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Abstract

Analyzing the acceleration photoplethysmogram (APG) is becom-

ing increasingly important for diagnosis. However, processing an APG

signal is challenging, especially if the goal is to detect its small com-

ponents (c, d, and e waves). Accurate detection of c, d, and e waves

is an important first step for any clinical analysis of APG signals. In

this paper, a novel algorithm that can detect c, d, and e waves simul-

taneously in APG signals of healthy subjects that have low amplitude

waves, contain fast rhythm heart beats, and suffer from non-stationary

effects was developed. The performance of the proposed method was

tested on 27 records collected during rest, resulting in 97.39% sensitiv-

ity and 99.82% positive predictivity.

1 Introduction

The pulse wave analysis provides more precise information concerning blood

pressure changes than systolic and diastolic pressures only[1]. It is a valu-

able method to assess aortic stiffness and elasticity [2, 3, 4], and to evaluate
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the vascular effects of aging, hypertension, and atherosclerosis [5, 6, 7, 8].

Photoplethysmography (pulse oximeter) is the most common device used

to measure pulse waves, which illuminates the skin and measures changes

in light absorption. The measured signal has been referred to as photo-

plethysmogram (PTG/PPG) and digital volume pulse (DVP); however, the

acronym PPG will be used exclusively within this study, according to the

recommendations in [9]. Fingertip PPG mainly reflects the pulsatile volume

changes in the finger arterioles, as shown in Figure 1.

For more accurate recognition of the inflection points and easier inter-

pretation of the pulse wave, the second derivative of the original plethysmo-

gram wave was introduced [10]. The acronym of the second derivative PPG

is SDPPG or APG; however, the acronym APG will be used exclusively in

this study, according to the recommendations in [9].

As shown in Figure 1, the waveform of the APG consists of four systolic

waves (a, b, c, and d waves) and one diastolic wave (e wave) [11]. The

height of each wave was measured from the baseline, with the values above

the baseline being positive and those under it negative. The relative heights

of these waves (b/a, c/a, d/a, and e/a ratios), particularly the c/a ratio has

been related to arterial stiffness and aging [7, 12] and essential hypertension

[13]. All these ratios were used in calculating the ageing index (b − c −

d − e)/a [7]. Recently, the detection of a waves in APG signals has been

used to calculate heart rate [14, 15, 16] and heart rate variability indexes

[17, 18]. Moreover, Homma et al. [19] categorized the APG into seven types

depending on the waveforms. The clinical description of these categories has

been demonstrated in Figure 2.

Although the clinical significance of APG measurement has been well

investigated, there is still a lack of studies focusing on the automatic detec-

2



tion of c, d and e waves in APG signals. However, there was an attempt by

Matsuyama [20] to determine which of the nine QRS algorithms of Friesen’s

ECG algorithms [21] suits the detection of a waves in APG signals. How-

ever, up to the present, there has been no attempt to detect c, d, and e waves

in APG signals; therefore, this investigation aimed to develop an algorithm

to detect c, d, and e waves in APG signals. To test the robustness of the

developed algorithm, noisy PPG signals (measured after exercise) were used.

2 Materials and Methods

2.1 Ethics Statement

The PPG data were collected as a minor part of a joint project between

Charles Darwin University (Darwin, Northern Territory, Australia), the De-

fence Science and Technology Organisation (DSTO), and the Department

of Defence and was initiated by the Department of Defence [20]. The main

aim of the project was to assess the effect of varying degrees of aircondi-

tioning exposure in hot environments [20]. The project has been granted

human research ethic clearance from Charles Darwin University [20]. Only

de-identified numerical data, representing PPG signals as vectors, are stored

on the database. The database is available upon request at Charles Darwin

University: http://www.cdu.edu.au/ehse.

