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Abstract

To date, there have been no studies that investigate the indepen-

dent use of the photoplethysmogram (PPG) signal to determine heart

rate variability (HRV). However, researchers have demonstrated that

PPG signals offer an alternative way of measuring HRV when elec-

trocardiogram (ECG) and PPG signals are collected simultaneously.

Based on these findings, we take the use of PPGs to the next step

and investigate a different approach to show the potential independent

use of short 20-second PPG signals collected from healthy subjects af-

ter exercise in a hot environment to measure HRV. Our hypothesis is

that if the PPG–HRV indices are negatively correlated with age, then

short PPG signals are appropriate measurements for extracting HRV

parameters. The PPGs of 27 healthy male volunteers at rest and after

exercise were used to determine the HRV indices: standard deviation
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of heartbeat interval (SDNN) and the root-mean square of the differ-

ence of successive heartbeats (RMSSD). The results indicate that the

use of the aa interval, derived from the acceleration of PPG signals,

is promising in determining the HRV statistical indices SDNN and

RMSSD over 20-second PPG recordings. Moreover, the post-exercise

SDNN index shows a negative correlation with age. There tends to be

a decrease of the PPG–SDNN index with increasing age, whether at

rest or after exercise. This new outcome validates the negative rela-

tionship between HRV in general with age, and consequently provides

another evidence that short PPG signals have the potential to be used

in heart rate analysis without the need to measure lengthy sequences

of either ECG or PPG signals.

Pulse oximeter, exercise, affordable healthcare, photoplethysmography

1 Introduction

Heart rate variability (HRV) has been extensively studied in electrocardio-

gram (ECG) signals, having become the conventionally accepted metric to

describe variations of both instantaneous heart rate (HR) and RR intervals.

The metrics used in the literature to describe HRV include cycle length vari-

ability, heart period variability, RR variability, and RR interval tachogram.

The measurement of HRV captures HR variations of the mean HR and

provides information on the sympathetic–parasympathetic autonomic sta-

bility and thus the risk of sudden cardiac death. For example, when subjects

are continuously subjected to dry heat, the heat induces a stress response

indicated by a significantly increased HR. This increase in HR appears to

occur as a result of a significant reduction in parasympathetic control of the

HR, indicated by reduced HRV [1].

The traditional method of identifying heartbeats in ECGs is by detect-
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ing R peaks. In almost every study, comparisons are made between HRV

calculated from ECG signals and those calculated from photoplethysmo-

gram (PPG) signals. In these studies, the feasibility of using PPGs as an

alternative simple, inexpensive, and convenient diagnostic tool was explored

in parallel with the use of ECGs. The overall results showed that PPG

is potentially an ideal stand-alone alternative but it has not been explored

independently. These cautious evaluations may explain the lack of inves-

tigation into the use of PPG signals instead of ECGs to measure HR and

HRV.

Interestingly, the accurate detection of inter-beat intervals from fingertip

PPG signals is considered challenging [2, 3, 4]. The potential weaknesses in

using fingertip PPG signals to measure HRV are raised by Bernston et al.

[2], who recommend the use of RR intervals from ECG signals to determine

inter-beat intervals. However, they note that with a sophisticated peak de-

tection algorithm, the use of intra-arterial pressure pulses may be acceptable

but that indirect measures such as PPG signals need further validation. The

PPG contour itself can be used to detect the heartbeat, and thus HRV can

be measured [5].

Giardino et al.[4] demonstrated that under resting conditions the distal

pulse pressure, as shown in Figure 1(a), is sufficient for determining the heart

rate. However, they recommended additional studies including test-retest

reliability evaluation of different data collection techniques.

These cautious evaluations may explain the lack of investigation into the

use of PPG signals instead of ECG to measure HR and HRV. The PPG con-

tour itself can be used to detect the heart beat and consequently HRV can

be measured [5], as shown in Figure 1 (a) where the two circles represent

two consecutive heartbeats with the smallest positive amplitudes of the PPG
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Figure 1: Two successive beats in (a) fingertip photoplethysmogram
(PPG) signal (b) second derivative wave of photoplethysmogram
(APG) signal.

signal. However, reliable detection of heartbeats from the PPG contour is

challenging due to PPG noise and the nature of its associated interference

with hemodynamic variables [6]. To overcome difficulties with PPG con-

tour analysis, the second derivative of the photoplethysmogram waveform,

also called the acceleration plethysmogram (APG), has been introduced, as

shown in Figure 1 (b) where the two circles represent two consecutive heart-

beats with the largest positive amplitudes of the APG signal. Because the

peaks in the APG are more clearly defined than the peaks in the PPG con-

tour, the heart rate can be more accurately detected using the APG signal,

specifically the a wave, as shown in 2(b).

