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Abstract:  Based on the thesis that baryons including protons and neutrons are Yang-Mills 
magnetic monopoles which the author has previously developed and which has been confirmed 
by over half a dozen empirically-accurate predictions, we develop a GUT that is rooted in the 
SU(4) subgroups for the proton/electron and neutron/neutrino which were used as the basis for 
these predictions.  The SU(8) GUT group so-developed leads following three stages of symmetry 
breaking to all known phenomenology including a neutrino that behaves differently from other 
fermions, lepto-quark separation, replication of fermions into exactly three generations, the 
Cabibbo mixing of those generations, weak interactions which are left-chiral, and all four of the 
gravitational, strong, weak, and electromagnetic interactions.  The next steps based on this 
development will be to calculate the masses and energies associated with the vacuum terms of 
the Lagrangian, to see if additional empirical confirmations can be achieved, especially for the 
proton and neutron and the fermion masses. 
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1.  Introduction 
 
 In a recent paper [1], the author introduced the thesis that baryons, including protons and 
neutrons, are Yang-Mills magnetic monopoles.  Based on this thesis, it was possible to predict in 
[11.22] of [1] that the electron rest mass is related to the masses of the up and down quarks 

according to ( ) ( )2
3

2/ πmmm ude −= , with the factor of ( )2
3

2π  emerging following a Gaussian 

integration over three space dimensions.  Subsequent calculations [12.6] through [12.8] of [1] 
showed that the best known values of the up and down masses in turn lead to an average binding 
energy of 8.679 MeV per nucleon very much in accord with what is empirically observed, and to 
binding energies for 56Fe which were predicted to be extremely close to what is observed for that 
nuclide.  Noting also that the deuteron binding energy is extremely close to what is known from 
best available data to be the mass of the up quark, we further hypothesized that these might be 
one and the same, which could be explained if the energies released during nuclear fusion are 
based on some form of “resonant cavity” analysis in which the discreet energies which are 
observed to be released are based on the masses of the quarks contained within the nucleons and 
nuclides.  This led to a prediction in [12.14] of [1] that 56Fe has a latent available binding energy 
of 493.028394 MeV, which we then contrasted to the empirical binding energy of 492.253892 
MeV.  This small difference was understood as indicating that 99.8429093% of the available 
binding energy predicted by this model of nucleons as Yang-Mills magnetic monopoles goes into 
binding together the Fe56 nucleus, and that the remaining 0.1570907% goes into confining the 
quarks within the nucleons.  This in turn, lead us by the conclusion of [1] to a deepened 
understanding of how quark confinement is intimately related to nuclear biding and fission and 
fusion and the peak in per nucleon binding energies at 56Fe.  
 
 A second paper [2] extended this analysis, and showed that based on this same “resonant 
cavity” analysis, the binding energies of the remaining 1s nuclides, namely 3H, 3He and 4He, can 
be predicted to at least parts per hundred thousand and in most cases parts per million.  This 
latter paper also showed in [6.16] that the observed neutron–proton mass difference is predicted 

by the relationship ( )( )2
3

2323 πmmmmmM(p)M(n) udµdu −+−=−  to better than 1 part per 

million.  In section 9, we explained why this should be regarded as an exact relationship, and 
therefore modified our earlier hypothesis the the deuteron binding energy is exactly equal the up 
quark mass, into one in which these energies are very close – to just over 8 parts in ten million – 
but not exactly the same.  In section 8 of [2] we used these results to predict solar fusion energies 
solely from up and down quark masses, and found the results to also be in tight accord with 
known data. 
 
 The lesson taken from [1] and [2] together, is that empirical evidence strongly supports 
the thesis that Yang-Mills magnetic monopoles are in fact baryons on the basis of seven 
independent predictions which closely match the experimental data, specifically: 1) the electron 
mass in relation to the up and down masses, 2) the 56Fe binding energy specifically, and the per 
nucleon binding energies on the order of 8.5 MeV in general, 3) the proton minus neutron mass 
difference, and 4-7) the four distinct nuclide binding energies predicted for 4) 2H, 5) 3H, 6) 3He 
and 7) 4He.  The study of solar fusion in section 8 of [2] does not contain anything independent 
of the predictions 1 through 7, but rather applies several of these predictions in combination, and 
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underscores that a “resonant cavity” analysis of nucleons and nuclides does consistently lead to 
accurate empirical results, as evidenced by all of predictions 3 through 7 above. 
  
 While the theoretical foundation for all of these successful predictions was laid 
throughout [1], it was the field strength tensors for the proton and neutron, [11.3] and [11.4] of 
[1], reproduced below: 
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when used to calculate the energy according to [11.7] of [1], ∫∫∫= xdFFE 3
2
1 Tr µν

µν , which 

formed the specific basis for the calculations that led to all of these predictions.  These field 
strength tensors, in turn, emerged as stable magnetic monopoles following the specification of 
the SU(4)P “protium” and SU(4)N “neutrium” gauge groups in section 7 of [1], followed by 
breaking the symmetry of these groups using the baryon minus lepton number generator B-L in 
[8.1] of [1].  So we take the thesis presented in sections 7 and 8 of [1] that the protons and 
neutrons emerge following the B-L breaking of the SU(4)P and SU(4)N groups to be supported by 
the compelling evidence of predictions 1 through 7, and therefore regard SU(4)P and SU(4)N as 
subgroups that do describe the real physical universe, and not just some arbitrary groups that 
may or may not appear in the natural world.  In short, we take the accurate empirical predictions 
1 through 7 above as direct evidence of the physical reality of SU(4)P and SU(4)N.   
 

Based on all of the foregoing, we shall in this paper take SU(4)P and SU(4)N as 
physically-validated, reliable and solid starting points and building blocks, for developing a 
“Grand Unified Theory” (GUT) based on the empirically-confirmed thesis that baryons, 
including protons and neutrons, are Yang-Mills magnetic monopoles. 
 
2.  Unification and Grand Unification in Physical Science 
 
 At least since the time when Isaac Newton hypothesized that the terrestrial “force” which 
caused an apple to fall from a tree was the same as the celestial “force” which guided the 
movements of the planets, unification has been a central objective of physical science.  The 
preeminent scientist, entrepreneur and statesman Benjamin Franklin catapulted to fame when he 
realized that the terrestrial sparks he was creating in his laboratory were of a unified piece with 
the lightening from the heavens, and applied that understanding in a very practical way to 
develop lightning rods which cured an epidemic of mid-18th century electrocutions throughout 
Europe brought about by the superstition of sending church bellringers to steeples at the highest 
place in town to clang large metallic bells to ward of the anger of the Gods every time a lightning 
storm approached.  James Clerk Maxwell in 1873 elaborated what to that date was, and perhaps 
even to today’s date is, the preeminent physical unification and at least the very paradigm of 
unification, as he pulled together the disparate threads of Gauss, Faraday and Ampere into a 
unifying set of equations for electricity and magnetism.  This was deepened a generation later 
with Einstein and Minkowski’s Lorentz-invariant unification of space and time.  In these and 
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similar endeavors the underlying theme has always been the same: to take what appear on their 
surface to be disparate natural phenomena, and acquire a deeper understanding which shows 
them to be governed by a single, common principle.  The success of past unifications leaves 
today’s generation of physicists with the firm conviction that further unifications can still be 
achieved, and that one day in the future, all of the laws of nature can and will be deduced from 
one common vantage point.  After all, what is natural science other than an endeavor to explain 
what is observed through our direct senses and the clever instrumentation that extends our 
senses, by relating those observations to mathematically precise laws of nature which apply 
consistently, uniformly and replicably, without exception, in the broadest possible range of 
circumstances? 
 
 So-called “Grand Unified Theories,” or GUTs, are part and parcel of this esteemed 
tradition, and are based specifically on the advent of Yang-Mills gauge theories and the 
realization that these Yang-Mills theories have a remarkable capacity to explain what is observed 
in nature as evidenced though their already-successful application to weak and strong and 
electroweak interactions.  The Georgi-Glashow SU(5) model [3] which was reviewed at some 
length in section 8 of [1] was perhaps the first “GUT,” and is perhaps the best known.  The basic 
idea of Georgi-Glashow and any other GUT is to be able to represent all of the fermions which 
are observed in nature, and all of their interactions, using a single, simple gauge group with a 
symmetry which is then broken in one or more stages to arrive at the particle and interaction 
phenomenology observed in a laboratory setting.  The fermions are the up and down quarks, the 
electron and neutrino leptons, and ideally their higher-generational carbon copies distinguished 
from the first generation solely by larger mass.  The generators of the gauge group represent 
“interactions” of which there are understood to be four: gravitational, strong, weak and 
electromagnetic.  The eigenvalues of the diagonalized generators of the gauge group, which are 
linearly related to discrete natural numbers such as 3

2  and 3
1−  and 2

1±  and -1 and 0, represent 

through the “charges” of these fermions with respect to these interactions.  A particular fermion 
may be associated with a particular eigenstate (eigenvector) of a representation of the GUT 
gauge group if all of its eigenvalues for all of the generators match up with what are known to be 
the charges of this fermion with respect to all of these interactions.  So, for example, an electron 
is by definition the fermion eigenstate for which the lepton number eigenvalue L=1, the baryon 
number eigenstate B=0, and the electric charge eigenstate Q=-1.  And the transitions / decays of 
a fermions from one eigenstate into another, or its interactions in a given eigenstate, leads to the 
bosons of the theory.  The trick in any GUT, is to characterize all of the interrelated charges of 
all of the fermions in the “simplest” way possible, to understand the stages and ways in which 
the symmetry of the group is broken starting at ultra-high energies and working down to energies 
which can be reached in a laboratory setting, and of course, to end up with something that 
accurately comports with all observed empirical data. 
 
 With this in mind, and as used in the discussion here, we distinguish “GUTs” from 
“unified field theories” more generally, as that subset of unified field theories which is 
specifically centered on understanding fermions and their interactions via their discrete charges, 
and on making whatever observable predictions can be made based on such an understanding.  
So, for example, Kaluza-Klein theory, which to this day represents an exceedingly elegant 
classical unification of general relativity with Maxwell’s electrodynamics using a fifth spacetime 
dimension that in today’s understanding is best understood as the “matter dimension” [4], is most 
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certainly a form of “unified field theory” (and one which in the view of this author warrants 
more universal acceptance than it has at present, especially given that what we know of Yang-
Mills gauge theory should then permit both gravitation and electromagnetism in Kaluza-Klein 
form to be extended into non-Abelian domains).  But Kaluza-Klein it is not a GUT in the sense 
that GUTs are focused on the use of Yang-Mills gauge groups to represent fermions and their 
interactions, and Kaluza Klein, at least absent a Yang-Mills extension, has nothing to say about 
fermions.  While others may perhaps define the term “GUT” in some other manner which may 
also include so-called “supersymmetric” theories, the foregoing defines by example, what we 
have in mind in this paper when referring to a “GUT,” as opposed to a “unified” field theory 
without the GUT qualifier.  
 
 The Galilean foundation of all of modern science is that theory must be the confirmed by 
observation, and that the goal or at least an important by-product of theory is ultimately to 
systematically explain observation.  For physical theorists, the pursuit is about systematically 
comprehending nature and confirming that comprehension based on experimental data.  Because 
GUTs necessarily theorize about the behavior of nature at ultra-high energies such as 1015 GeV 
and even higher that are unlikely to ever be reached by human experimentation under any 
foreseeable circumstances (with the possible exception of what we can learn by peering back 
billions of years through astronomical telescopes), such GUT theories necessarily opine on 
physics that may forever be beyond the reach of direct experimental confirmation.  So the only 
way to discern the primacy of one GUT over another is indirectly, by virtue of what it predicts 
about low energy phenomenology that we can or may soon be able to observe.  So as we 
consider how to construct the puzzle which is a GUT and decide what “pieces” to use in that 
puzzle, we want to start with puzzle pieces that already are solidly-grounded in empirical 
observation.   
 

Based on the seven independent predictions enumerated in the last section which closely 
match the empirical nuclear binding and related data based on the thesis that baryons are Yang-
Mills magnetic monopoles, the GUT that we develop here will start with the SU(4)P and SU(4)N 
gauge groups developed in sections 7 and 8 of [1], knowing that these groups now have been 
validated by over half a dozen independent pieces of empirical data from nuclear and particle 
physics.  Additionally, because we have shown in [1] and [2] how to connect these gauge groups 
to energy numbers which can and have now been empirically confirmed, an important objective 
in developing a GUT on the basis of SU(4)P and SU(4)N is to lay the foundation for perhaps 
obtaining additional, similar, successful predictions of other known energies which have been 
crying out for theoretical understanding for decades, most particularly, and most importantly, the 
free proton and neutron masses, and the observed fermion masses.   
 