2.2 Database Used

There are currently no standard PPG databases with annotated c, d and e

waves available to evaluate the developed algorithms. One annotated PPG

database is available at Charles Darwin University. The data were collected

during rest (before exercise) and after one hour of exercise (walking) on a
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treadmill in the climate control chamber at Northern Territory Institution

of Sport (Darwin, Australia). The speed of treadmill was set to 5 km/h with

a one percent increment corresponding to the effort required to walk with

8 kg of webbing. The exercise was considered to be of moderate intensity,

and the background of the entire project can be found in [20].

PPGs of 27 healthy volunteers (males) with a mean ± SD age of 27 ± 6.9

were measured using a photoplethysmography device (Salus APG, Japan),

with the sensor located at the cuticle of the second digit of the left hand,

in which all subjects were included. Measurements were taken while the

subject was at rest on a chair. PPG data were collected at a sampling rate

of 200 Hz and the duration of each recording was 20 seconds. For signal

conditioning and wave detection, MATLAB 2010b (The MathWorks, Inc.,

Natick, MA, USA) was used.

2.2.1 Training Set

The PPG signals collected after one hour of exercise were used for training

as they includes different shapes of PPG waveforms and noise. Moreover,

they contained fast rhythm PPG signals, with a total of 885 heart beats,

which had an impact on the detection accuracy.

2.2.2 Test Set

PPG signals measured during rest (before exercise), with a total of 584 heart

beats, were used for testing as they contain different morphologies of the c,

d, and e waves. They also include different types of noises, such as power-

line interferences (50 Hz and its harmonics, see Fig. 3 (a)), low amplitude

signals (see Fig. 3(b)), as well as low-frequency baseline fluctuations (see

Fig. 3(c, d, e)) and irregular heart beats (see Fig. 3(e)).
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2.3 Methodology

In this study, a novel algorithm, adapted from the framework proposed by

Elgendi to detect systolic waves in PPG signals [22] and QRS complexes in

ECG signals [23], will be evaluated. The same approach will be used here to

detect the c, d, and e waves. The method consists of three main stages: pre-

processing (bandpass filtering, second derivative, and cancellation of a and

b waves), feature extraction (generating blocks of interest using two moving

averages), and classification (thresholding). The structure of the algorithm

is given in Figure 4.

2.3.1 Bandpass Filter

A zero-phase second-order Butterworth filter, with a bandpass of 0.5–7 Hz

based on a brute force search that will be discussed later in the parame-

ter optimization section, was implemented to remove unwanted noise and

possible movement artefacts (cf. Figure 3). The output of the zero-phase

Butterworth filter applied to the PPG signal produced a filtered signal S[n].

The code line of this step is line 2 in the pseudocode of the c, d, and e waves

detection algorithm (Algorithm I).

2.3.2 Second Derivative

To obtain the APG signals, the second derivative was applied to the filtered

PPG in order to analyse the APG signals. Equations 1 and 2 represent a

non-causal filter; the three-point center derivative was created with a delay

of only two samples.

S′[n] =
dS

dt
|t=nT =

1

2T
(S[n + 1]− S[n− 1]), (1)
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APG[n] =
dS′

dt
|t=nT =

1

2T
(S′[n + 1]− S′[n− 1]), (2)

where T is the sampling interval and equals the reciprocal of the sampling

frequency, and n is the data sample. Figure 5(a) shows the second derivative

of the filtered PPG signal measured. The code line of this step is line 3 in

the pseudocode of the proposed detector (Algorithm I).

2.3.3 Removal of a and b waves

At this stage, the cde segment of the APG needs to be emphasized to dis-

tinguish it clearly for detection. This can be done by removing the a and b

waves from the APG signal, as follows:

APG(awaves(i)− cutoff : awaves(i) + cutoff) = 0, (3)

where i is the number of a waves (the peaks of a waves), while the cutoff

represents the area before or after the peak of the a wave. The exact value

for a cutoff of 30 ms (6 samples for a sampling frequecy of 200 Hz) is

determined after a brute force search, which will be discussed later in the

parameter optimization section. The code line of this step is line 4 in the

pseudocode of the proposed detector (Algorithm I).