We therefore sought to validate the usefulness of PPGs using an alterna-

tive method without the collection of ECGs based on the already established

4



15.9 16 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8
-6

-4

-2

0

2

4

6

8

10
x 10

-3

time

m
V

-6

-4

-2

0

2

4

6

8

m
V

Dicrotic
Notch

Diastolic
Peak

(a)

(b)

Systolic
Peak

a

b

c

d

e

Figure 2: Fingertip photoplethysmogram signal measurement [7].
(a) Fingertip photoplethysmogram. (b) Second derivative wave of photo-
plethysmogram. The photoplethysmogram waveform consists of one systolic
wave and one diastolic wave, while the second derivative photoplethysmo-
gram waveform consists of four systolic waves (a, b, c, and d waves) and one
diastolic wave (e wave).

negative correlation between HRV and age [8]. We hypothesized that if the

PPG–HRV indices calculated from short PPG signals are negatively corre-

lated with age then a short PPG signal is an appropriate measurement for

extracting HRV parameters. In this study, only the standard deviation of

the heartbeat interval (SDNN) and the root-mean square of the difference of

successive heartbeats (RMSSD) indices are investigated, as they are suitable
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for short recordings based on the recommendation in [9]. Herein we investi-

gate if the SDNN and RMSSD calculated from short PPG signals measured

before and after exercise can potentially be correlated with age.

2 Materials and Methods

2.1 Ethics Statement

There is one annotated PPG database available at Charles Darwin Univer-

sity. The data were collected, in 2006, from participants during rest (before

exercise) and after one hour of exercise (walking) on a treadmill in the cli-

mate control chamber at the Northern Territory Institute of Sport (Darwin,

Australia). This protocol was repeated three times with PPG data collected

during each rest period as shown in Figure 3.

At rest Exercise 1 Exercise 2

Cooling Phase Cooling Phase

Exercise 3

Cooling Phase

5 min 5 min  5 min  5 min

1 h 1 h 1 h

Figure 3: Measurement Protocol. The duration of the whole experiment
was approximately 4 hours, each exercise consumed approximately 1 hr while
the PPG signals collected during the 5 minutes break of each exercise at a
sampling rate of 200 Hz. The length of each PPG recording is 20 seconds.

The treadmill speed was set to 5 km/h with a 1% incline increment corre-

sponding to the effort required to walk on 8 kg of webbing. The exercise was

considered to be of moderate intensity. Background information about the

entire project can be found in [10]. All subjects provided written informed

consent before participation, and the Ethics Committee of Charles Darwin

University approved the study. The study was performed in accordance with
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relevant guidelines and regulations. The database is available upon request

at Charles Darwin University (http://www.cdu.edu.au/ehse).

2.2 Database Used

The PPGs of 27 healthy male volunteers with a mean ± SD age of 27 ± 6.9

were measured using a photoplethysmography device (Salus APG, Japan),

with the sensor located at the cuticle of the second digit of the left hand.

The measurements were taken while each subject was at rest on a chair. The

PPG data were collected at a sampling rate of 200 Hz, and the duration of

each recording was 20 seconds.

We used one PPG oximeter to collect the data from all subjects measured

after each exercise. It was not plausible to collect data for a longer period of

time as we needed to measure other subjects waiting in line. The longer the

waiting time, the more the heat stress impact due to cooling of the body is

lost. Therefore, it was convenient to collect data for a consistent recording

length of 20 seconds. This also serves as a preliminary test of feasibility,

where the ease of shorter recording lengths is desirable in a clinical setting.

The beat annotations were carried out by a cardiologist, and each beat

was labeled as an a wave after processing the PPG signals with a second-

order bandpass Butterworth filter from 0.5–8 Hz of the unfiltered PPG sig-

nal, based on the recommendation in [11]. The signals measured during rest

(before exercise) contained a total of 584 heartbeats, whilst the PPG signals

collected after one hour of exercise contained fast rhythm PPG signals, with

a total of 885 heartbeats. MATLAB 2012a (The MathWorks, Inc., Natick,

MA, USA) was used for PPG signal analysis.
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2.3 Methodology

Detection of a wave

In this study, the a wave detection algorithm published in [12] in will be

used. The algorithm is adapted from the framework proposed by Elgendi

for detecting systolic waves in PPG signals [11], for detecting QRS complexes

in ECG signals [13, 14], and for detecting c, d, and e waves in APG signals

[15]. The same approach will be used here to detect the a waves. The

algorithm consists of four stages: bandpass filtering, squaring, generating

potential blocks, and thresholding and uses five parameters F1, F2, MApeak,

MAbeat, and β. Each stage is explained in more detail as follows.