If it should be possible on the basis of a particular GUT to make accurate predictions of 
the proton and neutron and / or fermion masses, then even absent the ability to ever directly 
observe the 1015 GeV and higher energy phenomena which lead to these predictions, the accurate 
prediction of such things as the proton and neutron and fermions masses would certainly be solid 
evidence, albeit through indirect inference rather than direct observation, that such a GUT has 
also explained to us how nature behaves behind the veil of energies that we shall most certainly 
never get to directly observe (again, with possible astronomical caveat).  In other words, because 
a GUT, by its very nature, seeks to reach into energy domains that will likely be forever beyond 
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human reach, it must fulfill the Galilean project by accurately explaining all of the masses and 
energies that we do observe through the instrumentation that does rest within our grasp, while at 
the same time teaching us about physics at energies that we shall likely never have the capacity 
to see directly.  It is the prediction of the energies and masses we do observe, that gives us some 
measure of confident that we are not being led astray by what the GUT tells us about the physics 
of unreachable energies.  To use a different metaphor, GUTs seek to teach us about an entire 
iceberg, most of which we shall never be able to observe.  So what the GUT teaches us about the 
tip of that iceberg which we can see, must be solidly-confirmed by empirical data every step of 
the way for us to have some confidence in what it teaches us about the rest of the iceberg which 
will forever remain out of sight. 
 

Based on the foregoing, the purpose of this paper is to develop a GUT rooted in the thesis 
that baryons are Yang-Mills magnetic monopoles and the seven successful predictions which 
have already emanated from that thesis in [1] and [2], and to lay the foundation for additional 
mass and energy predictions, including the free proton and neutron and the fermion masses. 
 
3.  Some Clues for Pursuing the Proton, Neutron and Fermion Masses 

 
Before we can make predictions of the proton and neutron and fermion masses, we must 

construct a reliable, empirically-grounded GUT, and we must know how to break its symmetry.  
Why do we say this? 
 

We have already shown in [2] how the nuclear binding energies in the 1s shell arise from 
using the field strength tensors (1.1) and (1.2) to calculate an energy ∫∫∫−= xdE 3

gaugeL  via the 

pure gauge terms in the Lagrangian [2.12] of [2]: 
 

( )( )BBAABAAB FFFF ⋅−⋅= 2
3

22
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binding πL , (3.1) 

 
together with components of the outer product CDABPE , see (3.9) through (3.11) of [2].  But these 

binding energies are calculated using only the pure gauge field terms (3.1) of the Lagrangian 
developed in [2.16] of [2], written with the terms slightly regrouped: 
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We have not yet even begun to develop these other terms at all, yet it is made very clear by the 
development in [1] and [2] that additional energy numbers can and will arise from complete 
development of these terms.  So, we must develop these additional terms and we will look to 
them to perhaps lead us to the proton and neutron and fermion masses.  But because all of these 
terms contain the vacuum Φ , the actual numeric energy values we obtain from these Φ -
containing terms will depend upon the GUT gauge group we choose, and upon its vacua Φ  and 
how these vacua are used to break symmetry.  (We use the plural vacua because we have in mind 
breaking symmetry in sequence using the Planck vacuum on the order of 1019 GeV, so called 
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GUT energies on the order of 1015 GeV, and the Fermi vacuum GeV246.219651=Fv  used to 

break electroweak interactions to electromagnetic interactions via EMYW UUSU )1()1()2( →× .) 

 
For example, given from [2.15] of [2] that: 

 
( ) [ ]( )

EFEFEF
GiD Φ−Φ∂=Φ ,µµµ , (3.3) 

 
we see that terms with ( )( )ΦΦ µ

µ DD  will mix gauge fields with vacuum fields.  So whereas the 

pure gauge terms (3.1) led to expressions such as [3.9] and [3.10] of [2], namely: 
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we should be alert to opportunities to develop mixed gauge field / vacuum terms where one of 
these matrices is replaced by a vev, especially the Fermi vev GeV246.219651=Fv , so we can 

develop an energy “toolbox” with such expressions as uF mv ⋅  and dF mv ⋅ .  Why the Fermi 

vev?  And why these square root expressions?  Because numerical inspection of the square roots 
of the three main masses in [2.11] of [2] used to calculate binding energies throughout [2], times 
the square root of the Fermi vev, shows that: 
 

MeV739.960397=⋅ umv , (3.6) 

MeV1099.12211=⋅ dmv , (3.7) 

MeV901.835259=⋅ du mmv . (3.8) 

 
These clearly are at exactly the right order of magnitude to explain the free proton and neutron 
masses mass M(p)=938.272 046(21) MeV and M(n)=939.565 379(21) MeV, if and when we can 
put (3.6) through (3.8) and like expressions into the right context with the right coefficients.  In 
other words, the proton and neutron masses, via the order of magnitude analysis above, straddle 
right down the middle of the Fermi vev and the masses of the quarks.  One should therefore be 
on the lookout for ways to exploit this via the “mixed” gauge field µG  / vacuum Φ  terms in 

Lagrangian (3.2).  And as noted at the end of section 9 of [2], we should keep in mind that the 

relation ( )( )2
3

2323 πmmmmmM(p)M(n) udµdu −+−=−  for the free neutron–proton mass 

difference now allows us to find the neutron and proton masses individually, so long as we can 
find an expression which involves the sum of these masses.  So it may well be that our target 
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should be M(p)M(n) +  or some multiple thereof (perhaps the 4He alpha nucleus studies 
extensively in [2]?) rather than either of these masses individually. 
 
 For another example, go all the way back to [2.1] of [1], Maxwell’s charge equation: 
 

[ ] ( ) [ ]νµµν
µ

νµ
µ

ννµνµ
µ

νµ
µ

µν
µ

ν GGiGGmJGGiGGDFJ ,, 2][][ −∂∂−+∂∂=→−∂∂=∂=∂= (3.9) 

 
with µµµ iGD −∂≡ , and where in the final term he have hand-added a “Proca mass.”  Based on 
(3.3), we can readily specify an analogous field equation: 
 

[ ] ( ) [ ]Φ∂−Φ+∂∂=→Φ∂−Φ∂∂=Φ∂≡∂≡ ,, 2 µ
µ

µ
µ

µ
µ

µ
µ

µ
µ

µ
µ GimJGiDFJ  (3.10) 

 
for a Yang-Mills (non-commuting) scalar field Φ  with a scalar source J.  In fact, this is just the 
Klein-Gordon equation for a non-Abelian (non-commuting) Yang-Mills scalar field with a non-
zero scalar source, into which we have hand-added a Proca mass in the usual way.  The reason 
this is of interest is that a central step in section 2 of [1] was to develop the inverse σ

σνν JIG ≡  

and then introduce fermion field wavefunctions ψ  via ψγψ µµ =J , so that we went from 

ψγψ σ
σν

σ
σνν IJIG =→ .  But we can follow an analogous path with (3.10) by building scalar 

source J out of fermions via ψψ≡J  .  Then we can develop an inverse via IJ≡Φ  and follow 

the analogous progression ψψI=→Φ IJ .  Consequently, the terms of the Lagrangian (3.2) 

quadratic in the scalar field ψψψψ222 II =→ΦΦ J , but then we can follow the path of section 

3 of [1] by employing spin sums ( ) ( )mmNuu +Ε+/=Σ /2 ρ , so that 

( )( ) ( )ψρψψψψψ mmNJ +/×+Ε→→→ΦΦ /III 22222 .  Then, if we pursue the same course 
of development as in [1] from start to finish, when we finally reach the counterpart of [11.19] of 
[1] and collapse the propagators so that interactions occur essentially at a point, we will end up 
with a Lagrangian term of the schematic form: 
 

( ) ψψψψψψψψ fm
mm

N
J ≡

+Ε
→→→ΦΦ=

22
22 I

IIL  (3.11) 

 
But this is the form of a Fermion mass term in a Lagrangian, with the mass of the fermion 
specifically identified with ( )mmNm f +Ε= /I 22 .  Concurrently, the vev v should also enter into 

this when we break symmetry with a generator G by setting vG=Φ .  So this is the prescription, 
using the ΦΦ  terms in (3.2), for revealing a fermion rest mass out a Lagrangian while 
preserving gauge symmetry and thus maintaining renormalizability! 
 
 But because the specifics of all of this center around the vacua Φ , it becomes essential to 
have the right GUT gauge group, and to know how to break its symmetry in appropriate 
sequence.  As noted above, to do this, we begin to develop a GUT gauge group using the SU(4)P 
and SU(4)N gauge groups developed in sections 7 and 8 of [1], knowing that these groups now 
have been validated by over half a dozen independent pieces of empirical data from nuclear and 
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particle physics.  So we build upon these validate puzzle pieces in the hope that this run of 
positive empirical predictions results will continue with the masses and energies predicted by the 
terms in (3.2) which include the vacua Φ . 
 
4.  An Unbroken SU(8) GUT Group which Accommodates All Fermions and Left and 
Right-Chiral States, All Interactions, Three Generations, and an Idiosyncratic Neutrino, 
with Nothing Missing and Nothing Superfluous 
 
 The proton and the neutron, of course, form an SU(2) weak isospin doublet ( )np,  with 

( )2
1

2
13 ,−+=I , respectively.  But both the proton and the neutron are composite entities 

composed of three quarks, and as we have argued and indeed supported with empirical nuclear 
binding data, they are Yang-Mills magnetic monopoles.  So really, the proton / neutron doublet is 
a doublet of triplets, ( ) ( )( )dduuud ,,,,, .  And the left-chiral weak isospin quantum numbers 3

LI  

associated with this are ( )( )( )2
1

2
1

2
1

2
1

2
1

2
1 ,,,, −−− . 

 
 In [7.1] through [7.4] of [1], we demonstrated that at ultra-high GUT energies the proton 
was part of a larger gauge group which we dubbed the SU(4)P “protium” group which includes 
the proton and the electron, and that the neutron was similarly part of a larger gauge group we 
dubbed the SU(4)N “neutrium” group which includes the neutron and the neutrino.  As we then 
showed in section 8 and specifically (8.1) of [1], these two groups are broken by a vacuum 

( )LBvGUT −=Φ  of a “baryon minus lepton number” generator 15
3
8λ−≡− LB  such that a 

proton triplet BGR uud ,,  is broken apart from the electron for SU(4)P and a neutron triplet 

BGR ddu ,,  is broken apart from the neutron for SU(4)N, and each triplet becomes part of a stable 

magnetic monopole.  It was on the basis of these proton and neutron triplets broken out from 
SU(4), that we successfully rendered the seven predictions summarized in section 1, and also 
correctly derived the fusion energy released during the solar fission cycle strictly as a function of 
the up, down and electron fermion masses.  So these triplets and the SU(4)P and SU(4)N groups 
in which they are embedded would appear to be very solid puzzle pieces for constructing a larger 
GUT which is well-grounded empirically.  That is exactly what we shall do here.   
 

Normally, one works from the phenomenological gauge group YWC USUSU )1()2()3( ××  

and tries to find larger simple groups G which embed all of these and their associated fermions.  
The SU(5) model of Georgi-Glashow [5] reviewed at some length on section 8 of [1] is a 
paradigmatic example.  Here, we shall start with SU(4)P and SU(4)N which we know lead to 
accurate binding energy predictions, and seek to construct a larger simple gauge group which 
includes these two groups, and which also encompasses the usual phenomenological gauge 
group YWC USUSU )1()2()3( ×× .  The group we shall choose?  PN SUSUSU )4()4()8( ×⊃ .  This 

is a larger group than SU(5), but as we shall see, it brings with it numerous benefits including 1) 
the ability to accommodate a non-zero neutrino mass and thus right-handed chiral neutrinos 
which are omitted from SU(5); 2) the ability to accommodate all flavors and colors of fermion, 
as well as protons and neutrons, in the fundamental group representation (SU(5) splits the 
fermions into a fundamental 5 and a non-fundamental 10 representation while omitting the right-
chiral neutrino); 3) the ability to accommodate different left and right-handed chiral projections 
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with respect to weak hypercharge Y and weak isospin I3, for all fermions; 4) a solution, at long 
last, to the mystery of fermion replication into exactly three generations, and 5) interaction 
generators that may well be associated with gravitation based on the manner in which the 
neutrino stands alone with respect to all other fermions by having an exceedingly-tiny neutrino 
mass that is orders of magnitude smaller than the masses of the other fermions, and based on the 
ability to finally understand the origins of fermion generation replication. 
 

We construct this SU(8) group by establishing a fundamental representation containing 
the fermion octuplet ( ) ( )( )BGRBGR uudeddu ,,,,,,,ν .  The neutron triplet ( )BGR ddu ,,  and proton 

triplet ( )BGR uud ,,  are designated in separate parenthesis simply for visual emphasis, and as we 

can see, the neutrium group ( )BGR ddu ,,,ν  occupies the first four members of this octuplet and 

the protium group ( )BGR uude ,,,  occupies the last four members.  Of course, what really counts 

are the quantum numbers, so let’s now turn to those. 
 