2.3.4 Generating Blocks of Interest

Blocks of interest are generated using two moving averages that demarcate

the c and e waves and cde segment areas. The particular method used to

generate blocks of interest has been mathematically shown to detect systolic

waves [22] and QRS complexes [23].

In this procedure, the first moving average (MApeak) is used to emphasise

the c and e waves area, as the dotted signal shows in Figure 5(b), and is
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given by

MApeak[n] =
1

W1
(y[n−(W1−1)/2]+· · ·+y[n]+· · ·+y[n+(W1−1)/2]), (4)

where W1 represents the window size of c or e wave duration. The resulting

value is rounded to the nearest odd integer. The exact value for W1 of 5 ms

is determined after a brute force search, which will be discussed later in the

parameter optimization section.

The second moving average (MAcde) is used to emphasize the beat area

to be used as a threshold for the first moving average, shown as a dashed

signal in Figure 5(b), and is given by

MAcde[n] =
1

W2
(y[n−(W2−1)/2]+ · · ·+y[n]+ · · ·+y[n+(W2−1)/2]), (5)

where W2 represents a window size of approximately the duration of the

cde segment that contains the c, d, and e waves. Its value is rounded to

the nearest odd integer. The exact value for W2 of 15 ms is determined

after a brute force search, which will be discussed later in the parameter

optimization section. Applying the MAcde as a threshold for the MApeak

generates blocks of interest. The code lines of this step are lines 5–14 in the

pseudocode of the proposed detector (Algorithm I).

2.3.5 Thresholding

In this stage, the blocks of interest were generated, some of which will contain

the c and e waves and some of which will primarily contain noise. Therefore,

the next step is to reject blocks that result from noise. Rejection is based on
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the peak width and its relative distance to the a peak. Regarding the peak

width (the duration of c, d, or e wave), it was determined in the previous

step, during the calculation of MApeak; thus, the width threshold is

THR1 = W1. (6)

In order to determine whether the detected blocks contain c or e waves,

the number of blocks in each consecutive aa interval is first counted. Two

thresholds (or search areas) are then applied based on the relative distance

between the detected blocks and its current a wave, as shown in Figure 6 .

The minimum search distance for c wave is defined as

ACmin = (aa/fs) ∗ acmin, (7)

while the maximum search distance for e wave is defined as referred to as

AEmax = (aa/fs) ∗ aemax, (8)

where fs refers to the sampling frequency, and the aa is the interval between

the current a wave and the next a wave. The value of acmin and aemax

is fixed; however, the value of ACmin and AEmax is the adapted to the

heart rate (aa interval). The code lines of this step are lines 17–20 in the

pseudocode of the proposed algorithm (Algorithm I). The exact values of

acmin and aemax are determined after a brute force search, which will be

discussed later in the parameter optimization section.

By applying the width threshold (W1) along with the two search thresh-

olds (ACmin and AEmax), there will be two possibilities for the number of

detected blocks:
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1. More than one block: the first block (maximim value within the first

block) is considered a c wave, while the second block (maximim value

within the second block) is considered a e wave, as shown in cases 1

and 2 in Figure 5(b). Moreover, the minimum value that lies between

the detected c wave and the detected e wave is considered d wave. The

code lines of this step are lines 30–33 in the pseudocode the proposed

algorithm (Algorithm I).

2. One block: the c, d and e waves are most likely merged within one

block, as shown in case 3 in Figure 5(b). The c, d, and e waves are

usually merged in APG signals measured after exercise. The code

lines of this step are lines 35–37 in the pseudocode of the proposed

algorithm (Algorithm I).

The detected waves were compared to the annotated waves, within a

search range of ± 5 ms for all waves.

