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Abstract 

There is a limited number of studies on heart rate variability (HRV) dynamics immediately after 

exercise. It is well-known that the electrocardiogram is a non-invasive method that can be used to 

measure heart rate variability (HRV) at rest and after exercise. Photoplethysmogram (PPG) signals 

also reflect the cardiac rhythm since the mechanical activity of the heart is coupled to its electrical 

activity. Photoplethysmography is a non-invasive, safe, and easy-to-use technique that has been 

developed for experimental use in vascular disease. In this study, HRV has been investigated over 

27 healthy subjects measured at rest and after exercise using PPG signals. The use of the aa interval 

in APG signals showed very promising results in calculating the HRV statistical indices, SDNN 

and rMSSD. Moreover, the after exercise SDNN and rMSSD indices have shown negative 

correlation with age. 
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1. Introduction 

 

Heart rate variability (HRV) has been extensively studied in electrocardiogram signals. HRV has 

become the conventionally accepted
 
term to describe variations of both instantaneous heart rate

 

and RR intervals in electrocardiogram (ECG) signals. Therefore, a number of terms have been 

used in the literature to describe heart rate variability, for example,
 
cycle length variability, heart 

period variability, RR variability,
 
and RR interval tachogram.

 

HRV measures the heart rate variations around the mean heart rate (HR). HRV provides 

information about the sympathetic-parasympathetic autonomic stability and consequently about 

the risk of unpredicted cardiac death. The traditional method to detect heart beats is detecting R 

peaks in ECG signals; a very promising tool to derive useful information about the 

hemodynamics as well as autonomic nerve system is the photoplethysmogram (PPG) signals. 

Accurate detection of inter-beat intervals from fingertip PPG signals is considered difficult. 

Ventricular pressure and other parameters of cardiac output however can influence the form and 

timing of the pulse waveform. In addition, peripheral effects, such as changes in vascular tone, 

may also influence distal pulse peak detection. 
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These possible weaknesses of  using the fingertip PPG signals in measuring HRV are 

mentioned by Bernston et al. [1]. Hence, they recommend the usage of RR intervals from ECG 

signals to determine inter-beat intervals. They do believe, however, that with a sophisticated peak 

detection algorithm the use of intra-arterial pressure pulses may be acceptable. According to them 

indirect measures, such as photoplethymographic signals need further validation.  

 

 

 
Figure 1 Two successive beats in (a) fingertip photoplethysmogram (PPG) signal (b) second derivative wave of 

photoplethysmogram (APG) signal. 

 

 

Giardino et al.[2] demonstrated that under resting conditions the distal pulse pressure, as shown 

in Figure 1 (a), is sufficient for determining the heart rate. However, they recommended extra 

studies that include test–retest reliability evaluation of different data collection techniques.  

These reasons may explain the lack in investigating the use of PPG signals instead of ECG 

signals to measure the heart rate (HR) and the heart rate variability (HRV). 

The PPG contour itself can be used to detect the heart beat and consequently HRV can be 

measured [3], as shown in Figure 1 (a) the two circles represent two consecutive heart beats with 

the smallest positive values in the PPG signal. However, reliable detection of heart beats from the 

PPG contour is challenging due to PPG noise and its interference incorporated nature [4]. 

To overcome the PPG contour analysis, the second derivative of photoplethysmogram, also 

called the acceleration plethysmogram (APG), has been introduced, as shown in Figure 1 (b); the 

two circles represent two consecutive heart beats with the largest positive values in the APG 

signal. Because the peaks in the APG signal are more clearly defined than the peaks in the PPG 

contour the heart rate can be more accurately detected using the APG. 
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Figure 2 Signal Measurements [5] (a) fingertip photoplethysmogram (b) second derivative wave of 

photoplethysmogram. The photoplethysmogram waveform consists of one systolic wave and one 

diastolic wave while the second derivative photoplethysmogram waveform consists of four systolic 

waves (a, b, c, and d waves) and one diastolic wave (e wave). 