In (7.1) of [1], we established that for the protium quadruplet, the electric charge 

generator could be specified by ( )815

3
28

3
2 2 λλλ +−=−−≡ LBQ .  But in (7.3) of [1], we were 

required to use a different electric charge generator, namely 8

3
2 λ≡Q  for the neutrium 

quadruplet.  This if OK when the proton and electron are treated separately from the neutron and 
neutrino, and this was good enough to get us over half a dozen good binding energy predictions 
and other empirically-supported relationships.  But once we put all these fermions together into 
one octuplet representation of a unifying group this is no longer OK, and we need to define a 
new electric charge generator that works uniformly for all of the fermions in the group. 

 
So let us now see exactly how we can put these two groups together and what this implies 

for the nature of the GUT that does so.  SU(8) of course contains seven diagonal 8x8 generator 
matrices, so rather than take up visual space with seven 8x8 matrices in which all but the 
diagonal elements are zero, let us construct this group using the tables below which convey the 
same information more compactly in an easier-to-follow form. 
 
 First, as just noted, the electric charge generator is ( )815

3
28

3
2 2 λλλ +−=−−≡ LBQ  for 

SU(4)P, while it is 8

3
2 λ≡Q  for SU(4)N.  So if we lay out the eight fermions of this octuplet in a 

vertical column and show the three generators 3815 ,, λλλ  of SU(4) in the first three columns (we 

actually show 15
3
8λ−≡− LB  which is merely a linear multiple of 15λ ), and then show 

generators for electric charge Q, right-chiral weak hypercharge QYR 2= , left chiral weak 

hypercharge LBYL −= , and right-chiral weak isospin 03 =RI , which are all linear combinations 

of one or more of the three generators 3815 ,, λλλ , we end up with Table 1 below: 
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Table 1: Fermions and Generators of SU(4)N and SU(4)P 

 
 In the above, we have segregated the SU(4)P and SU(4)N generators 

( ) 38
8
315 ,, λλλ LB −−=  from the remaining generators, so that we can clearly see that there are 

three linearly-independent degrees of freedom.  The remaining generators for Q, YR, YL, are all 
linear combinations of the first three generators, and so provide no additional degrees of 
freedom, while the trivial 03 =RI  can be obtained from any other generator by using the trivial 
coefficient 0.  We shall wish, in the course of our analysis, to maintain a focus on the 
independent degrees of freedom.  What makes the upper neutrium quadruplet not unified with 
the lower protium quadruplet is the fact, as mentioned above, that although all the other 
generators have the same form and values as between the upper and lower quadruplets as 
denoted by the “dittos,” the electric charge generators are defined by different linear 
combinations.  It is worth noting that for all of these fermions, LBYL −= , and so LY  is not itself 

a linearly-independent generator from 15λ .  
 
 The one generator that we do not see explicitly represented in the above, of course, is the 
generator 2

13 ±=LI  of left-chiral weak interaction, and this is related very intimately to the 

different Q generators as highlighted above.  So, let us now a) introduce 3
LI  and b) use this 3LI  in 

combination with LY  which happens to be equal in all cases to LB − , to specify 32/ LL IYQ +≡  

as it is ordinarily specified in electroweak theory.  Then, having Q in hand, and given 03 ≡RI , we 

may further specify QYR 2≡ .  So, let us take table 1 above, introduce all seven of the SU(8) 

diagonalized generators with the normalization ( ) 2
12 =iTr λ , and specify suitable linear 

combinations of these.  Then, let us review not only how this accommodates the fermions and 
generators in Table 1 above, but also the new interaction generators that are introduced and their 
possible physical significance.  
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Table 2: Fermions and Generators of SU(8) 

 
 Now, certainly, it is very simple and natural for the eight fundamental flavors and colors 
of fermion to each be made a member of the fundamental representation of SU(8).  And, if one 
has eight fermions, a natural question is, why not use SU(8)?  Sometimes, what appears to be the 
simplest approach really is the simplest approach, and leads to the best results, and we don’t have 
to try to “squish” eight fermions into a smaller group like SU(5) and then lose the right-chiral 
neutrino and split the representations.  The question we shall explore largely throughout the rest 
of this paper – which is one of the reasons why one might not use SU(8) – is whether this SU(8) 
is simply too large and can or ought to be made smaller.  (We shall answer this question, “no”!)   
By “too large,” we refer not to aesthetics, but to superfluity: does this group introduce extra, 
superfluous interactions which simply do not appear anywhere in the natural world.  Put 
concisely, the underlying question is this: is SU(8) sufficient, and is everything in SU(8) 
necessary?  (We shall answer this question, “yes”!) 
 
 Specifically, in going from two SU(4) groups in Table 1 to one SU(8) group in Table 2, 
we have gone from three independent generators 3815 ,, λλλ  to seven.  Out of these four new 

generators, we have left three of these, 354863 ,, λλλ , in their “native” form without alteration, 

pending further exploration of these generators below.  The fourth new generator, 24λ , we do not 
show explicitly.  Rather, we use the degree of freedom provided by 24λ to introduce the left-

chiral weak isospin generator 3LI , which we define as a linear combination of six of the seven 

“native” generators according to: 
 

8

3
215

3
224

5
235

15
248

21
463

7
23 λλλλλλ −−−−+≡LI . (4.1) 

 
One can readily check that ( ) ( )2

1
2
1

2
1

2
1

2
1

2
1

2
1

2
13 ,,,,,,,diag −−−−=LI  as in Table 2. 

Now, for the bottom quadruplet with ( )BGR uude ,,, , we have 15
3
22 λ−≡− LB  as before.  

But this relationship needs to be replicated out of the native generators for the top quadruplet 
( )BGR ddu ,,,ν  as well.  This is realized by the following linear combination of native generators: 
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15

3
224

5
2

3
235

5
3

9
448

213
463

7
4 2 λλλλλ −+++−≡− LB . (4.2) 

 
So we use (4.1) and (4.2) above to account for the two linearly-independent degrees of freedom 
in 24λ  and 15λ .  It is easy to check that ( ) ( )3

1
3
1

3
1

3
1

3
1

3
1 ,,,1,,,,1diag −−=− LB  as in table 2. 

 
 Similarly, we cannot use 8λ  alone, but must replicate this as well for the top quadruplet 
( )BGR ddu ,,,ν .  This is achieved by defining a 8λ′  generator according to: 

 
824

15
235

53
248

3
78 λλλλλ +−−≡′ . (4.3) 

 
A check finds that ( ) ( )

32
1

32
1

3
1

32
1

32
1

3
18 ,,,0,,,,0diag −−−−=′λ , as in Table 2. 

 
 Finally, and similarly, we need to define a 3λ′  according to: 
 

324
5
235

5
33 λλλλ +−≡′ . (4.4) 

 
This yields ( ) ( )2

1
2
1

2
1

2
13 ,,0,0,,,0,0diag −−=′λ  as in Table 2.  The foregoing, (4.1) through (4.4), 

account for four of the seven linearly-independent degrees of freedom in SU(8).  We have yet to 
explore the three native-form generators 354863 ,, λλλ . 
 
 From here, we define several other generators which are linear combinations of (4.1) 
through (4.4).  First, via (4.2), we define: 
 

15
3
824

5
2

3
235

5
3

9
448

213
463

7
4 λλλλλ −+++−=−≡ LBYL , (4.5) 

 
which happens to be exactly equal to LB −  in (4.2) and so is not linearly independent.  Next, we 
use (4.5) and (4.1) to define the electric charge generator in the usual manner, via: 
 

( ) 8

3
215

3
224

5
2

3
235

153
448

3
7

3
233

2
13

2
1 2 λλλλλ −−−−=++−=+≡ RLLL IILBIYQ . (4.6) 

 
One can check to see that ( ) ( )3

2
3
2

3
1

3
1

3
1

3
2 ,,,1,,,,0diag −−−−=Q , as required by Table 2.  (In the 

third expression we make use of 03 =RI , to show by way of contrast that Volovok’s [6] equation 

(12.8) also leads via a different route to the same ( ) 33
2
1

RL IILBQ ++−= .)  

 
 Next, we formally specify that the right-chiral generator  
 

03 ≡RI  (4.7) 
 



14 
 

is to be zero for all the fermions so that only left-chiral particles will interact weakly.  At the 
same time that we insist that the electric charge generator 
 

3
2
13

2
1

RRLL IYIYQ +≡+=  (4.8) 

 
is to be chiral symmetric for all fermions.  This insistence together with (4.6) finally leads to: 
 

 8

3
415

3
224

5
2

3
435

153
848

3
7

3
4 42 λλλλλ −−−−== QYR . (4.9) 

 
So at this point, all of the known quantum number of the fermions are fully specified, including 
the left and right chiral projections of Y and I3.  The fermions all reside in the fundamental 
representation of SU(8), and the proton and neutron are represented as well in the way that we 
have ordered the fundamental representation.  And, while all of the foregoing certainly accounts 
for the observed fermions and their quantum numbers, we still have three extra linearly-
independent degrees of freedom, which we can and will choose to associate with the generators 

354863 ,, λλλ  that we have left in their native state. 
 
 Now we come to a critical question, already raised, which is this:   With these three 
apparently superfluous degrees of freedom, does SU(8) provide too much freedom?  Does SU(8) 
provide more than what is necessary?  Might we find some way, in the spirit of Georgi Glashow 
SU(5), to “squish” these fermions into a smaller group and take away some of this apparently-
superfluous freedom?  The answer is, no.  And the reason is that this extra freedom is not 
superfluous, but is actually fully accounted for in the known particle phenomenology, and 
particularly, in the odd quirks of the neutrino and in the replication of fermion generations.   Let 
us see how. 
 
 First, the neutrino.  One of the very perplexing features of the neutrino is that it has 
almost no mass.  While the electron and the quarks do have different masses from one another, 
the neutrinos are in a league of their own, by orders of magnitude when it comes to their masses.  
The neutrino mass is almost zero, which means that it travels at very close to the speed of light, 
and because of the equivalence of gravitational and inertial mass, the fact that the mass of the 
neutrino is so very different from that of all the other fermions means that in some rough manner 
of speaking, it is gravitating differently as well.  For example, the mass of the electron’s neutrino 
is less than 2 eV [7], while the electron itself has a mass of about 511 KeV, which is over 
250,000 times as large.  This is of a totally different nature, involving completely different orders 
of magnitude, than the relationships 3518533694./mm eu =  and 6017233519./mm ed =  between 

the quark masses and the electron masses based on the quark masses arrived at in [9.3] and [9.4] 
of [2].  This appears to make the neutrino qualitatively different from all the other fermions, and 
we need to pinpoint the origins of this difference. 
 
 Now consider the 63λ  in Table 2 and the fact that 

74
163 −=λ  for all of the up and down 

quarks and the electron, but that 
74

763 −=λ  has a completely different value for the neutrino.  

Moreover, not only is the magnitude different by 7 to 1, but even more importantly, the sign is 
different.  Indeed, that is why we chose to place the neutrino as the very top member of the 
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SU(8) fermion octuplet.  That means that the neutrino will interact completely differently under 
the interaction associated with 63λ  – whatever that interaction may be – from any other fermion.  
But if there is any interaction under which the neutrino behaves differently than all the other 
fermions, it is the gravitational interaction, because the most pronounced way in which the 
neutrino differs from the other fermions is via its ghostly mass and thus its ghostly way of 
gravitating.  Further, we know on general principles that for any Yang-Mills gauge group which 
unifies gravitation and the other three interactions, there will have to be at least one degree of 
freedom given to the gravitational interaction.  The only question is how this appears.  
 
 So, we now make a preliminary association of the 63λ  generator with a degree of 
freedom for a gravitational interaction, and we do so in a way that bakes in for the neutrino, an 
entirely different way of gravitating and thus displaying its mass, than that of any other fermion.   
 

So, now we have accounted at least in a general way (which we shall seek to deepen in 
the upcoming discussion) for all four of the known interactions, but we still have two more 
degrees of freedom unaccounted for, namely, those provided by 3548, λλ .  What are we to make 
of these?  This brings us again to the question: does this not give us too much freedom?  And 
again, the answer is, no! 
 
 We still have to account for the replication of fermions into three generations, which is 
another oddity of the material world almost as mysterious as the oddities of the neutrino just 
discussed.  Let ask the question directly: even if 63λ  is related to gravitation and can explain why 
the neutrino behaves so differently from all the other fermions, 3548, λλ  still give us two 
apparently superfluous degrees of freedom.  What does this mean?  What can we do with those 
extra two degrees of freedom?  And specifically, might they be origin of generation replication? 
 