2.3.6 Parameter Optimization

Performance of c, d, and e waves detection algorithms is typically evaluated

using two statistical measures:

SE = TP/(TP + FN) and +P = TP/(TP + FP), where TP is the number

of true positives (c/d/e wave detected as c/d/e wave), FN is the number of

false negatives (c/d/e wave has not been detected), and FP is the number

of false positives (non-c/d/e wave detected as c/d/e wave). The sensitivity

SE reported the percentage of true c/d/e waves that were correctly detected

by the algorithm. The positive predictivity +P reports the percentage of

the detected c/d/e waves that were true c/d/e waves. Similarly, the same

statistical measures were used to evaluate the b waves.

9



The function of the c, d, and e waves detector (cf. pseudocode of Al-

gorithm I) has ten inputs: the PPG signal (PPGsignal), frequency band

(F1–F2), and event-related durations W1,W2, cutoff, acmin, aemax, awaves,

bwaves, and fs. Any change in these parameters will affect the overall per-

formance of the proposed algorithm. These parameters are interrelated and

cannot be optimized in isolation. A rigorous optimization, brute-force search

based on the knowledge-base information, over all parameters, is conducted,

as shown in Algorithm II. This is time consuming, as the complexity of the

algorithm is O ((MaxF1−F1) ×MaxF2−F2) × (MaxW1−W1) × (MaxW2−

W2) × (Maxcutoff−cutoff) × (Maxacmin−acmin) × (Maxaemax−aemax)),

but it is required before making any claims.

The data used in this training phase were the PPG signals measured at

after 1 hour of exercise. All possible combinations of parameters (26,000

iterations) have been investigated and sorted in descending order according

to their overall accuracy (the average value of SE and +P), as shown in

Table 3. Note, the parameters were optimized separately for each subject

within the training data.

Optimization of the beat detector’s spectral window for the lower fre-

quency resulted in a value within 0.5–1 Hz with the higher frequency within

4–10 Hz. The window size of the first moving average (W1) varied from 5–25

ms, whereas the window size of the second moving average (W2) varied from

10–15ms. The cutoff was tested over the range 30–70 ms, and acmin was

tested over the range 0–40 ms, while the aemax was tested over the range

300–600 ms. It is clear from Table 3 that the optimal frequency range for

the detection algorithm over the database was 0.5–7 Hz. Moreover, the opti-

mal values for the moving-average window sizes and offset were W1 = 5 ms,

W2 = 15 ms, cutoff = 30 ms, acmin = 10 ms, and aemax = 500 ms. The c,
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d, and e detection algorithm was adjusted with these optimal parameters.

The detector was then tested on PPG measured during rest without any

further adjustment.

3 Results and Discussion

The algorithm was tested on 27 subjects with PPG signals measured at two

time points: before exercise and after exercise, with a total number of 54

recordings. The main objective is to evaluate the robustness of the algorithm

against the non-stationary effects, low SNR, and high heart rate exhibited

after exercise. Under controlled conditions (e.g., hospital and clinic), ana-

lyzing stationary APG signals is easier [24]; as c, d, and e waves have similar

amplitudes, the statistical characteristics of the signals (i.e., mean and stan-

dard deviation) do not change appreciably with time, and a simple threshold

level can effectively detect systolic peaks. Figure 7(a) represents the APG

signals with stationarity effects for volunteer G3 (before exercise) with c,

d, and e peaks that are almost straight-lined. Also, Figure 7(c) represents

the APG signals with stationarity effects in a fast heart rate for volunteer

G2 (before exercise); however, in this case the c, d, and e peaks are almost

merged. By contrast, non-stationary APG signals makes analysis difficult

since the standard deviation changes with time (c, d, and e wave amplitudes

vary with time, and simple level thresholds cannot optimally detect them).

This has a negative effect on detection algorithm performance, especially

PPG signals collected during rest.