• Bandpass Filter: A zero-phase second-order Butterworth filter, with

bandpass 0.5–15 Hz, was implemented to remove the baseline wander

and high frequencies that do not contribute to the a wave. The output

of the zero-phase Butterworth filter applied to the PPG signal—at rest

and after exercise—produced a filtered signal S[n]. Therefore, F1 = 0.5

Hz and F2 = 15 Hz based on a brute force search that is discussed in

the parameter optimization section in [12].

• Second Derivative: To obtain the APG signals, the second derivative

was applied to the filtered PPG in order to analyze the APG signals.

Equations 1 and 2 represent a non-causal filter; the three-point centre

derivative was created with a delay of only two samples.

S′[n] =
dS

dt
|t=nT =

1

2T
(S[n+ 1]− S[n− 1]), (1)

Z[n] =
dS′

dt
|t=nT =

1

2T
(S′[n+ 1]− S′[n− 1]), (2)
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where T is the sampling interval and equals the reciprocal of the sam-

pling frequency and n is the number of data points.

• Cancellation of b wave: At this stage, the a wave of the APG needs

to be emphasized to distinguish it clearly for detection. This can be

done by clipping the negative parts of the APG signal (Z[n] = 0, if

Z[n] < 0).

• Squaring: Squaring emphasizes the large differences resulting from the

a wave, which suppress the small differences arising from the diastolic

wave and noise. This step results in the output

y[n] = Z[n]2, (3)

which is important for improving the accuracy in distinguishing the a

wave segment in APG signals.

• Generating Blocks of Interest: Blocks of interest are generated using

two event-related moving averages that demarcate the a wave and

heartbeat areas.

In this procedure, the first moving average (MApeak) is used to em-

phasize the a wave area, and is given by

MApeak[n] =
1

W1
(y[n− (W1 − 1)/2] + . . .

+y[n] + · · ·+ y[n+ (W1 − 1)/2]),

(4)

where W1 represents the window size of the systolic-peak duration.

The resulting value is rounded to the nearest odd integer. The exact
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value for W1 of 175 ms is determined based on a brute force search

that is discussed in the parameter optimization section in [12].

The second moving average (MAbeat) is used to emphasize the beat

area to be used as a threshold for the first moving average, and is given

by

MAbeat[n] =
1

W2
(y[n− (W2 − 1)/2] + · · ·+ y[n] + . . .

+y[n+ (W2 − 1)/2]),

(5)

where W2 represents a window size of approximately one beat dura-

tion. Its value is rounded to the nearest odd integer. The exact value

for W2 of 1000 ms is determined based on a brute force search that is

discussed in the parameter optimization section in [12].

• Thresholding: The equation that determines the offset level (α) is βz̄,

where β = 0 based on a brute force search that is discussed in the

parameter optimization section in [12], while z̄ is the statistical mean

of the squared filtered PPG signal. The first dynamic threshold value

was calculated by shifting the MAbeat signal with an offset level α, as

follows:

THR1 = MAbeat[n] + α. (6)

In this stage, the blocks of interest were generated by comparing the

MApeak signal with THR1. Many blocks of interest will be generated,

some of which will contain the APG feature (a wave), while others will

primarily contain noise. Therefore, the next step is to reject blocks
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that result from noise. Rejection is based on the anticipated systolic-

peak width. In this paper, the undesired blocks are rejected using a

threshold called THR2, which rejects the blocks that contain diastolic

wave and noise. By applying the THR2 threshold, the accepted blocks

will contain a waves only,

THR2 = W1. (7)

As discussed, the threshold THR2 corresponds to the anticipated a

wave duration. If a block is wider than or equal to THR2, it is classified

as an a wave. If not, it will be classified as noise. The last stage is

to find the maximum absolute value within each block to detect the a

wave. Not all the blocks contain potential a waves; some blocks are

caused by noise and need to be eliminated. Blocks that are smaller

than the expected width for the a wave duration are rejected. The

rejected blocks are considered to be noisy blocks and the accepted

blocks are considered to contain an a wave. The detected a waves are

compared to the annotated a waves to determine whether they were

detected correctly.