 

Fingertip photoplethysmography mainly reflects the pulsatile volume changes in the finger 

arterioles, has been recognized as a noninvasive method of measuring arterial pulse waves in 

relation to changes in wave amplitude (Fichett [6]). However, the wave contour (cf. Figure 2 (a)) 

itself has not been analysed because of the difficulty in detecting minute changes in the phase of 

the inflections. Previous attempts at PPG analysis showed that such delicate changes in the waves 

were emphasized and easily quantified by quadratically differentiating the original PPG signal 

with respect to time (Seki [7]; Ozawa [8]). Accordingly, the second derivative of the PPG (APG) 

was developed as a method allowing more accurate recognition of the inflection points and easier 

interpretation of the original plethysmogram wave.  

In this paper, the abbreviation PPG is going to be used for photoplethysmogram and APG for 

the second derivative photoplethysmogram based on Elgendi’s recommendation [9]. 

As shown in Figure 2 (b), The waveform of the APG consists of four systolic waves (a, b, c 

and d waves) and one diastolic wave (e wave) Takazawa et al.[10]. The height of each wave was 

measured from the baseline, with the values above the baseline being positive and those under it 

negative. The first systolic wave, the a-wave seems the most suitable for heart rate calculations 

because of its amplitude and steepness. 

Taniguchi et al [11] used the aa interval in the APG signals to determine HR instead of using 

the ECG when assessing the stress experienced by surgeons. 

In the present study, our goal was to determine if variations in the APG signal can be used 

instead of the ECG for measuring the HRV. In addition, we investigate the relationship between 

HRV, HR and age at rest and after exercise.  
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2. Data 

There are currently no standard PPG databases available to evaluate the developed algorithms. 

However, Charles Darwin University has PPG dataset measured at rest and after exercise, as 

shown in Figure 3. Two independent annotators annotated a and b waves in APG signal. 
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Figure 3 PPG signals: 20-seconds recording for the same volunteer, measured (a) at rest and (b) after 

exercise. It is clear that the heart rate after exercise is higher than at rest. This issue makes it 

challenging to detect heartbeats from APG signals. 

 

 

The PPG data were collected as a minor part of a joint project between Charles Darwin 

University, the Defence Science and Technology Organisation (DSTO) and the Department of 

Defence. The background of the entire project can be found in [12]. 

PPGs of 27 healthy volunteers (males) with a mean±SD age of 27±6.9 were measured using a 

photoplethysmography device (Salus PPG), with the sensor located at the cuticle of the second 

digit of the left hand. Measurements were taken while the subject was at rest on a chair. PPG data 

were collected at a sampling rate of 200 Hz. The duration of each data segment is 20 seconds.  

(a) 

(b) 



Annotations is a difficult task due to inter-annotator discrepancy, as the two annotators will 

never agree completely on what and how to annotate the a wave. Despite the annotation process 

being significantly time-consuming, discrepancies can be found in many records. Three cases will 

be discussed below to show how the discrepancies were adjudicated: 

 Case 1:  

Annotator 1 agrees with Annotator 2 on all of the a wave positions within an 

APG record.  When both annotators have no discrepancies, it is an optimal 

situation. 

 Case 2:  

Both annotators agree on most of the a wave positions except the first a wave at 

far left and the last a wave at the far right. 

 Case 3:  

Annotator 2 considered these two waves a waves while Annotator 1 did not. 

 

One annotation file has been saved to present the two annotated a waves by considering the a 

waves that have been missed by one of the annotators, or perhaps isolating a wave that is not 

consistent with the beat rhythm within the APG recording. 

 

3. Methodology 

The major reason for the interest in measuring HRV stems from its ability to predict survival 

after a heart attack. In ECG signals analysis, the interval between adjacent QRS complexes is 

termed as the normal to normal (NN) or RR interval. HRV refers to the beat-to-beat alterations in 

the heart rate. The results of a HRV analysis portray the physiological condition of the patient and 

are important indicator of cardiac disease. Many studies have shown that reduced HRV predicts 

sudden death in patients.  

The low-cost and simplicity of APG signals can offer significant benefits to healthcare, for 

example, in primary care, where non-invasive, accurate and simple-to-use diagnostic techniques 

are desirable. Further development of photoplethysmography could place this methodology 

among other tools used in the management of vascular disease. 

The detection of R peak is the main step in measuring HRV. Precise R-R interval calculations 

are necessary to accurately depict the physiological state. To date, over 26 different types of 

arithmetic manipulations of R-R intervals have been described in the literature to represent HRV 

[13].  