 Any time we have two degrees of freedom, it is possible to construct three eigenstates out 
of those degrees of freedom.  So, let us do just that, and label these states τµ,,e : 

                 
Figure 1: Three Generation Eigenstates Constructed from λ’48 and λ’35 
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We have use “primes” in these generators, because if they do represent the degrees of freedom 
associated with generation replication, they do not act in same way as the remaining generators 

38152463 ,,,, λλλλλ  in Table 2.   These other five generators represent a “vertical” symmetry 
wherein each of the eight fermions are distinguished from one another by different quantum 
numbers.  But the appearance of three generations for which the quantum numbers are identical 
from one generation to the next, and for a given fermion, its generation is distinguished 
exclusively by rest mass, is a horizontal symmetry.  And it is for and to this horizontal 
symmetry, that we shall develop and devote the generators 3548, λλ ′′ . 
 
 Now, in the forthcoming discussion, we shall discuss some possible approaches to 
uncovering the particular mechanism by which these two generators 3548, λλ  separate themselves 

from the remaining vertical generators 38363 ,,,, λλλ ′′− LBI  to situate themselves horizontally.  
The only point being made at the moment, is that two extra generators in Yang-Mills theory, 
such as 3548, λλ , provide enough freedom to support three distinct states as in Figure 1.  And 
these three states will come equipped with their own 3x3 unitary matrices U to mix these sates.  
And, if we are asking ourselves whether the extra two generators 3548, λλ  provide too much 
freedom at the same time that we are seeking an explanation of the three fermion generations, 
and given that those two extra generators provide precisely the freedom needed to allow each 
particle to exist in one of three additional horizontal generational states, then perhaps these are 
not superfluous after all, but are instead the source of the generations.  In that case, SU(8) 
becomes a perfect fit, large enough to accommodate all that is observed including the 
idiosyncratic behavior of the neutrino and the replication of fermion generations, and not one bit 
larger so as to contain anything superfluous that is not observed. 
 
 So below, we shall use the schematic symbol ∴ to denote a visual shorthand for Figure 1 
above: a condensed symbol that represents two degree of freedom which are used to provide 
three distinct states τµ,,e  which appear in Figure 1.  And, let us replace the generators 3548, λλ  
with this schematic to represent the horizontal symmetry of generation replication.  Thus, we 
now rewrite Table 2 in the following form: 
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Table 3: Fermions and Generators of SU(8), with Generation Replication  
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 So now, SU(8) has nothing superfluous, all eight fermions are represented with both left 
and right-chiral states, and each can exist in one of the three τµ,,e∴≡  horizontal generation 
eigenstates.  We see that there are now four vertical interactions: 1) the strong QCD interaction 
with three color states and two generator degrees of freedom 38,λλ ′′ ;  2)  the weak isospin 

interaction represented by 3LI ; 3) a LB −  interaction to which the electromagnetic interaction of 

(4.6) is linearly related by ( ) 3
2
13

2
1

LLL ILBIYQ +−=+≡ ; and 4) a final 63λ  providing a degree of 

freedom for a gravitational interaction, under which all fermions except the neutrino interact in 
one way, and under which the neutrino acts in a very different way, in a league by itself.  This is 
the unbroken GUT group that seems best situated to fully accommodate not only all the known 
fermions and interactions and their key phenomenological properties, but the Yang-Mills 
magnetic monopoles which we now know are baryons. 
 
5.  Spontaneous Symmetry Breaking of SU(8) at the Planck and GUT Energy Scales, and 
the Emergence of Fermion Generations and Fermion Mass Degrees of Freedom 
 
 In section 8 of [1], we reviewed spontaneous symmetry breaking in the Georgi-Glashow 
SU(5) model, to provide a backdrop for breaking the protium and neutrium groups via 

LBCPP USUSU −′ ×→ )1()3()4(  and LBCNN USUSU −′ ×→ )1()3()4( .   This of course led to stable 

protons and neutrons and later to the several accurate empirical binding energy predictions 
already noted.  Here, we review a similar symmetry breaking based on the SU(8) group 
developed in the previous section.  Specifically, we review three symmetry breaking operations: 
a first symmetry breaking operation using the “gravitational” generator 63λ  at or near the Planck 
scale; a second symmetry breaking operation using the LBYL −≡  generator at an ultra-high 
GUT energy perhaps in the 1015 GeV vicinity, and a third break of the electroweak symmetry at 
the Fermi scale using the electric charge generator Q.  It is this third symmetry breaking that we 
hope to use to accurately predict the proton and neutron masses as discussed in section 3.  But to 
set the context, let us start with the first two high-energy symmetry breaking operations using 

63λ  and LBYL −≡ . 
 
 If 63λ  is indeed a gravitational generator, then its mass scale will be at or near (within an 
order of magnitude of) the Planck mass which is defined by cGM P h≡2 , where G is the 
gravitational constant and ch  contains the Planck constant and the speed of light.  In terms of 
energies that we have been discussing here, GeV x .M P

19102211≅  is nineteen orders of 
magnitude larger than the proton mass.  It is theorized that at this energy, there is a violent sea of 
vacuum perturbations, and two of the best references to review this understanding are [8], [9]. 
 

Without yet going through all the details in this pass, if we employ the Lagrangian (3.2) 
and specify a Planck vacuum 63...1; ==Φ iiP

i
P φλ ,  we may break symmetry or near at 

PP Mv =  using the 63λ  generator such that: 
 

63λPP v≅Φ , i.e.,     ( ) ( ) ( )1,1,1,1,1,,1,1,7diagdiag
282

1 −−−−−−−≅=Φ PiP
i

P vφλ , (5.1) 
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with 62...1;0 == iiPφ  otherwise.  (Again, we are not concerned here with the exact relationship 

which why we use ≅  rather than =, but rather an order of magnitude examination of the 
qualitative features of this symmetry breaking.)   This would immediately set the neutrino which 
is the top member of the elementary fermion octuplet ( ) ( )( )BGRBGR uudeddu ,,,,,,,ν  on a course 

to behave differently from all the other particles.  If 63λ  is indeed a gravitational degree of 
freedom which notion we began to entertain in the last section, then it makes sense to regard the 
degree of freedom that 63λ  provides to be a freedom associated with the rest mass of the fermion, 
i.e., to be a mass degree of freedom.  So with symmetry breaking of the neutrino from all the 
other fermions at the Planck scale, below the Planck scale all of the fermions except the neutrino 
would have one mass, and the neutrino would have a different mass.  Most notably, the neutrino 
would have an oppositely-signed generator from all of the other seven fermions, which we shall 
revisit in the next section.   Thus, the neutrino can be expected right from the start, to behave 
very uniquely as regards its mass, and as regards to how it gravitates.  This could be a root cause 
of why the quark mass to electron mass ratios are 3518533694./mm eu =  and 

6017233519./mm ed = , while 000,250>ν/mme .  One can envision that masses which are equal 

at the Planck scale might separate so that they differ from one another by factors of of 4.35 to 1 
or 9.60 to 1 at observable energies.  But for a ratio 000,250>ν/mme  we expect this to be more 

than “screening adjustments” as we go from high to low energies.  We expect this to be “baked 
in” to the underlying structure of the GUT gauge group right from the start. 
 
 Moving on, let us now venture down to the vicinity of a second GeVvGUT

1510≅ , where 

we break the symmetry with LBYL −≡ .  Again, we are simply for the moment talking about 
orders of magnitude for this energy scale.  In fact, we have already discussed LB −  symmetry 
breaking at some length in section 8 of [1].  But in that earlier discussion, we regarded PSU )4(

and NSU )4(  as disjoint groups each breaking down via LBCPP USUSU −′ ×→ )1()3()4(  and 

LBCNN USUSU −′ ×→ )1()3()4(  to produce a ( ) ( ) ( ) ZUUSU BBC ==×′ )1()1()3( 111 πππ  homotopy 

group with stable magnetic monopoles, essentially based on the disjointed groups of Table 1.  
Now, in contrast, we have taken another step forward by conjoining these groups into SU(8) as 
represented by Table 2 above.  So the symmetry breaking we are about to explore is a 
“wholesale” breaking of PSU )4( and NSU )4(  together at once, versus the parallel, but “retail” 

symmetry breaking of PSU )4( and NSU )4(  which we conducted in section 8 of [1]. 

 
It is also worth noting as reviewed in section 8 of [1], that Georgi and Glashow also break 

symmetry using the Y generator, albeit such that ( ) ( ) ( )2
1

2
1

3
1

3
1

3
1 ,,,,diagdiag −−−==Φ GUTi

i vT φ  

for a right-chiral quintuplet  ( )RCCBGR veddd −,,,,  of fermions.  So here, we are doing exact same 

think as Georgi and Glashow insofar as using a Y generator to break the GUT symmetry circa 
1015 GeV, but we are merely using a different group SU(8) versus SU(5), with all the fermions in 
the fundamental representation as shown in Table 2.  Now let’s proceed. 
 
 The group is now SU(8).  Exactly as in [8.1] of [1], the vacuum we use is: 
 



19 
 

( ) LGUTGUTGUT YvLBv =−=Φ  (5.2) 

 
Here, however, because of the SU(8) group: 
 

( ) ( ) ( ) ( ) L3
1

3
1

3
1

3
1

3
1

3
1 diagdiag,,,1,,,,1diagdiag YvLBvvT GUTGUTGUTi

i
GUT =−=−−≡=Φ φ .(5.3) 

 

Unlike section 8 of [1], we no longer have 15
3
8λ−≡− LB  from which we set  GUTv3

2
15 2−=φ  

and so obtain the Clebsch-Gordon coefficient via GUTGUT vCv 222
3
82

15 ==φ .   Rather, here we 

have a LB −  specified in (4.2) which is a linear combination of five generators.  Thus, to break 
symmetry here, picking off the coefficients in (4.2), we now must set: 
 

GUTGUTGUTGUTGUT vvvvv 3
2

155
2

3
2

245
3

9
4

35213
4

487
4

63 2;;;; −====−= φφφφφ , (5.4) 

 
with all the remaining 0=iφ .  The invariant scalar: 

 

( ) GUTGUTGUT vCvv 222
21
802

3
24

59
24

581
316

219
16

7
162

15
2

24
2

35
2

48
2

63 ≡=++++=++++ ⋅
⋅
⋅

⋅
⋅

⋅φφφφφ , (5.5) 

 

yields a Clebsch-Gordon coefficient 21
802 =C .  (Note the 3

82 =C  from the earlier 15
3
8λ−≡− LB

included in the calculation of the above.)  One may then employ the usual procedure such as is 
outlined in (11.5) and (11.6) of [1] to obtain gauge bosons masses in the usual way, and these 
will have masses on the order of GUTv2 . 
 
 But our interest here is in what happens at lower energies, after this symmetry has been 
broken, because that brings us into energy ranges with are experimentally observable. 
 
 First, by breaking symmetry via ( ) LGUTGUT YvLBv =−=Φ , which for which the generator 

eigenvalues are ( )3
1

3
1

3
1

3
1

3
1

3
1 ,,,1,,,,1 −− , we “fracture” the eight fermions in Tables 2 and 3 into a 

1−=−= LBYL  hypercharge doublet of leptons ),( eν  and a 3
1=−= LBYL  hypercharge 

sextuplet of quarks ( )( )( )BGRBGR dduuud ,,,, .  Of course, we know that ( )BGR uud ,,  is a proton 

and ( )BGR ddu ,,  is a neutron, so this sextuplet may also be viewed as the 1=−= LBYL  proton / 

neutron doublet ( )np, .  Referring to Tables 2 and 3, the weak isospin for each doublet ),( eν , 

( )np,  is given by ( )2
1

2
13 ,−=I .  Of course for the proton this is arrived at by adding 

2
1

2
1

2
1

2
13 ++−==I  for its three quarks, and for the neutron similarly via 2

1
2
1

2
1

2
13 −−=−=I .  

Note also that by virtue of how the triplets in ( )( )( )BGRBGR dduuud ,,,,  are ordered, each entry in 

( )BGR uud ,,  forms a weak isospin doublet with respect to its corresponding same-colored entry in 

( )BGR ddu ,, .  Each of the three quarks also enjoys two color degrees of freedom R, G, B 

associated with the SU(3)C’ generators 38,λλ ′′ , see (4.3) and (4.4).  So the group arrived at 
following LB −  symmetry breaking is schematically represented by: 
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LBYWCLB L
USUSUSUSUSU −=××=×→ )1()2()3()2()6()8( ' . (5.6) 

 
The ( ) LGUTGUT YvLBv =−=Φ  symmetry breaking has fractured the quarks from the 

leptons into a sextuplet of quarks each with 3
1=B  and a doublet of leptons each with 1=L .  Just 

as in Georgi / Glashow, this breaks a lepto-quark symmetry.  This is the origin of the 

LB SUSU )2()6( ×  factor.  But the quarks are grouped into a proton and neutron doublet with 

( )2
1

2
13 ,−=I , and of course the two members of the lepton doublet also both have ( )2

1
2
13 ,−=I .  