Performance of the a wave detector

We used two statistical measures to evaluate the a wave detection perfor-

mance: sensitivity (SE) and positive predictivity (+P); whereas SE = TP/(TP + FN)

and +P = TP/(TP + FP). Here, TP is the number of true positives (a wave

detected as an a wave), FN is the number of false negatives (a wave has not

been detected), and FP is the number of false positives (non-a wave detected

as an a wave). The SE reported the percentage of true a waves that were
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correctly detected by the algorithm. The +P reports the percentage of the

detected a waves that were true a waves.

Calculation of HRV indices

The detected a waves (heartbeats) are used to calculate the duration of

each consecutive aa interval, as follows: aa[i] = A[i + 1] − A[i], where A

represents the annotated a waves in each PPG signal, and aa represents the

aa intervals. Note that the main interest is to analyze the aa duration rather

than the amplitude, no pre-processing is needed. It is known that HRV

decreases with normal based on the analysis of R peaks in ECG signals [16,

17, 18]. Therefore, based on using a waves in PPG signals, if the correlation

between HRV and age is decreasing, PPG signals can potentially measure

HRV. To find the correlation between age and HRV, two time-domain HRV

parameters are calculated and compared. These parameters are often used

with ECG signals. The first parameter, SDNN, is the SD of heartbeat

duration; here, the RR interval is replaced by aa intervals. The SDNN is

calculated, as follows:

SDNN = (1/N)
N∑
i=1

(aa[i])2 − {(1/N)
N∑
i=1

(aa[i])}2. (8)

The second parameter is RMSSD, which is calculated as follows:

RMSSD =

√√√√(1/N)
N∑
i=1

(aa[i])2. (9)

Analysis of trend

As we have a small sample size, there is a need to examine both the cor-

relation coefficient (r) and the slope. Note that it is common to obtain a
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small correlation with a small sample size, and therefore the slope can be

used as an alternative to determine the relationship. Here, r is calculated

as follows: r = Cov(u,v)
σuσv

, where Cov(u, v) is the covariance between data u

and data v, σu is the SD of data u and σv is the SD of data v. Here, u and

v refer to the HRV indices.

Significance of trend

To test the significance of the slope, we performed a multilinear regression

of the responses in y on the predictors in x for all lines in Figures 4 and 5.

The null hypothesis states that the slope is equal to zero, and the alternative

hypothesis states that the slope is not equal to zero.

3 Results and Discussion

To date, several studies have evaluated the agreement between HRV calcu-

lated from PPG and ECG signals; however, some results remain controver-

sial [19, 20]. This disagreement is due to applying inappropriate method-

ologies or inefficient experimental settings. Recent study by Chen et al.

[21] showed that the accuracy of HRV obtained from PPG is mostly incom-

mensurable across 26 unhealthy subjects. However, HRV calculated from

PPG signal has been proved to be sufficiently accurate only for healthy (and

mostly younger) subjects at rest [22]. Therefore, in our study, fit and healthy

subjects were only considered. Because of this selection, it is expected that

there will be no apparent differences between subjects. Moreover, we can

focus on the age impact—without any dependencies such as arrhythmia,

transvenous cardiac pacing, and heart transplant—as an indirect assessment

for the usefulness of HRV calculated from PPG signals.

It is worth noting that the heat stress PPG data were collected for this
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study as a part of the project funded by the Australian Department of

Defence. As mentioned in the Database Used subsection, there was no

exercise test with the same subjects in a cooler (or normal) environment

included in the main project protocol. Therefore, we are unable comment,

compare or discuss the HRV calculation in two different conditions, hot and

cool environments.

The designed exercise length for the heat stress test was four hours;

however, only 16 out of 27 subjects completed the full duration. All subjects

were able to complete the first 1-hr exercise, and therefore we analyzed all

PPG signals collected only after 1-hr exercise.

After collecting the PPG signals, perhaps the question was how can

we calculate the HRV from these PPG signals more accurately. In the

literature, we found that the second derivative of the PPG signal enhances its

frequencies and improve waveform characteristics especially in heat stressed

PPG signals [23]. Moreover, we found that detection of a waves in APG

signals slightly increases the accuracy of detecting heart beats compared to

systolic peaks in PPG signals. For example, the overall a wave detection

rate was 99.9% [12], while the overall systolic wave detection rate was 99.8%

[11]. Therefore, we applied the second derivative to the PPG signal to obtain

APG signals and then applied the a wave detection algorithm described in

the Methodology section.

The a wave detection algorithm was evaluated using 27 records, contain-

ing 1,540 heartbeats (584 heartbeats measured at rest and 956 heartbeats

measured after 1-hr exercise), with an overall SE of 99.8%, and the overall

+P of 100%. The overall accuracy was sufficient enough to calculate the

HRV indices automatically.