 

Table 1 HRV Statistical Variables 

Variable Statistical measurement 

MAX-MIN 
Difference between shortest and longest a-a 

interval 

SDNN Standard deviation of all a-a intervals  

RMSSD 
Root mean square of the difference of 

successive a-a intervals  

SDSD 
Standard deviation of differences between 

adjacent a-a intervals  

 

The Task Force of the European Society of Cardiology and the North American Society of 

Pacing and Electrophysiology [14] suggest a number of simple time domain measures to estimate 

HRV. Their paper discussed that HRV is calculated using the mean standard deviation of the 



length of the cardiac cycle. This can be determined using either the R-R intervals of a short ECG 

segment or the a-a intervals. Table 1 shows some simple time–domain HRV variables: MAX-

MIN, SDNN, RMSSD, and SDSD, which can be calculated based on APG signals. 

 

Can HRV be Measured by APG? 

Traditionally, HRV measures are based on cardiac inter-beat intervals using the ECG. 

However, some practitioners have used a distal measurement of the arterial pulse, such as the 

fingertip PPG, to measure the heart rate. However, there are some potential obstacles to obtaining 

precise inter-beat intervals from arterial pressure pulses, especially when measured from a distal 

source such as the fingertip PPG. The lack of sharp peaks in blood pressure pulses compared to 

the R peaks in the ECG makes the accurate determination of heart rate challenging. In addition, 

the shape and timing of the pulse waveform may be influenced by ventricular pressure, flow rate, 

time period, or other parameters of cardiac output. Peripheral effects, such as changes in vascular 

tone, may also influence distal pulse peak detection. These possible weaknesses of the fingertip 

PPG were observed by Bernston et al. [15]. Hence, they recommend the use of R-R intervals 

from ECG signals to determine interbeat intervals. They believe that, with a sophisticated peak 

detection algorithm the use of intra-arterial pressure pulses may be acceptable. According to them 

indirect measures, such as photoplethymographic signals need further validation.  

It has been demonstrated that under resting conditions the distal pulse pressure is sufficient for 

determining the heart rate [2]. Caution is required in the use of finger plethysmography in 

experimental studies, where manipulations might change the relationship between cardiac 

chronotropic control and distal blood pressure changes. Giardino et al. [2] recommended extra 

studies that include test–retest reliability evaluations of different data-collection techniques.  

These reasons may explain the lack of investigating the use of PPG signals instead of ECG 

signals to measure the HRV. 

Lu et al. (2008) used the PPG contour itself without any derivatives as an alternative 

measurement for HRV [16]. However, Taniguchi et al. (2007) [16] used the second derivative of 

PPG to determine the heart rate instead of using the ECG when assessing the stress experienced 

by surgeons. As shown in Figures 1 the two circles of R peaks in the ECG signal can be replaced 

by a waves in the second-derivative PPG signal. 

In this study, our goal was to determine if variations in the APG signal can be used instead of 

the ECG for measuring HRV. In addition, the relationship between heart rate and HRV at rest is 

investigated. 

To detect the heart rate using the APG, precise detection of individual a waves is critical. The a 

wave detection algorithm used here was described in Section 8.1. The detected a waves will be 

saved in the array A.  The duration of each consecutive a-a interval is calculated as 

 

][][][ iA1iAix        Eq. 1 

 

where  ][ix will contain the aa intervals. 

It is known that HRV decreases with normal aging using R peaks in ECG signals [17-19]. 

Therefore, if the same correlation between HRV using a waves in APG signals and age is 

decreasing, APG signals can measure HRV accurately. 

To find the correlation between age and HRV, two time-domain HRV parameters are 

calculated and compared. These parameters are often used with ECG signals.  The first 

parameter―SDNN―is the standard deviation of the duration of heart beats; here, the R-R 

interval is replaced by a-a intervals. The SDNN will be calculated as follows:  
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Figure 4 Demonstrating the correlation between heart rate and heart rate variability 

indices. (a) HR and SDNN, (b) HR and rMSSD, (c) SDNN and rMSSD calculated 

from APG signals for all subjects measured at rest. It is clear that the rMSSD index 

is more negatively correlated with HR for APG signals measured at rest than the 

SDNN index. 

