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Abstract

There are a limited number of studies on heart rate variability (HRV) dynamics immediately after exer-

cise. The electrocardiogram (ECG) may be used to measure HRV, however acquiring ECG signals from

subjects undergoing exercise is not convenient. Many researchers have demonstrated that photoplethys-

mogram (PPG) signals offer an alternative method to measure HRV when ECG and PPG signals are

simultaneously collected. However, we investigate a different approach to potentially show that the PPG

signals can measure HRV without collecting ECG signals. Moreover, we explore the extraction of the

most suitable HRV-parameters from short PPG signal recordings. Our preliminary results now motivate

further studies that cross check HRV parameters extracted from both ECG and PPG. In this study, PPG

signals from an existing database were used to determine a range of HRV indices, including the standard

deviation of heart beat interval (SDNN) and the root-mean square of the difference of successive heart

beats (rMSSD). Results from this study indicate that the use of the a–a interval, derived from the ac-

celeration of PPG signals, show very promising results in determining the HRV statistical indices SDNN

and rMSSD over 20-second PPG recordings. Moreover, post-exercise SDNN and rMSSD indices show

negative correlation with age.
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Introduction

Heart rate variability (HRV) has been extensively studied in electrocardiogram (ECG) signals, having

become the conventionally accepted term to describe variations of both instantaneous heart rate and

RR intervals. A number of terms have been used in the literature to describe heart rate variability,

for example cycle length variability, heart period variability, RR variability, and RR interval tachogram.

The measurement of HRV captures heart rate variations around the mean heart rate (HR), and provides

information on sympathetic-parasympathetic autonomic stability and consequently the risk of sudden

cardiac death. The traditional method of identifying heartbeats in ECG is by detecting R peaks. Many

researchers investigated the feasibility of using the photoplethysmogram (PPG) as an alternative simple,

inexpensive, and convenient diagnostic tool. In almost every study, comparisons are made between HRV

calculated from RR intervals and those calculated from PPG signals. However, accurate detection of inter-

beat intervals from fingertip PPG signals is considered challenging [1–3]. This is because ventricular

pressure and other parameters of the heart can influence the form and timing of the pulse waveform.

In addition, peripheral effects such as changes in vascular tone, may also influence distal pulse peak

detection. These potential weaknesses in using fingertip PPG signals in measuring HRV are raised by

Bernston et al. [1], who recommend the use of RR intervals from ECG signals to determine inter-beat

intervals. However, they note that with a sophisticated peak detection algorithm, the use of intra-arterial

pressure pulses may be acceptable, but that indirect measures such as PPG signals need further validation.

Moreover, Constant et al. [2] recommended the use of the ECG rather than the distal pulse wave signal

for calculating HR.

Giardino et al. [3] demonstrated that under resting conditions the distal pulse pressure, as shown in

Figure 1(a), is sufficient for determining the heart rate. However, they recommended additional studies

including test-retest reliability evaluation of different data collection techniques. These cautious evalua-

tions may explain the lack of investigation into the use of PPG signals instead of ECG to measure HR

and HRV. The PPG contour itself can be used to detect the heart beat and consequently HRV can be

measured [4], as shown in Figure 1 (a) where the two circles represent two consecutive heartbeats with

the smallest positive amplitudes of the PPG signal. However, reliable detection of heartbeats from the

PPG contour is challenging due to PPG noise and the nature of its incorporated interference with hemo-

dynamic variables [5]. To overcome difficulties with PPG contour analysis, the second derivative of the
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photoplethysmogram waveform, also called the acceleration plethysmogram (APG), has been introduced,

as shown in Figure 1 (b) where the two circles represent two consecutive heartbeats with the largest

positive amplitudes of the APG signal. Because the peaks in the APG are more clearly defined than the

peaks in the PPG contour, the heart rate can be more accurately detected using the APG.