PPG signals collected after exercises suffered from low and high fre-

quencies because of the sweat and exhaustion of the volunteer; however, the

bandpass filter succeeded in removing these artifacts. It is worth noting

that the detection accuracy of any algorithm will increase for PPG signals
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collected after exercise. This is because of the fast rhythm caused by the

stress test, which decreases the time duration between two consequent heart

pulses. This will cause a merge of the c, d, and e peaks, and therfore, the

detection of the merged waves will be easier (cf. Figure 7(c)). It is impor-

tant to mention that the merging of c, d, and e peaks in the case of fast

heart rhythm is not caused by filtering, as shown in Figure 8.

The results show that the proposed detector is able to detect c, d, and

e peaks correctly in non-stationary APG signals before exercise, as shown

in Figures 7(a and c). The proposed algorithm succeeded in detecting c,

d, and e in APG signals with irregular heart beats (cf. Figure 7(b)) and

APG signals with low amplitude (cf. Figure 7(d)). The detector scored an

SE of 99.8% and +P of 99.82% in detecting c waves, an SE of 92.7% and

+P of 100% in detecting d waves, and an SE of 99.64% and +P of 99.64%

in detecting e waves, as shown in Table 4. However, in the case of non-

stationary APG signals, the algorithm did incur a few instances of failure;

see Figure 9, Figure 10, and Figure 11. The detector incurred one FP

and one FN for detecting c waves, 18 FNs for detecting d waves, and two

FPs and two FNs for detecting e waves. The cause of the failure to detect c

waves is due to the extremely low amplitude c waves in APG signals during

rest (cf. Figure 9), which also caused indirect failure to detect d waves. In

other words, the d waves do not have a clear minimum value between the c

and e waves. Developing a robust d waves detection algorithm needs more

investigation. In such cases, applying a simple level threshold to detect c,

d, or e waves is not an effective approach. The proposed method, however,

handles varying amplitudes, as shown Figure 7. In fact, it is clear that the

proposed algorithm is more amplitude-independent and is able to detect the

c, d, and e waves in various voltage ranges.
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The analysis of a regular heart rhythm is simple, as the systolic peaks

are repeated with an equally spaced pattern. This regularity helps the time-

domain threshold methodologies to detect c, d, and e peaks successfully. The

regular heart rhythm is called the normal sinus rhythm in APG signals [25],

which means the rhythm is constant and the occurrence of the next beat is

predictable. The proposed algorithm easily detects systolic peaks correctly

in PPG signals with a regular heart rhythm, as shown in Figure 7(a). The

sensation of an irregular heart rhythm is usually related to either premature

beats or atrial fibrillation. The proposed algorithm is able to detect c, d,

and e peaks with premature beats, as shown in Figure 7(b).

4 Limitations of the Study and Future Work

The proposed method only tested on healthy subjects. The physiology of the

photoplethysmogram significantly changes according to the health status.

As such, the robustness of the proposed method needs to be verified by a

study in unhealthy subjects. One of the next steps regarding the results of

this study is to examine the c/a, d/a, and e/a ratios (based on the accurately

detected c, d, and e waves) using APG signals in diagnosis and monitoring

abnormality such as arrhythmia, hypertension, diabetes and hyperlipidemia.

It is important to note that the PPG signals were collected from 27 healthy

male subjects, a larger sample size and a more diverse data set are needed

in order to generalize the findings of this study. Moreover, sampling the

PPG signals at a higher rate (above 200 Hz) is required to capture the c,

d, and e waves more clearly. The evaluation of c and d wave detection was

challenging in this study because the database did not contain all possible

morphologies found in APG signals, especially for unhealthy subjects. To

our knowledge, there is no available APG database with annotated c, d, and

13



e waves that would allow a more thorough assessment and comparison of

the tested algorithm.