This is the well-known “isospin redundancy” that exists and between quarks / baryons and 
leptons and has led to the consideration of “preon” models such as that discussed in section 12 of 
[6].  For quarks/baryons, we represent their status following LBYL −=  symmetry breaking as 

LBYWC L
SUSU −=×× )1()2()3( ' .  That is, the proton and neutron each containing an ')3( CSU  color 

triplet of quarks form an WSU )2(  weak doublet ( ) LBYWC L
SUSUnp −=××↔ )1()2()3(, '  with 

every single fermion containing an identical 3
1=−= LBYL , hence the LBYL

U −=)1(  factor.   For 

leptons, the neutrino and electron form an WSU )2(  weak doublet ( ) LBYW L
SUe −=×↔ )1()2(,ν  

with each containing an identical 1−=−= LBYL , hence the LBYL
U −=)1(  factor, albeit for a 

different value of LBYL −=  than that of the quarks / baryons.  Overall, with the detailed 
interrelationships just noted, we reproduce the phenomenological product group 

YWC USUSU )1()2()3( ×× . 

 
 Given that we have used ( ) LGUTGUT YvLBv =−=Φ  for symmetry breaking at GUTv , all 

that we have just described should be readily apparent from Figures 2 and 3.  But a bonus that we 
obtain here, which is not obtained in Georgi-Glashow SU(5), is the fermion generation 
replication.  This is how: 
 

In SU(5) which is broken using YvGUT=Φ , there are four degrees of freedom based on 

the linearly-independent generators 381524 ,,, TTTT .  After symmetry breaking there are still four 

degrees of freedom; they are merely reshuffled into 38 ,λλ  for CSU )3( , 3I  for WSU )2( , and Y 

for YU )1( .  None of these degrees of freedom disappear after symmetry breaking; they simply sit 
across one another in several “irregular” linear combinations. 
 
 Here, however, in going from LB SUSUSU )2()6()8( ×→ , two “vertical” degrees of 
freedom “disappear,” because SU(8) has seven generators while SU(6) has only five, and the 
separate B and L subscripts in LB SUSUSU )2()6()8( ×→  are all part of a single degree of 

freedom represented by LBYL −= .  But this reduction-by-two in the degrees of freedom cannot 
vanish into thin air; it must show up in some other way.  That is, following symmetry breaking 
using ( ) LGUTGUT YvLBv =−=Φ , there are two-free floating degrees of freedom from 3548,λλ  

that have become decoupled from the remaining five vertical degrees of freedom.   But, as shown 
in Figure 1, these free-floating degrees of freedom have precisely the properties needed to create 
a new horizontal freedom with exactly three states.  So we label these three states as τµ,,e  as in 
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Figure 1, we associate this with the fermion generation replication, and we therefore make a 
carbon copy of each fermion in triplicate, using the conventional symbols btscdu ,,,,,  for the 

quarks, τµ,,e  for the electron family, and τµ ννν ,,e  for the neutrino family.  The vertical 

quantum numbers associated with each family tcu ,, ; bsd ,, ; τµ,,e  and τµ ννν ,,e  are identical 

within each family.  The fermions within a family are distinguished only by the mass values, and 
so apparently, it is the free-floating generators 3548,λλ  which provide the fermion mass degrees 
of freedom to enable each fermion within a family to take on one of three mass values.  Thus we 
may formulate Table 4 below: 
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Table 4: Quarks and Leptons with Generation Replication Following B-L=YL GUT 

Symmetry Breaking  
 
 Studying Table 4 and the above comments about the generational mass freedom, we now 
can better develop our understanding of the so-called gravitational degree of freedom 63λ  which 
we discussed a short while ago in relation to (5.1).  Whereas 3548,λλ  provide freedom for the 
fermions within any given family to take on one of three mass values, we also need a degree of 
freedom for each of the four basic fermion “prototypes” due ,,,ν  to have different masses, as is 

also clearly observed.  This, in fact, is the role of 63λ .  While the neutrino is set on a different 
mass trajectory at the outset at the Planck scale because its 63λ  generator eigenvalue is 7

282
1 ⋅  

while that for all of the other fermions is the oppositely signed 
282

1−  with 1/7 the magnitude, the 

fact that all fermions but the neutrino have the same 63λ  tells us that at the Planck scale all of the 
due ,,  have the same mass, and that the differences among these masses that we detect at 

observable energies stems from the differences introduced by the other vertical generators 
LBI L −,3 .  So we now see that collectively speaking, the three generators 354863 ,, λλλ  are all 

responsible for providing the mass degree of freedom to the fermions, with 63λ  providing a 
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vertical freedom to differentiate among due ,,,ν ,  and with 3548,λλ  providing two more 
horizontal degrees of freedom to differentiate the mass spectrum within a given family into three 
permitted values.  To the extent that one regards the quantum degrees of freedom that lead to 
discrete fermion masses as related to gravitational interactions given that mass and gravitation 
are inextricably linked, we now conclude that all three of 354863 ,, λλλ  are the quantum 

generators of gravitational interactions, similarly to how 38,λλ  generate strong interactions.  But 

these act differently insofar as 1) 63λ  act vertically while 3548,λλ  act horizontally, and 2) 3548,λλ  

only start to act horizontally once they decouple from the other vertical generators at GUTv  as a 

consequence of the lepto-quark symmetry breaking using the vacuum ( )LBvGUT −=Φ . 

 
 Finally, what this tells us is that in order to ascertain an answer to the question “why do 
the fermions have the masses they have?,” the theoretical answer is this:  follow the 354863 ,, λλλ  

generators, understand how 3548,λλ  separate out and start to act horizontally at GUTv , and 

understand how the masses evolve as one moves downward in energy from there toward the 
masses we so observe in the laboratory.  In this regard, if 63λ  is used to break symmetry at or 
near the Planck scale as in (5.1), then we immediately see a break from )1()7()8( USUSU ×→  
with the neutrino fractured from all the other fermions.  So, we already lose one vertical 
generator, which we take to be 48λ , which decouples and becomes horizontal.  So below the 
Planck scale but above the GUT scale, we would expect to see two fermion generations.  Then, 
as we pass downward through the GUT scale and break the lepto-quark symmetry as in (5.2), we 
drop down to LB SUSU )2()6( ×  and now two of the generators have decoupled from vertical to 
horizontal giving rise to a third generation.  It would therefore make sense to believe that the 
observed substantial variation from first to second generation masses, and then again from 
second to third generation, has it origin in this sequential breaking of symmetry that starts with 
one generation at the Planck scale, turns into two generations between the Planck scale and the 
GUT lepto-quark scale, and turns into three generations below the GUT scale.  And it would 
seem to make sense due to their relatively larger masses that the high mass fermions, namely the 

bt,,,τν τ , are the ones that already exist in precursor form at the Planck scale due, that the 

sc,,,µν µ  arise between the Planck scale and the GUT scale, and that the duee ,,,ν  which 

predominate and are the ground states at observable energies are the last generation to emerge, 
below the GeV1510~  scale at which the lepto-quark symmetry is broken. 
 
 One final point before concluding this section pertains to chiral symmetry.  Because the 
left-chiral generator LBYL −=  for all fermions, at the same time that we break symmetry at the 
GUT energy using (5.2) and (5.3), we have forced a breaking of chiral symmetry as well.  That 
is, the weak interactions start to become chiral non-symmetric at the GUT scale, as part and 
parcel of the LBYL −=  symmetry breaking.  As discussed briefly at the end of section 5 of [1], 
baryon and meson physics is endemically, organically non-chiral, which is consistent with what 
is experimentally observed, all with  32105 γγγγγ i=  being the mainspring.  Via what may be 
thought of as a Hamiltonian “quinternian” 32105 γγγγγ i= , any time one has what looks like a 
“vector” object from one viewpoint, one can use 32105 γγγγγ i=  to create an “axial” object from 



23 
 

another viewpoint, and “vector” and “axial” turn out to have a duality relationship that is integral 
to the Dirac algebra.  So given the degree to which baryon physics is fundamentally non-chiral, it 
makes perfect sense that as soon as protons and neutrons are crystalized into being as stable 
magnetic monopoles by LBYL −=  symmetry breaking, we also bring about the non-chiral 
nature of the weak and weak hypercharge interactions.  
 
6.  The Geometrodynamic Planck Vacuum, and What Makes the Neutrino Different 
 
 With all that we have learned in section 5, let us make a second pass through the Planck 
scale, and to see what else we may be able to learn. 
 

It has long been believed, and experimentally given credence by the Lamb-Rutherford 
shift in electromagnetic phenomenon, that near the Planck length, 1.61624 x 10-35 meters, and 
over Planck time scales of 5.39121x10-44 sec, there is a violent sea of vacuum perturbations with 
Planck energy 1.221 x 1019 GeV, see the earlier referenced [8] and [9] where this is developed in 
detail.  It is also well-understood that energy fluctuations of this magnitude on such a small scale 
do have the effect of topologically creating microscopic black holes, also called wormholes, with 
a Schwarzschild radius at or near the Planck length.  Let us now take a closer look at exactly 
what is believed to occur at this scale.  Again, as discussed in section 2, it is unlikely that humans 
will ever be able to directly observe physics at the Planck length, but the development of such 
physics in the context of a GUT may lead us to low energy mass and energy predictions which --
- if they accord with empirical data – could then give us some confidence that the GUT which 
leads to such accord is also describing the Planck-length physics “behind the veil” with some 
semblance of accuracy. 
 

When Wheeler talks in his seminal work [9] about the geometrodynamic Planck vacuum, 
the vacuum he envisions is constructed from a series of simple algebraic calculations with which 
it is important to be familiar.  So let us review those here.  First, Newton’s law of gravitation 

2
2 / rmGmF i=  contains a numerator 2mGmi  which has the same dimensions as the natural 

constant ch .  So the Planck mass 2
PM  is defined as the unique, natural mass unit formed out of 

the Newtonian numerator from G, h  and c, namely: 
 

cGM P h≡2 . (6.1) 
 

The above  means that GcM P /h=  so that the Planck energy GccME PP /52
h== .  The 

Fermi vev v energy is similarly defined using the Fermi constant as ccvG FF h≡42 /2 , with the 

2  having historical origins based on how FG  was first defined before electroweak interactions 

were well-understood.  Comparing “apples to apples” the correspondence is FGG 2↔ .   
 
 The Compton wavelength of a Planck mass (6.1) is easily calculated to be: 
 

3
/

c

G
cM PP

h
hD == . (6.2) 
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Now we consider a large collection of Planck masses PM  separated from one another by PD , in 
what would be a natural state of resonance.  The negative gravitational potential energy EG 
between any two PM  separated by PD  is easily calculated to be: 
 

P
PP

P
G E

G

ccGM
E −=−=−=−=

52
h

D

h

D
. (6.3) 

 
But this is simply the negative of the Planck energy!  So as Wheeler first surmised, a collection 
of Planck mass fluctuations (on average) separated by the Planck length (on average) averages 
out to be a vacuum because the negative gravitational energy precisely cancels the positive 
Planck energies which are posited in the first place.  Nonetheless, in very localized regions on 
the order of PD , there are very violent fluctuations of very high energy occurring.  This is the so-
called “geometrodynamic vacuum.” 
 
 It is also important to note that the Schwarzschild “black hole” radius for a (non-rotating) 
Planck mass may be calculated to be: 
 

P
P

S c

G

G

c

c

G

c

GM
r λ22

22
322

==== hh
. (6.4) 

 
Because the black hole radius is twice as large as the Planck length, this means that all of these 
fluctuations are occurring out of sight, behind a black hole horizon. 
 
 On top of this, Hawking [10] teaches seventeen years after Wheeler’s initial elaboration 
of the geometrodynamic vacuum, based on general relativistic gravitational theory, that black 
holes emit a blackbody radiation spectrum.  So if we recognize that the Planck vacuum is a 
vacuum in which the masses on average are Planck masses separated on average by the Planck 
length, and we ask “what is the actual statistical distribution of these energies about the 
average?” Hawking provides a clear answer: because these fluctuations are occurring behind an 
event horizon, the distribution is externally observed as a thermodynamic, blackbody spectrum.  
It would also make sense, therefore, to consider the prospect that when we observe blackbody 
radiation in the natural world, we are in fact observing the Planck vacuum from twenty orders of 
magnitude removed, which would render the blackbody spectrum that kicked off the quantum 
revolution in 1901 [11], a consequence of gravitational theory.  So much for disunion between 
gravitational theory and quantum theory!  
 