After the automatic detection of a waves, SDNN and RMSSD indices are
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calculated for 27 healthy subjects using PPG recordings each of 20 seconds

duration during rest and after exercise. Figures 4 (a) and 4 (b) show the

relationship between age and the SDNN index at rest and after exercise,

respectively. The SDNN index at rest is more negatively correlated with

age (r = −0.271) and has a steeper negative slope (−0.004) than after

exercise (r = −0.12 and slope = −0.001). The slope significance for SDNN

before exercise was with p = 0.001, and the slope significance for SDNN

after exercise was p = 0.04.

Figure 5 (a) shows the relationship between the age and the RMSSD

index at rest and Figure 5 (b) shows the relationship between the age and the

RMSSD index after exercise. The RMSSD index at rest is more negatively

correlated with age (r = −0.217) and has a more negative slope (−0.004)

than the RMSSD index after exercise (r = −0.091 and slope = −0.001). The

slope significance was achieved by RMSSD before exercise with p = 0.04,

while it failed for RMSSD after exercise as p = 0.18.

It is worth mentioning that the remainder of the correlations is not as

strong, specifically the correlation between SDNN and age and that between

RMSSD and age. Nevertheless, the slope demonstrates significance between

HRV indices measured at rest and after exercise. The combination of the

correlation coefficient and the slope provides a more precise evaluation for

the trend analysis. Note that PPGs measured at rest have a greater negative

slope compared to those measured after exercise. Although it was known

that long-term exercise exerts significant effects on the HRV [24], it has not

been investigated over short PPG signals. This study is important because

it reports the effect of exercise on HRVs calculated from short PPG signals

and compared their results in subject measured at rest and after exercise.

The results of various cross-sectional studies have shown a linear decrease
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in HRV during exercise with increasing age using only ECG signals [25,

26, 16]. Interestingly, our results confirm the inverse linear relationship

between HRV measure (SDNN and RMSSD) and age. Moreover, SDNN is

statistically significant with age for PPG measured before and after exercise.

This new outcome shows that HRV can potentially be measured using short

PPG signals.

The proposed method was only tested on healthy subjects. The phys-

iology of the subject significantly changes according to the health status,

which can be reflected in the PPG signal. Therefore, the robustness of the

proposed method needs to be verified by a study with unhealthy subjects.

One of the next steps regarding the results of this study is to examine the

HRV indices calculated from PPG signals in the diagnosis and monitoring

of abnormalities, such as arrhythmia, hypertension, diabetes, and hyperlipi-

demia. The HRV indices are usually calculated over a period of five minutes

from the ECG signals; however, the PPG recordings in this study were very

short (20 seconds). Additional studies to demonstrate the 20-second record-

ings are equivalent in terms of usefulness to the standard length of time (5

minutes) are needed to further validate our findings. Studies that evaluate

the extracted HRV indices as a function of PPG duration are recommended.

The PPG database contains signals collected from subjects of approximately

the same age (about 22 years old), which creates imbalance in the age dis-

tribution. Therefore, a larger and more diverse sample size with a balanced

age distribution is needed to generalize the findings of this study.

4 Conclusion

The findings of this preliminary study build on previous studies that dis-

cussed the potential use of only PPG to measure HRV (i.e., without col-
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lecting ECG data). The SDNN and RMSSD indices are suitable for short

duration signals and can be applied to 20-second PPG recordings. Both

indices show a negative correlation with age at rest. Interestingly, only

SDNN shows significance for after exercise measurements. Since long signal

measurement can be challenging due to pesrpiration, calculating SDNN us-

ing short PPG measurements from subjects after exercise in hot and humid

weather is an appealing approach that needs to be explored on a larger scale.

The overall result of this study indicates that short PPG signals can be a

potential modality for HRV analysis and the identification of individuals at

risk.

.
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Figure 4: Correlation between age and SDNN index. (a) Age and
SDNN calculated from PPG signals for all subjects measured at rest, (b)
age and SDNN calculated from PPG signals for all subjects measured after
exercise. It is clear that the SDNN index is more negatively correlated with
age for 20-second PPG signals measured at rest compared to after-exercise
measurements. Here, the p-value shows the significance for testing the slope
of the linear regression.
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Figure 5: Correlation between age and RMSSD index. (a) Age and
RMSSD calculated from PPG signals for all subjects measured at rest, (b)
age and RMSSD calculated from PPG signals for all subjects measured after
exercise. It is clear that the RMSSD index is more negatively correlated with
age for 20-second PPG signals measured at rest compared to after-exercise
measurements. Here, the p-value shows the significance for testing the slope
of the linear regression.
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