Fingertip PPG, which mainly reflects pulsatile volume changes in the arterioles of the finger, has

been recognized as a noninvasive method of measuring arterial pulse waves in relation to changes in wave

amplitude [6]. However, the wave contour (cf. Figure 2 (a)) itself has not been analysed because of the

difficulty in detecting minute changes in the phase of the inflections. Previous attempts at PPG analysis

showed that such subtle changes in the waves were emphasized and easily quantified by quadratically

differentiating the original PPG signal with respect to time [7]. Accordingly, the second derivative of the

PPG (APG) was developed as a method allowing more accurate recognition of the inflection points and

more convenient interpretation of the original plethysmogram wave. In this paper, the abbreviation PPG

is used for photoplethysmogram and APG for the second derivative photoplethysmogram based on the

recommendation in Ref. [8]. As shown in Figure 2 (b), the APG waveform consists of four systolic waves

(a, b, c and d waves) and one diastolic wave (e wave) [9]. The height of each wave was measured from

the baseline, with values above the baseline being positive and those under it negative. The first systolic

wave, the a wave, is the most suitable wave for heart rate calculations because of its large amplitude

and steepness. Taniguchi et al. [10] used the aa interval in the APG signals to determine HR instead of

ECG when assessing the stress experienced by surgeons. In the present study, our goal is to explore an

alternative methodology and investigate the feasibility of using PPG to analyse HRV without measuring

ECG signals from heat-stressed subjects.

Materials and Methods

Ethics Statement

There is one annotated PPG database available at Charles Darwin University. The data were collected

during rest (before exercise) and after one hour of exercise (walking) on a treadmill in the climate control

chamber at Northern Territory Institution of Sport (Darwin, Australia). The speed of treadmill was set

to 5 km/h with a one percent incline increment corresponding to the effort required to walk with 8 kg

of webbing. The exercise was considered to be of moderate intensity, and the background of the entire
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project can be found in [11]. All subjects provided written informed consent before participation, which

was approved by the Charles Darwin University Ethics Committee.

The PPGs of 27 healthy volunteers (males) with a mean ± SD age of 27 ± 6.9 were measured using a

photoplethysmography device (Salus APG, Japan), with the sensor located at the cuticle of the second

digit of the left hand, in which all subjects were included. Measurements were taken while the subject

was at rest on a chair. The PPG data were collected at a sampling rate of 200 Hz and the duration of each

recording was 20 seconds. The PPG recordings of 20 seconds are intentionally much shorter than is usual

for ECG recordings to exclude motion artefacts and other noise [12]. This also serves as a preliminary

test of feasibility, where the ease of shorter recording lengths is desirable in a clinical setting.

The annotations were carried out by only one PPG specialist, which is sufficient for this preliminary

proof-of-concept study. The signals measured during rest (before exercise) contained a total of 584

heartbeats, whilst the PPG signals collected after one hour of exercise contained fast rhythm PPG

signals, with a total of 885 heartbeats; the background of the entire project can be found in [11]. For

signal conditioning and wave detection, MATLAB 2010b (The MathWorks, Inc., Natick, MA, USA) was

used.

Methodology

The major reason for the interest in HRV stems from its ability to predict survival after a heart attack

[13–15]. In ECG signal analysis, the interval between adjacent QRS complexes is termed as the normal to

normal (NN) or RR interval. Here, HRV refers to the beat-to-beat alterations in the heart rate, portraying

the physiological condition of the patient and is an important indicator of cardiac disease. Many studies

have shown that reduced HRV predicts sudden death [16,17]. The low-cost and simplicity of APG signals

can offer significant benefits to healthcare, for example in primary care, where non-invasive, accurate and

simple-to-use diagnostic techniques are desirable. Further development of photoplethysmography may

potentially lead to a new complementary tool in the management of vascular disease. The detection of

the R peak of the ECG is the main step in measuring HRV. Precise RR interval calculations are necessary

to accurately depict the physiological state. To date, over 20 different types of arithmetic manipulations

of RR intervals have been described in the literature to represent HRV [18].

The Task Force of the European Society of Cardiology and the North American Society of Pacing

and Electrophysiology [13] suggest a number of simple time domain measures to estimate HRV. Their
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discussion paper noted that HRV is calculated using the mean standard deviation of the length of the

cardiac cycle. This can be determined using either the RR intervals of a short ECG segment or the aa

intervals of the APG. Table 1 summarizes some simple time-domain HRV variables: MAX-MIN, SDNN,

RMSSD, and SDSD, which can all be determined from APG signals.

Traditionally, HRV measures are based on cardiac inter-beat intervals using ECG. However, some

practitioners have used distal measurements of the arterial pulse, such as the fingertip PPG, to measure

heart rate. However, there are some potential obstacles to obtaining precise inter-beat intervals from

arterial pressure pulses, especially when measured from a distal source such as fingertip PPG. The

lack of sharp peaks in blood pressure pulses compared to R peaks in the ECG makes the accurate

determination of heart rate challenging. In addition, the shape and timing of the pulse waveform may

be influenced by ventricular pressure, flow rate, time period, or other cardiac hemodynamic parameters.

