of t  such that mintt    allows representing equation (19) in asymptotic form for
 t and receiving abnormal transport equation: 

  )(),('),(2 0
2 tttxBttxBx  



                                             

(23) 

Root extraction of equation both parts leads to law of abnormal diffusion (Ref.9):  

0),( tttxDx 
                                                       (24) 

In this relation ),(2),( txBtxD 
  is anomalous diffusion factor. Traditionally abnormal 

diffusion law is explained, artificially introducing fractal FPK equation – FFPK (Ref.9).  
Let’s consider uniform state for averaged characteristic energy of chaotic system:

)(),( tftx 


 . Expression (19) allows receiving correspondent form of transport coefficient:

)(2)( min tfttB   . In this case Fourier decomposition of one dimensional local EFPK equation 
(22) may be represented in the following way: 
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Here )(
2
1)(

0
tBtB jj   is corresponding modified transport coefficient for j dimension. 

Amplitudes of Fourier decomposition are outlined through expressions (26) and (27): 
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Second Fourier decomposition gives relations (28) and (29) with equivalent operator’s kernels
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Integrals limits are defined according to Kotelnikov theorem:
min2

1
t

 ,  
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Substitution of expressions (28) and (29) into equation (25) gives wave packet form:   
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General arbitrariness of integration limits finally allows representing )( ik law: 

  2)()(
0 j
j

j ktBik                                                        (31) 

As it follows from outlined expression nonlinear dispersion law (31) is mandatory property of 
uniform chaotic state. Allocation of )( ik  real part leads to equation (32): 
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j

jj
j

j kktBkktBk ReIm)(ReIm)(2)(Re 0                      (32) 

Positiveness of physically measured quantities  Re  and  kRe  allows receiving following 
property of complex wave number:   0Im jk . Here positiveness of specific energy ),( tx  and 

consequently transport coefficient )(tB j  are taken into account. First Fourier decomposition of 
probability density then can be given by relation (33): 

 
       jjjjjjj dkxkixktktx ReexpImexp),(),( 1                            (33) 

Here  jkIm  as positive space increment shows existence of space instability for probability 

density amplitude ),(1 tk j . Let’s consider the imaginary relation for both parts of equation (31):  

         )(ReIm)()(Im 22
0 tkktBk jj
j

j                                      (34) 

Positiveness of time increment shows time instability of probability density: 

       jjjjj dkxkitxtx Reexpexp),(),( 2                                     (35) 

As we see space – time instability of probability density is defined by mandatory nonlinear 
dispersion law (32) of chaotic system. Given instability leads to appearance of probability 
cavities in phase space i - phase space attractors where particles density grows up. This process 
continues up to the moment when specific energy and transport factor achieves space 
inhomogeneity: ),()( txt 

  , ),()( txBtB jj 
 . Since that local EFPK equation has to be 

considered in general form of relation (22).                                   
 

III. UNCERTAINTY RELATION OF PHASE STATE 

It was mentioned above, that two possible types of phase trajectories are possible in frame of 
characteristic vector description: bijection tx  and multivalued mapping. Each type is 
characterized by specific energy in form of ))(( tx and ),( tx  correspondingly. Given 

division allows introducing qualitative properties of dynamic system basing on transport 
parameter ),(2),( min txttxB 

  . We shall designate phase states as bijection states of 

constant averaged energy )(x , i.e. energy without explicit time dependence. Then 

multivalued mapping corresponds to transitional motion with phase trajectory mixing. 
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Appearance of transitional state is defined by first return of characteristic vector. Phase 
transitions are described by EFPK equation (22). In terms of diffusion factors given types of 
motion are also designated as normal and abnormal diffusion (Ref.9).  
Let’s consider case of uniform phase state with fixed boundary: constx )(  , const . This 

phenomenon appears under condition of phase space time stability of probability cavity, as it was 
shown in Section II. Description of corresponding system state can be realized in frame of 

normal diffusion FPK equation (17) for life time of phase state:  ff ttt 21 , . For selected 
dimension j we can represent (17) as uniform linear diffusion equation: 

2

2 ),(
2
1),(

j

jl
j

j

x
tx

B
t

tx







 
   jj Lx ,0     ff ttt 21 ,                                    (36) 

Solution can be searched in form of Fourier expansion series (37),(38) which satisfies boundary 
condition and initial state: ),(),0( tLt j  , )()0,( 0 jj xx   . 


 




















 


N

j
j

j

l
jj x

L
ltctx

1

sin)(),(                                                  (37) 






















 


jL

jj

l
j d

L
lt

L
tc

0

sin),(2)(                                              (38) 

Substitution of (37) into (36) gives equations (39) and (40) for Fourier coefficients: 

0
2

)()(
sin

2

1
























 






















 

 j

l
j

l
j

l
j

N

l
j L

ltcB
t
tc

x
L

l                                   (39) 

2

2
)()(










 









j

l
j

l
j

l
j

L
ltcB

t
tc 

                                                             (40) 

Corresponding values of transport factor are represented by relation (41): 

2)(
)(

2











l
L

dt
tdc

tc
B

l
j

l
j

l
j 

                                                            (41) 

According to (41) coefficients )(tc l
j satisfies following condition: const

dt
tdc

tc
l
j

l
j

l
j

 
)(

)(
1 ,

2

2 








 


j

l
jl

j L
lB 

 .Consequently for )(tc l
j  we have:  tctc l

j
l
j

l
j  exp)0()( .  