 But returning to GUTs, the Wheeler vacuum also teaches us something about the 
generator 63λ  with ( )1,1,1,1,1,1,1,7)(diag

282
163 −−−−−−−=λ  which we are associating on a 

preliminary basis with gravitation.  One may look at the Planck vacuum in one of two entirely 
equivalent ways:  First, one can say that there are a tremendous number of fluctuations with 
positive energy PE+  on average, separated by PD  on average, thus giving rise to an equal 

amount of negative gravitational energies PE−  on average, thus resulting in a vacuum on 
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average, which has a blackbody distribution of energy when viewed from outside the event 
horizon.  Second, one can start with negative energy fluctuations, separate them by PD , and they 
will gravitate to produce positive energy fluctuations.  Each way of looking at this is equally 
valid, it is indeed a “chicken and the egg” question.  One can develop an equally sensible 
description of the exact same physics no matter where one starts: positive Planck masses 
producing negative gravitational energies, or negative Planck masses producing positive 
gravitational energies.  It does not matter.  These are two alternative descriptions of exactly the 
same thing. 
 
 Now, let’s talk about specific fermions, such as the ( )BGRBGR uudeddu ,,,,,,,ν  of our 

SU(8) GUT group.  How do these actually take root?  How are they “born?”  Through the lens of 
1957, referring to electromagnetic charge Q, Wheeler says in [9] that “classical charge appears as 
the flux of lines of force trapped in a multiply connected metric . . . trapped by the topology of 
the space.”  In other words, charge gets “trapped” in the black hole wormholes.  Updating this 
with all that we have learned in the intervening half century especially about Yang-Mills gauge 
theories and how charges such as the electric charge arise from the generators of Yang-Mills 
theory, we might say that these Planck-mass fluctuations “trap” the Yang-Mills internal 
symmetries (which include the electric charge), and that this is how particles are “born.”  Or, in 
parlance we introduce here, the physical fermions ( )BGRBGR uudeddu ,,,,,,,ν  arise when a 

Planck-scale fluctuation is “fertilized” by the Yang-Mills generators of internal symmetry.  So a 
neutrino ν  is born when a fluctuation with Planck mass magnitude is fertilized by the generator 
eigenvalues in Table 2 corresponding to the neutrino.  The same holds true for the up quark (in 
three colors), the down quark (in three colors) and the electron.  Then, as Wheeler points out, the 
particles we observe from 20 order of magnitude lower, have had all but the most miniscule 
portion of their original ~MP masses cancelled / averaged out by the positive and negative energy 
fluctuations of the vacuum, leaving behind only a small mass residue which results from the 
trapping of the field lines, i.e., from the fertilization.  Those are the particles and masses we 
observe.  
 
 But if the Planck vacuum raises a chicken and the egg question, the next question is this: 
how does nature decide whether the egg comes first or the chicken comes first?  Does nature 
fertilize the positive energy fluctuations into observed particles, or the negative energy ones?  Or, 
might she fertilize both?  And what would a fertilized positive energy fluctuation look like, 
versus a fertilized negative energy fluctuation?  And, fundamentally, how is this precisely-
balanced positive versus negative energy symmetry in the Planck vacuum broken, in favor of the 
very miniscule (relative to the Planck vacuum) preponderance of positive energy over negative 
energy that we observe in the material universe? 
 
 This is where our ( )1,1,1,1,1,1,1,7)(diag

282
163 −−−−−−−=λ  generator comes in.  If this is 

a gravitational generator as we have begun to surmise, and if this generator is actually used to 
break symmetry at or near the Planck energy as in (5.1), and given that this is the energy at 
which gravitation is dominant as is clear from (6.1) through (6.4), then this generator will have a 
great deal to do with how the Planck vacuum first gets fertilized to produce what we observe.  So 
given that the gravitational charge of the neutrino is of opposite sign from the gravitational 
charges of all the other fermions suggests that perhaps neutrinos are fertilized negative energy 
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Planck vacuum fluctuations and the up and down quarks and the electron are all fertilized 
positive energy Planck vacuum fluctuations.  Not only would this neatly resolve the chicken and 
egg problem, but it would explain many other things as well.   
 
   First, this would truly place neutrinos in a class by themselves.  They would be born of 
negative energy Planck scale fluctuations, brought about via the gravitational interactions of 
positive energy Planck scale energy fluctuations.  Second, above the Planck energy, behind the 
event horizon, we would expect there to be a complete symmetry among all of the octuplet 
members ( )BGRBGR uudeddu ,,,,,,,ν .  Any one fermion can readily decay into any other, and all 

would exist in equal numbers as part of an octuplet set.  Thus, any time there was a neutrino, 
there would also be seven other fermions to go along with that neutrino. 
 

Then, after we break the symmetry and the neutrino hooks up with negative energy 
fluctuations and the other seven fermions hook up with positive energy fluctuations, we would 
have a seven-to-one ratio of fermions which are rooted in positive energy fluctuations over 
fermions rooted in negative energy fluctuations.  So as we reached lower and lower energies, 
there would be a net dominance of positive energy-rooted fermions over negative energy-rooted 
fermions.  As such, this could help to explain how the positive versus negative energy symmetry 
of the Planck vacuum becomes broken.  Third, while we conventionally hold to the view that all 
matter gravitates the same way as all other matter, this would tell us that this conventional 
wisdom holds true for all matter except the neutrino.  Below the Planck scale, the neutrino would 
fundamentally be a fermion rooted in negative energy fluctuations, while all of the other 
fermions would be rooted in positive energy fluctuations.   This could certainly provide some 
degree of confidence that as we start to trace the development of the fermions from the Planck 
scale down to the laboratory scale, we may come to understand why 3518533694./mm eu =  and 

6017233519./mm ed = , while 000,250>ν/mme .  The neutrino would start off in the Planck 

vacuum with a negative energy νε+− PM~  where νε  represents the alteration in energy due to 

the fertilization of the fluctuation, while all the other fermions f would start off with a positive 
energy fPM ε++~ .  Then, after the screening of twenty orders of magnitude, the neutrino mass 

would end very close to, and slightly larger than zero, and the rest of the fermion masses would 
end up more substantially above zero, with the observed masses between 5105.2 ×  and 6105.2 ×  
times as large as what is observed for the neutrino.   Further, if the neutrino gravitates differently 
from every other fermion, then its elusive, idiosyncratic behaviors may be much better 
understood.  From a technology viewpoint, this also suggests that if one ever hopes to develop 
technologies that can “shield” gravitation or overcome gravitational attraction other than by the 
brute force of rocket propulsion, the neutrino would be central to that undertaking.  Harvesting 
and controlling the elusive neutrino would be the core technology challenge.  And, since 
neutrinos do exist throughout the universe as elusive as they may be, this would also mean that 
cosmological theories based on the supposition that all matter gravitates the same way would 
have to be modified to recognize that the neutrino defies this supposition. 
 
 As a consequence of the forgoing, let us now choose a negative gravitational charge for 
the neutrino to go with the negative energy fluctuations, as a matter of convention.  Then, let us 
introduce the hypothesis – which needs to be borne out through detailed calculation of its 
consequences – that the neutrinos are in fact born at or near the Planck scale when negative 
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energy gravitational fluctuations in the Planck vacuum become fertilized with the gravitational 
charge of the neutrino 7

282
163 ⋅−=−= λν , and that quarks and electrons are born at or near the 

Planck scale when positive energy gravitational fluctuations in the Planck vacuum become 
fertilized with the gravitational charge of a quark or an electron 7,,

282
163 ⋅=−= λedu .  And in 

this regard, choosing the convention of a negative gravitational charge for the neutrino to go with 
the negative Planck energy fluctuations, we now explicitly define a gravitational interaction 
generator: 
 

( )1,1,1,1,1,1,1,7)(diag;
282

163 −=−≡ GG λ . (6.5) 

 
We may find occasion to adjust this coefficient 

282
1  as we calculate from this point forward, but 

this sign reversal, and the identification of 63λ  with a gravitational generator G, makes clear a) 
that the neutrino is understood to gravitate differently than all the other fermions and b) that the 
neutrino is rooted in negative energy Planck fluctuations while all the other fermions are rooted 
in positive fluctuations.  Or, as Wheeler might say, the neutrino lines of forces are trapped in 
negative energy topological wormholes, and the quark and electron lines of force are trapped in 
positive energy topological wormholes. 
 
7.  Spontaneous Symmetry Breaking, Fermion Fractures, and Intergenerational Cabibbo 
Mixing of Left-Chiral Hypercharge Doublets 
 
 As we now return to spontaneous symmetry breaking, it will be important to develop an 
understanding of what we shall call “fermion fractures.”  While the fermion fracturing we are 
about to describe may already be implicitly understood as a feature a spontaneous symmetry 
breaking, it is important to make this understanding explicit, as this will play a crucial role in 
understanding generation replication, and especially, the Cabibbo mixing which for leptons leads 
to so-called neutrino oscillations (which have been largely responsible for demonstrating that the 
neutrino does have some tiny mass, contrary to what may have been believed a two or three 
decades ago). 
 
 When a gauge group has not been broken at all, and assuming that fermions have been 
assigned to the fundamental representation of that gauge group, then any one fermion is 
completely free to decay into any other fermion.  SU(3)QCD provides a good example of this.  As 
we can see from Table 1, or as will be understood in any event, there are three color eigenstates 

0, 3

3
18 === λλR , 2

13

32
18 , =−== λλG , 2

13

32
18 , −=−== λλB .  The symmetry is not 

broken, so any of these eigenstates may freely decay into any other one of these eigenstates, even 
though their quantum numbers are different.  For example, all three color states R, G, B have 
completely different 3,λ , namely, 2

1
2
13 ,,0 −=λ , yet they freely transition among themselves, 

which is central to QCD interactions. 
 
 Once symmetry is broken, however, some fermions become “fractured” from some other 
fermions, and they are forbidden from decaying into one another except under very limited 
conditions.  It is these limited conditions which are of central interest in the discussion following. 
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 Let us first break the symmetry of SU(8) at the Planck scale using (5.1), which we recast 
in light of (6.5) as: 
 

GvPP ≅Φ , i.e., ( ) ( ) ( )1,1,1,1,1,,1,1,7diagdiag
282

1 −≅=Φ PiP
i

P vφλ , (7.1) 

 
What then happens?  Of course, similarly to what was discussed in section 8 of [1], the vacuum 
commutes such that [ ] 0, =Φ i

P λ , 481K=i .  It also self-commutes with G, that is, 

[ ] [ ] 0,, ==Φ GGvG PP .  But let us look at the fermions themselves.  The neutrino, with 

7
282

1 ⋅−== Gν , becomes fractured from all the other fermions with 
282

1=G , and can no 

longer decay into any of these other states via the generator G that was used to break the 
symmetry.  It would be as if the red quarks in QCD were suddenly forbidden from decaying into 
green or blue quarks – but of course they can do so because the QCD symmetry is never broken.  
If G is a gravitational generator, then the neutrino can no longer undergo a gravitational decay 
through G into any other fermion.  But it may still undergo other types of decay through the 
generators of other interactions.  Let’s elaborate: 
 
 If the neutrino is to decay into any other fermion after the symmetry is broken via (7.1), it 
must decay into a fermion for which one of the other generators has the same charge value as 
that of the neutrino.  Referring to Table 2 to make this clear, this means that the neutrino still can 
undergo a 35λ  decay into a Ru  quark because each has 035 =λ .  And it can still undergo a 3LI  

decay into any up quark, because these and the neutrino all have 2
13 =LI .  Most importantly, as 

will become central in the discussion below, the neutrino can still undergo LYLB =−  decay into 

an electron because both the neutrino and the electron have the same 1−==− LYLB  and so 

form a doublet under LYLB =− .  This latter ability for the neutrino and the electron to decay 

into one another as like-charge members of a 1−==− LYLB  doublet, lasts until the electroweak 
symmetry is finally broken at much lower (Fermi) energies into the electromagnetic interaction, 
and also leads to the left-chiral nature of the weak interaction. 
 
 Now let’s look at the remaining fermions.  Even after the symmetry breaking (7.1), these 
fermions are completely free to decay into one another via the gravitational generator G, 

because they are all like-valued 
282

1=G  eigenstates of G.  Indeed, starting at the Planck scale, 

and until one drops down to GUT energies on the order of 1015 GeV, these seven other fermions 
remain part of an SU(7) septuplet.  Since all of these fermions are united by the common 
characteristic that they are born through the fertilization of positive (+) energy vacuum 
fluctuations, we shall refer to this group as SU(7)+. Thus, between the Planck scale and the GUT 
scale, the gauge group is GUSU )1()7( ×+ .  The GU )1(  emanates from the commutation of

[ ] [ ] 0,, ==Φ GGvG PP , and is based on a neutrino singlet 7
282

1 ⋅−== Gν , and a septuplet of 

the remaining fermions all of which are in 
282

1=G  states. 
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 Now let’s progress down the energy scale and break the LYLB =−  in the vicinity of 

GeVvGUT
1510~  using (5.2).  The residual gauge groups are now those shown and discussed in 

(5.6), but let’s again look closely at how the fermions are fractured, and let’s also look at the loss 
of two generators going from )6()8( SUSU → . 
 
