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Abstract

Analysing photoplethysmogram (PPG) signals measured after exercise is challenging. In this paper, a

novel algorithm that can detect a waves and consequently b waves under challenging conditions is pro-

posed. Accurate a and b wave detection is an important first step for the analysis of systolic pressure.

Nine algorithms based on fixed thresholding are compared, and a new algorithm is introduced to im-

prove the detection rate. With 27 subjects, the new a detection algorithm demonstrates the highest

overall detection accuracy (99.78% sensitivity, 100% positive predictivity) over signals that suffer from

1) non-stationary effects, 2) irregular heartbeats, and 3) low amplitude waves. Moreover, the proposed

algorithm presents an advantage for real-time applications by avoiding human intervention in threshold

determination. In addition, the proposed b detection algorithm achieved an overall sensitivity of 99.78%

and a positive predictivity of 99.95%.

Introduction

Noninvasive pulse-wave analysis has been shown to provide valuable information on aortic stiffness and

elasticity [1–3], as it provides more precise information concerning blood pressure changes than systolic

and diastolic pressures only [4]. It has been widely used to evaluate the vascular effects of aging, hy-

pertension, and atherosclerosis [5–8]. Photoelectric plethysmography, a common method of pulse-wave

analysis, has been referred to as photoplethysmography (PTG/PPG) and digital volume pulse (DVP)

analysis; however, the acronym PPG will be used exclusively within this study, according to the rec-

ommendations in Ref. [9]. Fingertip photoplethysmography mainly reflects the pulsatile volume changes

in the finger arterioles, as shown in Figure 1, and it has been recognized as a noninvasive method for

measuring arterial pulse waves in relation to changes in wave amplitude [10]. However, the wave contour
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itself has not been analyzed because of the difficulty in detecting minute changes in the phase of the

inflections. Previous attempts at PPG analysis showed that such delicate changes in the waves were

emphasized and easily quantified by quadratically differentiating the original PPG signal with respect to

time [11]. Accordingly, the second derivative of the PPG (SDPPG or APG) was developed as a method

that allowed more accurate recognition of the inflection points and easier interpretation of the original

plethysmogram wave. The acronym APG will be used exclusively within this study, according to the

recommendations in Ref. [9].

As shown in Figure 1, The waveform of the APG consists of four systolic waves (a, b, c, and d

waves) and one diastolic wave (e wave) [12]. The height of each wave was measured from the baseline,

with the values above the baseline being positive and those under it negative. The relative heights of

these waves (b/a, c/a, d/a and e/a ratios), particularly the b/a ratio, has been related to ageing and

carotid distensibility [13] and used in calculating the ageing index (b − c − d − e)/a [7]. Recently, the

detection of a waves in APG signals has been used to calculate heart rate [14,15] and heart rate variability

indexes [16–18].

Although the clinical significance of APG measurement has been been well investigated, there is

still a lack of studies focusing on the automatic detection of a and b waves in APG signals. However,

there was an attempt by Matuyama [19] to find out which of the nine QRS algorithms of Friesens ECG

algorithms [20] suits the detection of a waves in APG signals. The detection rate was below 63% for all

nine algorithms, even after modifying the thresholds with different values. She concluded her investigation

with “a new algorithm should be more robust against noise and should be applicable to both APG and

ECG signals”. Therefore, this investigation aimed to develop a robust algorithm to detect a waves in

APG signals and to compare its performance with the nine a detection algorithms [19]. Up to the present

there has been no attempt to detect b waves in APG signals; and therfore a new method for detecting b

wave was introduced. To test the robustness of the developed algorithms, noisy PPG signals (measured

at rest and after exercise) were used.
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Materials and Methods

Ethics Statement

The PPG data were collected as a minor part of a joint project between Charles Darwin University

(Darwin, Northern Territory, Australia), Defence Science and Technology Organisation (DSTO) and the

Department of Defence which was initiated by the Department of Defence [19]. The project has been

granted human research ethic clearance from Charles Darwin University [19]. Only de-identified numerical

data, representing PPG signals as vectors, are stored on the database. The database is available upon

request at Charles Darwin University:

http://www.cdu.edu.au/ehse.