 

 

 

(a) 

(b) 

(c) 



Table 2 HRV indices calculated using the APG 

Record No of beats SDNN (sec) rMSSD (sec) 

A1 26 0.024 0.013 

A2 24 0.033 0.030 

B1 17 0.080 0.108 

B2 26 0.086 0.043 

C2 20 0.105 0.118 

C3 20 0.105 0.142 

D2 22 0.059 0.051 

D3 19 0.063 0.074 

E1 22 0.045 0.056 

E2 22 0.045 0.056 

E3 19 0.095 0.144 

G2 30 0.019 0.013 

G3 19 0.056 0.033 

H3 23 0.058 0.051 

I1 22 0.034 0.037 

I2 17 0.052 0.079 

J2 23 0.0778 0.048 

L2 24 0.033 0.030 

L3 24 0.037 0.029 

N2 18 0.032 0.039 

N3 20 0.064 0.053 

O1 24 0.043 0.037 

O2 17 0.0459 0.050 

P1 26 0.083 0.073 

P2 20 0.129 0.137 

Q1 22 0.036 0.043 

Q2 18 0.140 0.161 
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The second parameter― rMSSD―is the root-mean square of the difference of successive 

heart beats, or RR intervals in ECG signals. Here, the R-R interval is replaced by a-a intervals. 

rMSSD  will be calculated as follows:  



i
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N

1
x ][      Eq. 4 

xrMSSD       Eq. 5 
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Figure 5 Demonstrating the correlation between Age and heart rate variability indices (a) 

Age and SDNN calculated from APG signals for all subjects measured at rest, (b) 

age and SDNN calculated from APG signals for all subjects measured after 

exercise. It is clear that the SDNN index is more negatively correlated with age 

for APG signals measured at rest compared to after-exercise measurements. 
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Figure 6 Demonstrating the correlation between age and rMSSD (a) Age and rMSSD 

calculated from APG signals for all subjects measured at rest, (b) age and rMSSD 

calculated from APG signals for all subjects measured after exercise. It is clear that 

the rMSSD index is more negatively correlated with age for APG signals measured 

at rest compared to after-exercise measurements. 

 

 

 

 

 

Results 

The SDNN  and rMSSD indices were calculated for 26 subjects at rest, using recordings of 

the PPG of 20 seconds. The results are shown in Table 2. 

To calculate the correlation between the heart rate and the HRV indices, the following 

correlation coefficient is used: 

(a) 

(b) 



 

vu

vuCov
r



),(
       Eq. 6 

 

Where r  is the correlation coefficient, ),( vuCov  is the covariance between data u  and data 

v , u  is the standard deviation of data x  and v  is the standard deviation of data v . 

 

As shown in Figures 4 (a) and 4 (b) there is a negative correlation between the heart rate and 

the HRV indices. The rMSSD  index is more negatively correlated with the HR (r = - 0.565) 

than the SDNN  index (r = - 0.39).  

Figure 4 (c) shows the correlation between the two HRV indices. As expected, there is a strong 

positive correlation (r = 0.894). 

Figures 5 (a) and 5 (b) show the relationship between age and the SDNN index at rest and after 

exercise respectively. The SDNN index at rest is more negative correlated with age (r = - 0.271) 

than the SDNN  index after exercise (r = - 0.12).  

Figures 6 (a) and 6 (b) show the relationship between the age and the rMSSD index at rest and 

after exercise respectively. The rMSSD index at rest is more negatively correlated with the age (r 

= - 0.217) than the rMSSD index after exercise (r = - 0.091).  

 

Conclusion 

The heart rate can be calculated using the APG. The length of the a-a interval can be accurately 

determined if the a peaks are detected correctly.  

As discussed above, HRV indices can be calculated using APG similar to ECG signals. The 

SDNN  and rMSSD  indices are suitable for short-duration signals and can be applied to 20 

second APG recordings. Both indices showed a negative correlation with heart rate, especially the 

rMSSD index. There is a strong positive correlation between the two HRV indices, indicating 

that the 20-second APG recordings are sufficient to reliably measure the HRV. As expected, there 

is a negative correlation between age and the two HRV indices. 

The usage of APG can be useful for heart-rate-variability analysis and identification of 

individuals at risk and may replace the traditional ECG diagnostic system. 
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