 Referring now to Table 4, the 3548,λλ  generators are no longer in play as vertical 
generators, because two generators are lost going from SU(8) to SU(6).  These do not disappear 
entirely, but become horizontal as already discussed, in a manner we shall momentarily develop 
further.  As to the remaining five linearly-independent vertical generators in Table 4, the 
electrons and the quarks still remain a gravitational septuplet and so can in theory undergo 
gravitational decay into one another.  But by 1015 GeV and below gravitation has become so 
weak that 63λ  decays should no longer be an option.  Following the rule that after symmetry 
breaking the only decays which are permitted are decays for which the decaying fermions have a 
generator with like-charge, the remaining decays options are as among the sextuplet of fermions 
with 3

1=− LB , and between the doublet of fermions with 1−=− LB .  The former decays 

among fermions in the 3
1=− LB  sextuplet, consist of QCD strong interactions decays among the 

R, G, B color eigenstates based on the 38,λλ ′′  generators, and weak decays between states with 

2
13

3
1 , ±== LIYL .  The latter decays between the two fermions in the 1−=− LB  doublet, 

consist of weak decays between the neutrino and the electron with 1−=LY  and respective 

2
13 ±=LI .  Now, however, most importantly, the quarks have become fully fractured from the 

leptons, and there is no more decay permitted between quarks and leptons.  And, as was 
developed in detail in section 8 of [1], the breaking of LB −  creates stable magnetic monopoles 

( ) ( ) ( ) ZUUSU BBC ==×′ )1()1()3( 111 πππ  which manifest as protons and neutrons forming ( )np,  

with 1=B .  And, with LYLB =− , as noted at the end of section 5, the weak interaction becomes 
non-chiral to go along the with chiral non-symmetry of baryon interactions as discussed in 
section 5 of [1]. 
 
 So the LB −  symmetry breaking is responsible for several interrelated phenomena: it 
brings about the three generations observed at low energy, it brings about protons and neutrons, 
it forecloses lepto-quark decays, and because LYLB =− , it brings about the broken chiral 
symmetry of the weak interactions.  
 
 Now, at some level, everything discussed so far in this section about fermion fracturing 
because of symmetry breaking restates what is likely obvious, because it is known that one of the 
very basic consequences of symmetry breaking is that it forecloses certain decays which are 
permitted to occur in the higher state of symmetry before the symmetry is broken.  But the reason 
for focusing on fermion fracturing in this way, is because we will now venture into the not-
obvious realm of generation replication and apply these observations to understand what happens 
there as well. 
 
 If the rule is that after symmetry breaking fermions can only decay into other fermions 
with like-charges under some interaction that was not use to break the symmetry, then what 
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happens after LYLB =−  symmetry breaking to the horizontal generators 3548,λλ ?     Not only 

have quarks become fractured from leptons, but 3548,λλ  have themselves become fractured from 
the other generators!  So we not only have quark fracturing, we have generator fracturing.  If 
we follow suit, then it would seem that a similar set of rules may well apply.  Let’s explore. 
 
 First, referring to Table 2, ( ) ( )1,1,1,1,1,1,6,0diag

212
148 −−−−−−=λ  and 

( ) ( )1,1,1,1,1,5,0,0diag
152

135 −−−−−=λ  are the two fractured generators.  Because these no longer 

differentiate an observable vertical symmetry, but still do provide two degrees of freedom as 
illustrated in Figure 1 in section 5, let us transform these two generators into 3548, λλ ′′  with the 
eigenvalues shown in Figure 1.  No new calculation is required: we simply use (4.3) and (4.4) 
but without 8λ  and 3λ ,  and so redefine 35483548 ,, λλλλ ′′→  according to: 
 

24
15
235

53
248

3
748 λλλλ −−≡′ , (7.2) 

24
5
235

5
335 λλλ −≡′ . (7.3) 

 
It is readily seen that ( ) ( )0,0,0,0,1,1,2,0diag

32
148 −−=′λ  and ( ) ( )0,0,0,0,1,1,0,0diag 2

135 −=′λ .  So 

these generators now do yield the SU(3) configuration shown in Figure 1, albeit with eight 
eigenstates, five of which are all zero-valued and trivial, and three of which are not.  We can now 
label these three non-trivial eigenstates as: 
 

0, 35

3
148 =′=′≡ λλe , (7.4) 

2
135

32
148 , =′−=′≡ λλµ , (7.5) 

2
135

32
148 , −=′−=′≡ λλτ , (7.6) 

 
precisely as illustrated in Figure 1.  However, these are now free-floating generators once the 

LYLB =−  symmetry is broken, so they no longer provide vertical symmetry quantum numbers 
for any of the fermions, as illustrated in Tables 3 and 4.  Rather, they appear to provide a 
replication of each fermion into three generations.  But if this is the case, then they should lead to 
other facets of generation replication as well, including Cabibbo-type mixing, and the 
observation that the only way a particle from one generation can transform into a particle of 
another generation is via weak interaction decays, and not directly.  As we shall now see, this is a 
consequence of the fermion fracturing highlighted above. 
 
 Because the generators 3548, λλ ′′  have become fractured from the other generators, and 
given what we know about the fermion generations from experimental observations, it appears 
that each of the τµ,,e  eigenstates is fractured from one another so that it is now forbidden for a 
direct transition to take place between any of the three states (7.4), (7.5), (7.6), i.e., no 
interactions may take place any longer via the 3548, λλ ′′  (or 3548, λλ ) interaction generators.  
Any interactions that do take place, must occur via another generator for which the charges are 
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the same as among the fermions involved in the decay.  This is exactly like the discussion we 
had at the beginning of this section about the neutrino in relation to the remaining fermions from 
which it become fractured at Pv , or the fracturing of the quarks from the leptons at GUTv .  In 

order to undergo decay, a fermion must find a different generator and a different fermion which 
has the same charge with respect to that different generator. 
 
 So referring to Table 4, if a first-generation e fermion is to decay into a second generation 
µ fermion or a third-generation τ fermion, it must to do so via a generator other than 3548, λλ ′′ , 
into a fermion for which it shares an identical charge for that other generator.  For the leptons, 
this is straightforward: the electron and the neutrino share a common charge 1−==− LYLB , 
and so for a first generation electron to become a second generation electron, it must go from 

µν µ →→e , all of which have the same 1−==− LYLB .  One may think of this is a post-

symmetry breaking “decay loophole.”  Again this is exactly what was discussed earlier with 
regard to fermion fracturing.  And so, for the first time, we see Cabibbo mixing and neutrino 
oscillations, because that is exactly how these work as well.  This also explains flavor non-
conservation as regards the generations: at the end of µν µ →→e , what started as a first 

generation electron is now a second generation electron. 
 
 For the quarks it is a little more complicated, because this transition rules needs to be 
strengthened.  In particular, if a fermion can undergo a τµ ↔↔e  transition by decay through 
at least one generator that is the same for both, then, for example, referring to Table 4, one could 
observe a GR cu →  transition, because both the Ru  and the Gc  have the same 3

1==− LYLB .  

This would imply that Cabibbo mixing can occur not only via weak interactions but also via 
strong interaction, and the latter, of course, is not observed.  So for horizontal symmetry 
transitions, it appears that we have to tighten the rules even further.  Specifically, it appears that 
for a horizontal transition to be permitted, all of the degrees of freedom in Tables 3 and 4 must 
be the same as between the two fermions involved in the decay.  Table 3 actually illustrates this 
rule the best, because this rule says that a horizontal τµ ↔↔e  transition must occur either as 
a transition between the first and fifth, second and sixth, third and seventh, or fourth and eighth 
fermions in Table 3.  These are the fermion doublets for which: 
 

( ) 1,0,0,1, 38 −==′=′−=−≡ LYLBe λλν , (7.7) 

( ) 3
13

3
18

3
1 ,0,,, ==′=′=−≡ LRR YLBdu λλ , (7.8) 

( ) 3
1

2
13

32
18

3
1 ,,,, ==′−=′=−≡ LGG YLBdu λλ , (7.9) 

( ) 3
1

2
13

32
18

3
1 ,,,, =−=′−=′=−≡ LBB YLBdu λλ . (7.10) 

 
One can have neither τµ ↔↔e , nor τµ ννν ↔↔e , nor tcu ↔↔ , nor bsd ↔↔  

transitions, because each of these has different 3548, λλ ′′  eigenvalues.  These states are all 

fractured from one another.  One cannot have intergenerational transitions between ( )e,ν  and 
any of the quark doublets because these have been fractured from one another by LB −  
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breaking.  One cannot have intergenerational BGR ↔↔  transitions among (7.8), (7.9) and 
(7.10) because although QCD is never broken, the QCD generators are different as among red, 
green and blue states.  If any vertical generators, or any horizontal generators are different as 
between two fermions, then based on what we observe, the apparent rule is that the transition is 
not permitted.  So all that is permitted – the only “loophole” left for decay – are the e↔ν , 

RR du ↔ , GG du ↔  and BB du ↔  transitions, because these are the only transitions for which 

all of the generators listed are the same for both fermions.  And here, because of the tightened 
rules when it comes to horizontal transitions based on fractured generators, even the right-chiral 
generator RY  is excluded, because this too is not the same as between the members of each of the 

above doublets.  This is why we have shown LY  in the above but not RY .  This means that only 
the left-chiral states may participate in transitions between the τµ ↔↔e  states in (7.4) to 
(7.6).  Observationally, we know that this is characteristic of left-chiral weak interactions as well. 
 
 These stronger rules for the horizontal generators may be understood because for the 
horizontal generators, not only are some fermions fractured from other fermions, but the 
horizontal generators themselves are fractured from the vertical generators.  So for a vertical 
generators that breaks symmetry but is not itself fractured from the other generators, transitions 
are permitted so long as at least one other vertical generator provides the same charge as 
between the two transition states.  But for a generator which has itself been fractured from the 
other generators, the rule is even more restrictive.  Now, transitions are permitted only is all of 
the involved vertical generators provides the same charge as between the two transition states. 
 
 Now, the astute reader may notice that the electric charge Q is also not the same as 
between the two fermions in any of the doublets in (7.7) through (7.10) above.  ( ) ( )1,0, −=eQ ν  

and ( ) ( )3
1

3
2 ,, −=duQ  as between the members of these doublets.  And so, the question might be 

asked, why are even these interactions permitted?  After all, this changes the generators also, so 
by these rules, shouldn’t this be forbidden also?  But further reflection makes this answer clear:  
the electric charge does not emerge as a physically-preclusive generator until it is used to break 
the electroweak symmetry at much lower energies determined by the Fermi vacuum 

GeV246.219651=Fv .  This is the same way in which LB −  is not a preclusive generator until 
its breaks symmetry at GUT energies.  So indeed, once we break electroweak symmetry, no 
transitions are permitted between generations. But at the same time, neither will e↔ν  or 

du ↔ be permitted, but this is because weak interactions are no longer permitted either (in the 
historical sense that the weak interaction becomes “weak”).  So what we learn from this, is that 
the ability of fermions to change generations will wax and wane in lock step with the weak 
interaction itself, just as is observed!   
 