Database Used

There are currently no standard PPG databases with annotated a and b waves available to evaluate

the developed algorithms. One annotated PPG database is available at Charles Darwin University. The

data were measured at rest, after 1 hour of exercise and after 2 hours of exercise, as a minor part of

a joint project between Charles Darwin University (Darwin, Australia) and the Department of Defence

Science and Technology Organisation. The background of the entire project can be found in Ref. [19].

PPGs of 27 healthy volunteers (males) with a mean ± SD age of 27 ± 6.9 were measured using a

photoplethysmography device (Salus APG, Japan), with the sensor located at the cuticle of the second

digit of the left hand. Measurements were taken while the subject was at rest on a chair. PPG data

were collected at a sampling rate of 200 Hz. The duration of each data segment was 20 seconds, and

an example is shown in Figure 2. For signal conditioning and wave detection, MATLAB 2010b (The

MathWorks, Inc., Natick, MA, USA) was used.

Training Set

The PPG signals collected after 1 hour of exercise were used for training as they includes different shapes

of PPG waveforms and noise. Moreover, it contained fast rhythm PPG signals, with a total of 885 heart

beats, which had an impact on the detection accuracy.

http://www.cdu.edu.au/ehse
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Test Set

PPG signals were measured at rest (before the exercise), with a total of 584 heart beats, and after 2

hours of exercise, with a total of 956 heart beats, were used for testing.

Methodology

In this study, a novel algorithm, adapted from the framework proposed by Elgendi for detecting systolic

waves in PPG signals [21] and for detecting QRS complexes in ECG signals [22, 23], will be evaluated.

The same approach will be used here to detect the a waves. The method consists of three main stages:

pre-processing (bandpass filtering and squaring), feature extraction (generating potential blocks using two

moving averages), and classification (thresholding). The structure of the algorithm is given in Figure 3.

Bandpass Filter

A zero-phase second-order Butterworth filter, with bandpass 0.5–15 Hz based on a brute force search that

will be discussed later in the parameter optimization section, was implemented to remove the baseline

wander and high frequencies that do not contribute to the a wave (cf. Figure 4). The output of the

zero-phase Butterworth filter applied to the PPG signal produced a filtered signal S[n], as shown in

Figure 5. The code line of this step is line 2 in the pseudocode of the a detection algorithm (Algorithm

I).

Second Derivative

To obtain the APG signals, the second derivative was applied to the filtered PPG in order to analyse

the APG signals. Equations 1 and 2 represent a non-causal filter; the three-point centre derivative was

created with a delay of only two samples.

S′[n] =
dS

dt
|t=nT =

1

2T
(S[n+ 1]− S[n− 1]), (1)

Z[n] =
dS′

dt
|t=nT =

1

2T
(S′[n+ 1]− S′[n− 1]), (2)

where T is the sampling interval and equals the reciprocal of the sampling frequency and n is the number

of data points. Figure 5 shows the second derivative of the filtered PPG signal measured at rest and after
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exercise. The code line of this step is line 3 in the pseudocode of the a detection algorithm (Algorithm

I).

Cancellation of b wave

At this stage, the a wave of the APG needs to be emphasized to distinguish it clearly for detection. This

can be done by clipping the negative parts of the APG signal (Z[n] = 0, if Z[n] < 0). The code line of

this step is line 4 in the pseudocode of the a detection algorithm (Algorithm I).

Squaring

Squaring emphasizes the large differences resulting from the a wave, which suppress the small differences

arising from the diastolic wave and noise, as shown in Figure 5. This step results in the output

y[n] = Z[n]2, (3)

which is important for improving the accuracy in distinguishing the a wave segment in APG signals. The

code line of this step is line 5 in the pseudocode of the a detection algorithm (Algorithm I).