Peripheral effects, such as changes in vascular tone, may also influence distal pulse peak detection. These

disadvantages of the fingertip PPG have already been noted by Bernston et al. [1], who recommend

the use of RR intervals from the ECG to determine interbeat intervals. However they note that with a

sophisticated peak detection algorithm, the use of intra-arterial pressure pulses may still be acceptable.

To this end, it has been demonstrated that under resting conditions, the distal pulse pressure is sufficient

for determining heart rate [3]. Caution is required in the use of finger plethysmography in experimental

studies, where manipulations might change the relationship between cardiac chronotropic control and

distal blood pressure changes. Lu et al. [4] used the PPG contour itself without any derivatives as an

alternative measurement for HRV. However, Taniguchi et al. [10] used the second derivative of PPG to

determine heart rate when assessing the stress experienced by surgeons. In this study, our goal was to

determine if variations in the APG signal can be used instead of the ECG for measuring HRV. In addition,

the relationship between heart rate and HRV at rest and post-exercise was investigated. The annotated

a waves are used to calculate the duration of each consecutive aa interval as follows

aa[i] = A[i+ 1]−A[i], (1)

where A contains the annotated a waves in each APG signal, and aa contains the a–a intervals. Note, as

the main interest is to analyze the aa duration rather than the amplitude, no pre-processing is needed.

It is known that HRV decreases with normal aging from the analysis of R peaks in ECG signals [19–21].
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Therefore, based on using a waves in APG signals, if the correlation between HRV and age is decreasing,

APG signals can potentially measure HRV. To find the correlation between age and HRV, two time-domain

HRV parameters are calculated and compared. These parameters are often used with ECG signals. The

first parameter, SDNN, is the standard deviation of heartbeat duration; here, the RR interval is replaced

by aa intervals. The SDNN is calculated as follows:

SDNN = (1/N)

N∑
i=1

(aa[i])2 − {(1/N)

N∑
i=1

(aa[i])}2. (2)

The second parameter, rMSSD, is the root-mean square of the difference of successive heartbeats, or RR

intervals in ECG signals. Here, the RR interval is replaced by aa intervals, and rMSSD is calculated

using:

rMSSD =

√√√√(1/N)

N∑
i=1

(aa[i])2. (3)

Results and Discussion

Here, SDNN and rMSSD indices are calculated for 27 subjects using PPG recordings of 20 seconds in

duration during rest and after exercise. To evaluate the HRV indices, two parameters are used: the

steepness of the relationships (slope) and the correlation coefficient (r). Calculating r is carried out as

follows:

r =
Cov(u, v)

σuσv
, (4)

where Cov(u, v) is the covariance between data u and data v, σu is the standard deviation of data u and

σu is the standard deviation of data v.

As shown in Figures 4 (a) and 4 (b), there is a negative correlation between heart rate and the HRV

indices. The rMSSD index is more negatively correlated with the HR (r = −0.565) with more negative

slope (−0.022) than the SDNN index (r = −0.39 and slope = −0.011). Figure 5 illustrates the correlation

between the two HRV indices (rMSSD and SDNN), showing a strong positive correlation (r = 0.894).

Figures 6 (a) and 6 (b) reveal the relationship between age and the SDNN index at rest and after exercise

respectively. The SDNN index at rest is more negative correlated with age (r = −0.271) and has a steeper
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negative slope (−0.004) than after exercise (r = −0.12 and slope = −0.001). Figures 7 (a) and 7 (b)

show the relationship between the age and the rMSSD index at rest and after exercise respectively. The

rMSSD index at rest is more negatively correlated with age (r = −0.217) and has a more negative slope

(0.004) than the rMSSD index after exercise (r = −0.091 and slope = −0.001).

It is clear that the correlation between SDNN and rMSSD has a strong correlation, although that

is to be expected given the respective definitions, both of which use the same aa[i] term. However,

the remainder of the correlations are not as strong, specifically with the correlation between SDNN or

rMSSD and age. Nevertheless, the slope demonstrates significance between HRV indices measured at

rest and after exercise. The combination of the correlation coefficient and the slope provides more precise

evaluation. It is also worth noting that PPGs measured at rest have a greater negative slope compared

to measurements after exercise .

Results from various cross-sectional studies have shown a linear decrease in HR during exercise with

increasing age. Interestingly, our results confirm the inverse linear relationship between HRV measures

(SDNN and rMSSD) and age. This new outcome shows that HRV can potentially be measured using

PPG signals without using ECG signals. This now motivates a larger study that directly validates HRV

obtained from PPG with that of ECG.