By imposing the more stringent rule that once the 3548, λλ  interaction generators have 

become fractured from the other generators by LB −  symmetry breaking at GeV10~ 15
GUTv , 

no horizontal transitions are permitted among the (7.4) to (7.6) states unless all of the remaining 
generators – chiral symmetric or not – are the same as between the fermions involved in the 
transition, we arrive at precisely the type of mixing that is observed in nature as among the three 
generations.  This makes generation mixing part and parcel of weak interactions, while excluding 
the strong interactions and even the right-chiral states from participation in generational mixing. 
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 So, now we take the final, formal steps to implement all of this.  Referring to section 
12.12 of [12], the two generators 3548, λλ ′′  introduce two degrees of freedom and so define 
three-non-trivial horizontal eigenstates τµ,,e  in (7.4) through (7.6) and Figure 1, representing 
eigenstates of SU(3), but precluded from direct transformation into one another according to the 
rules just outlined because they are fractured generators.  SU(3) can be used to form unitary 
matrices U with 9=3x3 components.  Because the only permitted transitions are (7.7) through 
(7.10), we can alter the phase of any of the 2x3=6 quark states which we designate 
( ) ( )bsdtcudu ,,,,,, =∴∴  following Table 3, without altering the physics.  But one may omit an 
overall phase change which still leaves the physics invariant.  This means that U must be a 
function of 9=3x3 minus 6=2x3 plus 1 parameters, i.e., 4 parameters.  But an orthogonal 3x3 
matrix only has C(3,2)=3 real parameters, which leaves one residual phase.  So for the leptons l, 
we may choose to form this matrix in the representation: 
 

l

iδiδ

iδiδ

l

iδiδ
l

eccsscesccscss

ecssccessccccs

sscsc

eces

scccs

sscsc

cs

scU
















+−−−
+−−=

















−
−

















−
=

323213232121

323213232121

31311

33

31311

31311

22

22

00

0

001

, (7.11) 

 
and for the quarks q we form the analogous: 
 

q

iδiδ

iδiδ

q

iδiδ

q

eccsscesccscss

ecssccessccccs

sscsc

eces

scccs

sscsc

cs

scU
















+−−−
+−−=

















−
−

















−
=

323213232121

323213232121

31311

33

31311

31311

22

22

00

0

001

. (7.12) 

 
 To implement the lepton mixing, we keep in mind from (7.7) that for a τµ ↔↔e  
transition to take place which alters the quantum numbers in (7.4) through (7.6), we cannot go 
directly from τµ ↔↔e , but must engage in a vertical transition between the states ( )e,ν  in 

which all of the generators 1,0,0,1 38 −==′=′−=− LYLB λλ  do not change.  The only 

permitted transition is e↔ν .  Now, one can always apply (7.11) to both of ( )e,ν , but then one 
of them can always be transformed into a pure state while the other is similarly transformed, 
without changing the physics.  In other words, all that is observable is the relative transition as 
between ( )e,ν .  So following the usual conventions, we use (7.11) to transform the lower 

members of the ( )e,ν  doublet, that is, we define: 
 

il

l

iδiδ

iδiδ
i eU

e

eccsscesccscss

ecssccessccccs

sscsce

e =
































+−−−
+−−≡

















′
′
′

=′
τ
µ

τ
µ

323213232121

323213232121

31311

, (7.13) 

 
Similarly for the quarks of each color C = R, G, B, we define: 
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iCq

C

C

C

q

iδiδ

iδiδ

C

C

C

iC dU

b

s

d

eccsscesccscss

ecssccessccccs

sscsc

b

s

d

d =
































+−−−
+−−≡

















′
′
′

=′

323213232121

323213232121

31311

, (7.14) 

 
Because RY  is not the same as between the members of each of the (7.7) through (7.10) doublets, 
right-chiral transitions are also precluded, and the only permitted transitions are for left-chiral 
states.  So these will be projected with ( )5

2
1 1 γ− .  Further, because 38, λλ ′′  are not the same 

except as between members of the four distinct doublets in (7.7) through (7.10), the only 
permitted transitions will be between one lepton and another lepton, and between a first quark of 
a given color and a second quark of the same color.  This keeps the strong QCD interaction out 
of generation-changing transitions, and makes this an exclusively weak, left-handed chiral 
phenomenon.  So for leptons, the transition currents will be: 
 

( ) ( )

( ) ( ) LiLiiiili

l

iδiδ

iδiδ
el

eeeU

e

eccsscesccscss

ecssccessccccs

sscsc

J

′=′−=−=

















−
















+−−−
+−−=

µµµ

µ
τµ

µ

γνγγνγγν

τ
µγγννν

5
2
15

2
1

5
2
1

323213232121

323213232121

31311

11

1
. (7.14) 

 
And for quarks of each color, they will be: 
 

( ) ( )

( ) ( )
CLiCLiCiCiCiqCi

C

C

C

q

iδiδ

iδiδ
CCCq

dududUu

b

s

d

eccsscesccscss

ecssccessccccs

sscsc
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
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 So, returning to the question posed at the very outset of the discussion following Table 2, 
not only does SU(8) not provide too much freedom, but upon careful consideration and 
development, it provides exactly the right amount of freedom to explain the precisely observed 
fermion phenomenology of three generations.  Further, by applying the rule that fermions which 
are fractured from one another after symmetry breaking cannot decay into one another except by 
a vertical interaction other than the vertical interaction that was used to break symmetry, and that 
decay with regards to a fractured generator which thereafter becomes a free-floating horizontal 
degree of freedom is only permitted between fermion eigenstates for which all of the surviving 
vertical generators are the same, we can use SU(8) to explain everything that we know about the 
qualitative features of the interactions we observe, from generation replication to weak chiral 
non-symmetry to Cabibbo mixing to the fact that this mixing occurs only via weak isospin 
decays between left-handed states. 
 
 Before concluding this section, let us now return to the first three generators 354863 ,, λλλ  

of SU(8).  Based on the earlier review of how 63λ  breaks symmetry near the gravitational Planck 
scale and sets the neutrino on a trajectory to have a mass orders of magnitude smaller than that of 
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any other fermion; given how the 3548,λλ  fracture from the other vertical generators and form 
the basis for two horizontal degrees of freedom that underlie three fermion generations in which 
one fermion is distinguished from one another solely by mass and not by any other quantum 
numbers from a vertical degree of freedom, and given that mass and gravitation are inextricably 
linked such that gravitation is the “mass interaction,” we now formally associate these three 
generators with the gravitational interaction, at the elementary particle level.  Using (7.4) to (7.6) 
and (6.5), we highlight this connection below: 
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Table 5: Mass Degrees of Freedom afforded by the Gravitational Interaction  

 
The horizontal degrees of freedom from 3548,λλ  which to enable the fermions in each generation 
to have distinct masses in relation to their counterparts in the other two generations are shown 
horizontally above, while the vertical degree of freedom G enabling each fermion within a 
generation to have a distinct mass is shown vertically above.  Of course, with SU(3)C remaining 
unbroken, different colors of the same flavor of quark have the same mass.  As noted earlier, 
using the ∴ notation, the vertical gravitational generator G does not distinguish the ∴∴∴ edu ,,  
masses from one another within a generation.  So at high energies, as noted, the fermions within 
a generation all have the same mass.  It is only through the stages of symmetry breaking and the 
remaining generators LYLB =− , 3

LI  and Q, that the mass spectrum within a generation 
separates.  This may be thought of as mass/energy differences emanating from the strong, weak, 
and electromagnetic interactions, i.e., one may regard quark masses to differ from electron 
masses because they are quarks not leptons, and one may regard up and down quark masses to 
differ because their weak isospins and electric charges are different.   
 

As to interactions, the seven generators of SU(3) now are allocated as follows: three 
degrees of freedom go to gravitation in the form of 354863 ,, λλλ ′′ , two degree of freedom go to 

strong QCD interactions via 38,λλ ′′ , one degree of freedom goes to weak interactions via 3
LI , 

and the final degree of freedom goes to electromagnetic interactions via Q.  Seven linearly-
independent degrees of freedom, and eight vertical fermion eigenstates, thus account perfectly, 
with nothing missing and nothing superfluous, for the observed phenomenology of the fermions 
and their interactions. 
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8.  Summary and Conclusion 
 
 We have in the foregoing focused on the breaking of symmetry at the Planck scale and 
the GUT scale, which, astronomical observation aside, is many orders of magnitude beyond what 
we may ever hope to observe directly.  The final stage of symmetry breaking is electroweak 
symmetry breaking at the Fermi vev GeV246.219651=Fv .  This is in the realm of observation, 
and the generator used to break this symmetry is the electric charge generator Q.  This final 
symmetry break gives rise to the electromagnetic interaction which dominates atomic and 
chemical structure and much of what is most directly observed in the natural world beyond 
gravitational interactions.  That is, beyond objects falling to earth and planets wandering the 
heavens along prescribed trajectories, electromagnetic phenomena in electromagnetic and 
chemical and atomic form are our first line of direct experience of the natural world.  Our 
experience of nuclear phenomena – based on the protons and neutrons which come to life as 
stable magnetic monopoles at the GUT scale as has been reviewed here and in [1] – comes to us 
through the laboratory instrumentation that we used to extend the range of our physical senses. 
 
 When we break the electroweak symmetry we make use of the electric charge generator 
(4.6), and analogously to (5.1) through (5.3), we employ the Fermi vacuum: 
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which specifically means that: 
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Picking off the coefficients from the generators in (4.6), for each non-zero component of the 
vacuum we then have: 
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which leads to: 
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and consequently an electroweak Clebsch-Gordon coefficient: 
 

3
4=C . (7.5) 

 
This is how the electroweak symmetry is broken for the SU(8) group that we have 

developed throughout this paper.  This final symmetry break fractures all fermions of different 
electric charges from one another, and so precludes their decay into one another.  Referring to 
Table 4, weak isospin transitions between up and down quarks with differing charges 
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( ) ( )3
1

3
2 ,, −=duQ  are now precluded, as are similar transitions between electrons and neutrinos 

with ( ) ( )1,0, −=eQ ν .  This shuts down the weak interaction (in the historical view, renders it 
“weak”), and because weak isospin decays as reviewed in the last section are the only avenues 
permitted for generation-changing transitions, generational transitions also are turned off in lock 
step.  The only transitions still permitted after electroweak symmetry breaking, given that Q is a 
vertical symmetry generator and so not subject to the very stringent rules laid out in the last 
section for horizontal transitions, are the vertical, color-changing R, G, B transitions of QCD, 
which are still allowed to occur because the quarks involved in these interactions are part of a 
triplet in which 3

1=− LB  is the same for each.  That is, the only permitted decays once 

electroweak symmetry is broken, are decays along the LB −  generator for particles of like 
LB − , which, of course, are strong QCD interactions. 

 
Now, following three stages of symmetry breaking – at the Planck scale, the GUT scale 

and the Fermi scale – all of the fermions have become fractured from one another, generation 
transitions cease, and the particles are frozen into the configurations of our everyday experience.  
The SU(8) symmetry with seven generator degrees of freedom that we started with in Table 2 
still does exist, but it has become hidden and distorted behind twenty orders of magnitude of 
vacuum screening and three stages of symmetry breaking that have fractured neutrinos from the 
other fermions, broken the Planck symmetry between positive and negative energy fluctuations, 
fractured  quarks from leptons, fractured two generators from the remaining five to provide 
horizontal generational replication, brought about Cabibbo-type mixing among these generations 
for left-handed chiral projections only, and finally, fractured the upper and lower members of the 
like-hypercharge YL (weak isospin) doublets from one another, turned off the weak interactions, 
and frozen the particles in place so that all we observe at the lowest energies are electromagnetic 
and strong interactions, as well as the bulk interaction of gravitating masses. 
 
 This GUT, which is based on the hypothesis that baryons are Yang-Mills magnetic 
monopoles and is rooted in the SU(4)P and SU(4)N subgroups developed in section 7 of [1] 
which yielded over half a dozen accurate predictions in [1] and [2] as reviewed in section 1 here, 
leads systematically to all of the qualitative particle and interaction phenomenology which we 
are able to observe with our senses and the extension of our senses through experimental 
apparatus.  But the confirmation of the particular GUT proposed here, versus other possible 
GUTs which reproduces similar phenomenally, needs to come through mass and energy 
predictions which continue the successful empirical matches developed in [1] and [2].  As 
discussed in section 3, one would expect that these energy predictions should come about by 
developing the remaining Φ -containing terms in the Lagrangian density (3.2) which we have not 
yet developed, and then making use of these to calculate various energies ∫∫∫−= xdE 3

L  to be 

matched up with empirical data.  Along the way, the development should proceed on a parallel 
course to that of sections 2 through 11 of [1], making use of the non-Abelian Klein-Gordon 
equation (3.10), representing scalar sources as ψψ≡J , employing the same sort spin sums and 
the same Gaussian ansatz for the fermion fields that was developed respectively in sections 3 and 
9 of [1], and keeping in mind the clues we have elaborated in (3.6) through (3.8) and (3.11) here, 
all while employing the GUT and symmetry breaking that has been elaborated here. 
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It is clear from [1] and [2] that it will be possible via this approach to calculate and 
predict definitive mass and energy values, just as has been done previously in [1] and [2].  It will 
then be left to interpret those numbers as we did in sections 11 and 12 of [1] and throughout [2], 
and to compare them with experimental data to try to obtain numerical matches.  That is, we 
clearly will be able to calculate energies.  The question will be whether the energies we are able 
to calculate will to match the empirical data as well as they did in [1] and [2].    

 
Success in this endeavor, if it should arrive, would validate that this particular GUT may 

indeed be the one that nature has selected to govern the phenomenology of the material universe, 
and would provide some confidence that the development elaborated here does reach “behind the 
veil” to explain how nature really does operate in energy domains likely to forever remain 
beyond the reach of our direct senses and the extension of our senses gained through 
experimental devices and methods.  
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