Generating Blocks of Interest

Blocks of interest are generated using two event-related moving averages that demarcate the a wave and

heartbeat areas. The particular method used to generate blocks of interest has been mathematically

shown to detect systolic waves [21] and QRS complexes [22].

In this procedure, the first moving average (MApeak) is used to emphasise the a wave area, as the

dotted signal shows in Figure 6, and is given by

MApeak[n] =
1

W1
(y[n− (W1 − 1)/2] + · · ·+ y[n] + · · ·+ y[n+ (W1 − 1)/2]), (4)

where W1 represents the window size of the systolic-peak duration. The resulting value is rounded to the

nearest odd integer. The exact value for W1 of 175 ms is determined after a brute force search, which

will be discussed later in the parameter optimization section.

The second moving average (MAbeat) is used to emphasize the beat area to be used as a threshold

for the first moving average, shown as a dashed signal in Figure 6, and is given by
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MAbeat[n] =
1

W2
(y[n− (W2 − 1)/2] + · · ·+ y[n] + · · ·+ y[n+ (W2 − 1)/2]), (5)

where W2 represents a window size of approximately one beat duration. Its value is rounded to the

nearest odd integer. The exact value for W2 of 1000 ms is determined after a brute force search, which

will be discussed later in the parameter optimization section. The code lines of this step are lines 6–7 in

the pseudocode of the a detection algorithm (Algorithm I).

Thresholding

The equation that determines the offset level (α) is βz̄, where β = 0 based on a brute force search that

will be discussed later in the parameter optimization section, while z̄ is the statistical mean of the squared

filtered PPG signal. The first dynamic threshold value was calculated by shifting the MAbeat signal with

an offset level α, as follows:

THR1 = MAbeat[n] + α. (6)

In this stage, the blocks of interest were generated by comparing the MApeak signal with THR1, in

accordance with the lines 10–17 the code lines shown in the pseudocode of Algorithm I. Many blocks

of interest will be generated, some of which will contain the APG feature (a wave), while others will

primarily contain noise. Therefore, the next step is to reject blocks that result from noise. Rejection is

based on the anticipated systolic-peak width. In this paper, the undesired blocks are rejected using a

threshold called THR2, which rejects the blocks that contain diastolic wave and noise. By applying the

THR2 threshold, the accepted blocks will contain a waves only,

THR2 = W1. (7)

As discussed, the threshold THR2 corresponds to the anticipated a wave duration. If a block is wider

than or equal to THR2, it is classified as an a wave. If not, it will be classified as noise. The last

stage is to find the maximum absolute value within each block to detect the a wave; the code lines of

this step are lines 19–26 in the pseudocode of the a detection algorithm (Algorithm I). Consecutive a

waves are shown in Figure 6 to demonstrate the idea of using two moving averages to generate blocks of
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interest. Not all the blocks contain potential a waves; some blocks are caused by noise and need to be

eliminated. Blocks that are smaller than the expected width for the a wave duration are rejected. The

rejected blocks are considered to be noisy blocks and the accepted blocks are considered to contain an

a wave. The detected a waves are compared to the annotated a waves to determine whether they were

detected correctly. The search range for the true a wave was fixed to ± 50 ms for all algorithms to ensure
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consistency of comparison.

Algorithm I: DetectoraWaves(PPGsignal, F1, F2,W1,W2, β)

1 : awaves ← {}

2 : Filtered = Bandpass(PPGsignal, F1–F2)

3 : APG = CentralSecondDerivative(Filtered)

4 : Clipped = Clip(APG)

5 : Qclipped = Square(Clipped)

6 : MApeak = MA(Qclipped,W1)

7 : MAbeat = MA(Qclipped,W2)

8 : z̄ = mean(Qclipped)