5 Conclusion

Currently, a full understanding of the diagnostic value of the different fea-

tures of the APG signal is still lacking, and more research is needed. More-

over, the detection algorithm of c , d, and e waves in APG signals has not

been previously addressed in the literature. However, a robust algorithm

has been proposed to detect c, d, and e waves simultaneously in APG sig-

nals with high-frequency noise, low amplitude, non-stationary effects, and

irregular heart beats. The detection errors arose mainly from low amplitude

c and e peaks relative to the d peak. The algorithm was evaluated using

27 records, containing 584 heart beats, with an overall sensitivity of 97.39%

and an overall positive predictivity of 99.82%.
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Table 1: Pseudocode for the knowledge-based c, d, and e waves de-
tector. The function has ten inputs: PPGsignal, fs, awaves, bwaves, frequency
band (F1–F2), W1 (samples), W2 (samples), cutoff (samples), acmin (sam-
ples), and aemax (samples). The data used in this training phase were PPG
signals measured after 1 hour of exercise.

Algorithm I: Detector(PPGsignal, fs, awaves, bwaves, F1, F2,W1,W2, cutoff, acmin, aemax)

1 : cwaves ← {}, dwaves ← {}, ewaves ← {}
2 : Filtered = Bandpass(PPGsignal, F1–F2)
3 : APG = CentralSecondDerivative(Filtered)
4 : APG(awaves(i)− cutoff : awaves(i) + cutoff) = 0
5 : MApeak = MA(APG,W1)
6 : MAcde = MA(APG,W2)
7 : for n = 1 to length(MApeak) do
8 : if MApeak[n] > MAcde[n] then
9 : BlocksOfInterest[n] = max(APG)

10 : else
11 : BlocksOfInterest[n] = 0
12 : end if
13 : end for
14 : Blocks← onset and offset from BlocksOfInterest

15 : set THR1 = W1

16 : for j = 1 to number of awaves − 1 do
17 : aa = awaves(i + 1)− awaves(i)
18 : ACmin = (aa/fs) ∗ acmin

19 : AEmax = (aa/fs) ∗ aemax

20 : SubBlocks = find([Blocks > bwaves(i) + ACmin] ∧ [Blocks < bwaves(i) + AEmax])
21 : Detectedwaves ← [ ]
22 : for j = 1 to number of SubBlocks do
23 : if width(SubBlocks[j]) ≥ THR1 then
24 : Detectedwaves = [Detectedwaves ; SubBlocks[j]]
25 : else
26 : ignore SubBlocks[j]
27 : end if
28 : end for
29 : if number of Detectedwaves > 1 then
30 : cwaves = {cwaves ; Detectedwaves[1]}
31 : ewaves = {ewaves ; Detectedwaves[2]}
32 : D ← minimum value between Detectedwaves[1] and Detectedwaves[2]
33 : dwaves = {dwaves ; D}
34 : else
35 : cwaves = {cwaves ; Detectedwaves[1]}
36 : dwaves = {dwaves ; Detectedwaves[1]}
37 : ewaves = {ewaves ; Detectedwaves[1]}
38 : end if
39 : end for
40 : return (cwaves, dwaves, ewaves)
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Table 2: Pseudocode for the brute-force optimizer. This exhaustive
search systematically enumerates all possible combinations for the solution
and checks whether each combination provides an optimal detector based
on SE and +P.

Algorithm II: Optimizer(PPGsignal, fs, awaves, bwaves, F1, F2,W1,W2, cutoff, acmin, aemax)

1 : Initialize MaxF1 = 1,MaxF2 = 10,MaxW1 = 5,MaxW2 = 3 ∗W1,Maxcutoff = 14
2 : Initialize Maxacmin = 8,Maxaemax = 120
3 : for F1 = 0.5 to MaxF1 with step = 0.5 do
4 : for F2 = F1 + 4 to MaxF2 with step = 1 do
5 : for W1 = 1 to MaxW1 with step = 1 do
6 : for W2 = 2 ∗W1 to MaxW2 with step = 1 do
7 : for cutoff = 6 to Maxcutoff with step = 2 do
8 : for acmin = 0 to Maxacmin with step = 2 do
9 : for aemax = 60 to Maxaemax with step = 20 do