Limitations of the Study and Future Work

The HRV indices are usually calculated over a period of 5 minutes from the ECG signals; however, the

PPG recordings in this study were very short (20 seconds). Studies that evaluate the extracted HRV

indices as a function PPG duration record, are suggested as an item for future work. It is important

to note that the number of PPG records (total of 27) used is modest: a larger sample size and a more

diverse data set are needed in order to generalize the findings of this study. The collection of ECG signals

as a reference for the PPG is an optimal setting for the experiment; however, it is difficult to obtain these

signals from subjects in heat-stress conditions. Also, the automatic detection of a waves may be of interest

for investigating systolic peak detection. However, as mentioned in the introduction, there has been an

attempt by Matsuyma [11] who demonstrated that applying a simple threshold is not sufficient. We also

recommend that future larger studies are carried out with multiple annotators to evaluate inter-observer

variability.
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Conclusion

The findings of this preliminary study indicate that heart rate can be calculated using APG. The length

of the aa interval can be accurately determined if the a peaks are detected correctly. As discussed above,

HRV indices can be calculated using the APG, with values similar to those obtained using ECG signals.

The SDNN and rMSSD indices are suitable for short-duration signals and can be applied to 20 second

APG recordings. Both indices show a negative correlation with heart rate, especially the rMSSD index.

There is a strong positive correlation between the two HRV indices, indicating that the 20-second APG

recordings are sufficient to reliably measure the HRV. As expected, there is a negative correlation between

age and the two HRV indices. Results of this study indicate that APG can be a potential modality for

heart-rate-variability analysis and identification of individuals at risk. The possibility of replacing ECG-

based HRV is motivated by the desire for simpler high-throughput measurements in a clinical setting.

Our preliminary study demonstrate indicative results, and now motivates the need for a larger study that

validates HRV measures from PPG against those obtained from ECG.
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Tables

Table 1. HRV Statistical Variables.

Variable Statistical measurement
MAX-MIN Difference between shortest and longest aa interval
SDNN Standard deviation of all aa intervals
RMSSD Root mean square of the difference of successive aa intervals
SDSD Standard deviation of differences between adjacent aa intervals
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Figure 1. Two successive beats in (a) fingertip photoplethysmogram (PPG) signal (b)
second derivative wave of photoplethysmogram (APG) signal.
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Figure 2. Fingertip photoplethysmogram signal measurement [22]. (a) Fingertip
photoplethysmogram. (b) Second derivative wave of photoplethysmogram. The photoplethysmogram
waveform consists of one systolic wave and one diastolic wave, while the second derivative
photoplethysmogram waveform consists of four systolic waves (a, b, c, and d waves) and one diastolic
wave (e wave).



14

2 4 6 8 10 12 14 16 18
-6

-4

-2

0

2

4

6

8

10
x 10

-3

Time(s)

V

2 4 6 8 10 12 14 16 18
-6

-4

-2

0

2

4

6

8

10
x 10

-3

Time(s)

V

(a)

(b)

Figure 3. An example of PPG recordings for the same volunteer measured (a) during rest
and (b) after exercise. It is clear that the heart rate after exercise was higher than during rest.
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Figure 4. Correlation between heart rate and HRV indices. (a) HR and SDNN, (b) HR and
rMSSD. It is clear that the rMSSD index is more negatively correlated with HR for APG signals
measured at rest than the SDNN index
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Figure 6. Correlation between age and SDNN index. (a) Age and SDNN calculated from APG
signals for all subjects measured at rest, (b) age and SDNN calculated from APG signals for all subjects
measured after exercise. It is clear that the SDNN index is more negatively correlated with age for
APG signals measured at rest compared to after-exercise measurements.



18

15 20 25 30 35 40 45
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
yi=i-0.004ixi+i0.306

ri=i-0.217

Agei(years)

rM
S

S
D

i(
se

c)
i-

A
ti

re
st

15 20 25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
yi=i-0.001ixi+i0.056

ri=i-0.091

Agei(years)

rM
S

S
D

i(
se

c)
i-

A
ft

er
ie

xe
rc

is
ei

(a)

(b)

Figure 7. Correlation between age and rMSSD. (a) Age and rMSSD calculated from APG
signals for all subjects measured at rest, (b) age and rMSSD calculated from APG signals for all
subjects measured after exercise. It is clear that the rMSSD index is more negatively correlated with
age for APG signals measured at rest compared to after-exercise measurements.