Taking into account relation (19) for averaged specific energy we have got following expression 
for discrete energy spectrum: 

2

min

2














 l

L
t

j
l
jl

j 


                                                                   (42) 

Let’s designate
min

2
t


 , then for energy derivative we have relation (43), given below. 
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2

3 













l
L j

l
j

l
j







                                                        (43) 

Under conditions of finite phase space and time resolution (1), (5) for chaotic system we can 
modify given relation into form of (44). 

l
j

j
l
j L

l








 











2
3

                                                    (44) 

For dynamic description with perfect accuracy initial probability density is represented as Dirac 
function (Section II, Item 4): 

       00 txtxtx jjj                                                     (45) 

In vicinity of 0t  ( 0tt  ) projection of characteristic vector  0tx j  is bijection tx j  . 

Normalization condition for   0tx j  then can be represented in the following way: 

      
  


















jj L

k
k
j

L

jjj dx
ttx

ttdxtxtx
0

0

0
0 /)(


                                  (46) 

Dirac functional is represented here through time argument. Index k corresponds to zeros of 
function  tx j . In considered case we have only one value of argument, corresponding to zero - 

0t . Then relation (46) can be modified in the following way: 

     






































)(

0
0

0

0

/)(
/)(

/)(
lim

0

jj LT

j

j
L

k
k
j

tt
dttt

ttx
ttx

dx
ttx

tt                           (47) 

As we can see in vicinity of 0t  ( 0tt  , )( 0txx jj  ) space - time bijection allows introducing 

probability density correspondence:   
        ttxsigntttxtx jjj  /)(00                                  (48) 

Finite space - time resolution allows substitution of Delta function by its discrete alternative – 
rectangular pulse. Without loosing of generality we may assume that 00 t : 







0
)( 1C

tx j    
 
 

min

min

j

j

xx

xx








             






0
)( 2C

xt j    
min

min

tt

tt








                    (49) 

According to normalization condition coefficients 1C  and 2C  can be expressed in the following 

way:  
min

1
1

jx
C



 ,  min
2

1
t

C


 . For given video pulse relation, connecting characteristic 

width of spectrum and pulse width can be written in the following way: 
  2 t                                                        (50) 

Substitution of expression (44) into (50) gives relation (51). 

 t
l

L
t j

l
jl

j 










 





2

3                                         (51)  

One allows receiving connection between energy and time resolution – (52). 



11 
 

 2
2

l
j

l
jl

j
k

t


 
                                                    (52) 

Here with accordance to (37) wave number 
j

l
j L

lk 

  is introduced.  

Expression for auxiliary function is represented below: 

  2

min

22

42 








 













 






j

j

j

l
jl

j L
l

t

x

L
lB 

 

                                  (53) 

Then relation (52) can be modified in following way: 
 

min
l
j

l
j Bt 


                                                   (54) 

Here  
min

l
jB  is minimal transport factor for j dimension. In frame of diffusion representation 

expression (54) can be represented in given form (lower indexes are omitted): 

             
2

2
0Dtl 

                                                    (55) 

0D  is minimal diffusion factor for j dimension of phase state.  
Let’s receive connection between space and time uncertainties. Satisfaction of ergodicity 
condition for chaotic state allows gives ability to modify expression (19): 

),,(),,(1),,(),,(),,( 1

0

111

)(

11 txxdttxx
T

xdtxxtxxtxx rr
T

rrr
r

rr

T

rrrr 






  


  (56) 

Upper underscore here means time averaging. Space – time independence of phase state leads to 

space independence in ),,( 1 txx rr 
 . For arbitrariness of integration time this means that relation 

(56) can be simplified in the following way:  
),(),( txtx rr 

                                                    (57) 

Finite differential for energy then can be expressed through momentum:
),(),(2),( txptxptx rrr 




 . Substitution of given relation in (55) allows receiving 

differential equation for momentum: 
 

4
),(),(

2
0Dttxptxp ll  



                                                     
(58) 

Momentum is expressed in finite form:
t
txtxp

l
l




)(),(


 . Substitution of this expression in 

relation (58) gives connection between lp  and lx :  

 
4

2
0Dxp ll                                                       (59) 

Less strict form of relation (59) allows uniform representing of (59) and (55), given below. 
 

2

2
0Dxp ll                                                     (60) 

 
2

2
0Dtl                                                      (61) 
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Equations (60) and (61) show connections between uncertainties of coordinate – momentum and 
time - energy definition correspondingly. It may be useful to note that any of given uncertainties 
may be determined as corresponding standard deviations: lp

lp  , lx
lx  , l

l


  , tt  . 
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