10 : DETECTOR(PPGsignal, fs, awaves, bwaves, F1, F2,W1,W2, cutoff, acmin, aemax)
11 : Calculate SE and +P for cwaves, dwaves, and ewaves
12 : end for
13 : end for
14 : end for
15 : end for
16 : end for
17 : end for
18 : end for
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Table 3: A rigorous optimization over all parameters of the pro-
posed detector: frequency band (F1–F2), W1 (samples), W2 (sam-
ples), cutoff (samples), acmin (samples), and aemax (samples). All
possible combinations of parameters (26,000 iterations) have been investi-
gated and sorted in descending order according to their overall accuracy.
The data used in this training phase were PPG signals measured after 1
hour of exercise. The overall accuracy (OA) is the average value of SE and
+P. Here, NaN stands for not-a-number.

Iteration Band W1 W2 Cutoff SearchMin SearchMax SE +P OA (%)

1–60 0.5–7 Hz 1 3 6–14 2–8 80–120 98.94 100 99.47
61–135 0.5–7 Hz 2 4 6–14 0–8 80–120 98.91 100 99.45
136–150 0.5–7 Hz 1 3 6–14 0 80–120 98.82 100 99.41
151–210 1–7 Hz 1 3 12–14 2–8 80–120 98.60 100 99.30
211–225 1–7 Hz 1 3 6–14 0 80–120 98.48 100 99.24
226–300 1–7 Hz 2 4 6–14 0–8 80–120 98.36 100 99.18
301–375 0.5–7 Hz 2 6 6 0–8 80–120 98.22 100 99.11
376–450 1–7 Hz 2 6 6–14 0–8 80–120 97.67 100 98.83
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
25995 1–10 Hz 5 15 12 8 60 65.69 NaN NaN
25996–25999 1–10 Hz 5 15 14 0–6 60 65.85 NaN NaN
26000 1–10 Hz 5 15 14 8 60 65.69 NaN NaN
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Table 4: Performance of the proposed algorithm to detect c, d,
and e waves in the testing dataset (PPG signals measured dur-
ing rest). The PPG signals were collected from 27 subjects for 20 sec-
onds before the exercise [20]. To evaluate the performance of the proposed
algorithm, two statistical measures were used: SE = TP/(TP + FN) and
+P = TP/(TP + FP), where TP is the number of true positives (c/d/e wave
detected as c/d/e wave), FN is the number of false negatives (c/d/e wave
has not been detected), and FP is the number of false positives (non-c/d/e
wave detected as c/d/e wave).

c waves d waves e waves

Record SE (%) +P (%) SE (%) +P (%) SE (%) +P (%)

A1 100 100 100 100 100 100
A2 100 100 100 100 100 100
B1 100 100 100 100 100 100
B2 100 100 100 100 100 100
C2 100 100 50 100 100 100
C3 100 100 92.86 100 94.73 94.73
D2 100 100 100 100 100 100
D3 100 100 100 100 100 100
E1 100 100 100 100 100 100
E2 100 100 100 100 100 100
E3 100 100 100 100 100 100
G2 100 100 100 100 100 100
G3 100 100 100 100 100 100
H3 100 100 83.33 100 100 100
I1 100 100 100 100 100 100
I2 100 100 100 100 100 100
J2 100 100 100 100 100 100
L2 100 100 50 100 100 100
L3 100 100 100 100 100 100
N2 100 100 94.12 100 100 100
N3 100 100 85.71 100 100 100
O1 100 100 100 100 100 100
O2 93.75 93.75 60 100 93.75 93.75
P1 100 100 14.29 100 100 100
P2 100 100 100 100 100 100
Q1 100 100 100 100 100 100
Q2 100 100 100 100 100 100

27 subjects 99.82 99.82 92.71 100 99.64 99.64
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9 Figures

Figure 1: Fingertip photoplethysmogram signal measurement [26].
(a) Fingertip photoplethysmogram. (b) Second derivative wave of photo-
plethysmogram. The photoplethysmogram waveform consists of one systolic
wave and one diastolic wave, while the second derivative photoplethysmo-
gram waveform consists of four systolic waves (a, b, c, and d waves) and one
diastolic wave (e wave).
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Figure 2: APG waveforms and types of photoplethysmogram [19].
There are different types of APG waveforms. Type A (far left) refers to
good circulation, whereas the amplitude of the b wave is lower than the c
wave. Type B refers to good circulation but deteriorating, while type C
refers to poor circulation. The last four types of APG waveforms D–G refer
to distinctively bad circulation, whereas the amplitude of the c wave is lower
than the b wave.
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Figure 3: Challenges in analysing PPG signals. (a) Mains electricity
noise. (b) Low amplitude PPG signals. (c) Powerline and motion artifacts
in PPG signal. (d) Baseline wandering in PPG signal. (e) Premature ven-
tricular contraction.

26



Figure 4: Flowchart of the knowledge-based c, d, and e waves de-
tection algorithm. The algorithm consists of three stages: pre-processing
(bandpass filter, second derivative, and cancellation of a and b waves), fea-
ture extraction (generating blocks of interest based on prior knowledge), and
thresholding (based on prior knowledge).
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Figure 5: Three cases of APG signals demonstrate the effectiveness
of using two moving averages to detect c, d, and e waves in different
conditions. Cases 1 and 2 occur usually in subjects measured at rest where
c, d, and e waves do exist, while case 3 usually occurs in subjects with fast
heart rate where c, d, and e waves are merged. (a) second derivative of
filtered PPG signal; (b) generating blocks of interest after using two moving
averages: the dotted line is the first moving average and the solid line is the
second moving average; (c) the detected c, d, and e waves after applying the
thresholds.

27



Figure 6: Demonstrating c, d, and e waves time occurrence re-
garding the current a peak and the next a peak (a∗). Here, acmin

represents the minimum interval between the current a peak and the c wave;
acmax represents the maximum interval between the current a peak and the
e wave.
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Figure 7: Detected c, d, and e waves in APG signals measured
during rest. They contain (a) regular heart rhythm, (b) irregular heart
rhythm, (c) fast rhythm, and (d) low amplitudes. Here, the circle represents
the detected c wave, the ‘+’ represents the annotated e wave, and the red
star represents the detected d wave using the proposed algorithm.
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Figure 8: One beat PPG signal measured after exercise, with fast
heart rhythm (132 beats per minute), bandpass filtered at 0.5–7
Hz (solid blue line) and at 0.5–15 Hz (dashed red line). It is clear
that the merging of c, d, and e peaks in the case of fast heart rhythm is not
caused by filtering.
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Figure 9: Instances of failure occurring with the proposed algorithm
to detect c waves in volunteer O2 during rest (before exercise).
Here, ‘+’ represents the annotated c wave, and the circle represents the
detected c wave using the proposed algorithm. If the circle is empty it
means a false positive, and if the ‘+’ does not lie in a circle it means a false
negative.
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Figure 10: Instances of failure occurring with the proposed algo-
rithm to detect d waves in volunteer P1 during rest (before exer-
cise). Here, ‘+’ represents the annotated d wave, and the circle represents
the detected d wave using the proposed algorithm. If the circle is empty it
means a false positive, and if the ‘+’ does not lie in a circle it means a false
negative.
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Figure 11: Instances of failure occurring with the proposed algo-
rithm to detect e waves in volunteer C3 during rest (before exer-
cise). Here, ‘+’ represents the annotated e wave, and the circle represents
the detected e wave using the proposed algorithm. If the circle is empty it
means a false positive, and if the ‘+’ does not lie in a circle it means a false
negative.
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