9 : α = βz̄ + MAbeat

10 : THR1 = MAbeat + α

11 : for n = 1 to length(MApeak) do

12 : if MApeak[n] > THR1 then

13 : BlocksOfInterest[n] = 0.1

14 : else

15 : BlocksOfInterest[n] = 0

16 : end if

17 : end for

18 : Blocks← onset and offset from BlocksOfInterest

19 : set THR2 = W1

20 : for j = 1 to number of Blocks do

21 : if width(Blocks[j]) ≥ THR2 then

22 : Speaks ← index of max. value within the block

23 : else

24 : ignore block

25 : end if

26 : end for

27 : return (awaves)
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Detection of b waves

Figure 7(a) shows the b wave as a global minimum in a subject with good circulation, while Figure 7(b)

shows the d wave as a global minimum in a subject with poor circulation [24]. However, in both cases,

the b wave is the first minimum after the a wave. The b wave can therefore be detected by finding the

local minimum, as follows:

(|APG(awaves[i] + k)| > |APG(awaves[i] + k − 1|)) ∧ (|APG(awaves[i] + k)| > |APG(awaves[i] + k + 1|)), (8)

where APG is the second derivative of the PPG signal (calculated in line 3 in Algorithm I), i is a counter

for the detected a waves, and k is the search interval for the b waves. To reduce the computational

complexity for finding b waves, the interval k has been set to vary from 8 ms to 136 ms.

Parameter Optimization

Performance of a wave detection algorithms is typically evaluated using two statistical measures:

SE = TP/(TP + FN) and +P = TP/(TP + FP), where TP is the number of true positives (a wave de-

tected as an a wave), FN is the number of false negatives (a wave has not been detected), and FP is the

number of false positives (non-a wave detected as an a wave). The sensitivity SE reported the percentage

of true a waves that were correctly detected by the algorithm. The positive predictivity +P reports the

percentage of the detected a waves that were true a waves. Similarly, the same statistical measures were

used for evaluating the b waves.

The function of the a wave detector (cf. pseudocode of Algorithm I) has five inputs: the PPG signal

(PPGsignal), frequency band (F1–F2), event-related durations W1,W2, and the offset (β). Any change

in these parameters will affect the overall performance of the proposed algorithm. These parameters are

interrelated and cannot be optimized in isolation. A rigorous optimization via brute-force search, over

all parameters, was conducted (cf. Table 2). This is a time-consuming process, but it is required before

making definitive claims. The data used in this training phase were the PPG signals measured at after 1

hour of exercise. Optimization of the beat detector’s spectral window for the lower frequency resulted in

a value within 0.5–1 Hz with the higher frequency within 7–15 Hz. The window size of the first moving

average (W1) varied from 100 ms to 200 ms, whereas the window size of the second moving average
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(W2) varied from 1000 ms to 1.250 s. The offset α was tested over the range 0–10% of the mean value

of the squared filtered PPG signal. The QRS complex corresponds roughly to the systolic duration (a

wave duration) in APG, which is 100± 20 ms in healthy adults [25]. Interestingly, the algorithm uses an

optimal value of W1 (175 ms) corresponded to the a wave duration, and an optimal value of W2 (1000

ms) for the heartbeat duration. It is clear from Table 2 that the optimal frequency range for the systolic

detection algorithm over the database was 0.5–15 Hz. Moreover, the optimal values for the moving-

average window sizes and offset are W1 = 175 ms, W2 = 1000 ms, and α = 0. The systolic algorithm

was adjusted with these optimal parameters. Then, the detector was tested on two PPG datasets (PPG

measured at rest and after 2 hours of exercise) without any further adjustment.

Results and Discussion

Based on the parameter optimization step, the value of α = 0, which means there is no need for an offset

to improve the detection rate, as it was required in detecting QRS in ECG signals [22] and systolic peaks

in PPG signals [21]. This is perhaps because of the sharp clear peak (high amplitude) of the a wave

compared to the other APG waves (c, d, and e waves).

The a wave detection algorithms were tested on 27 subjects, with the APG signals measured before

exercise and after 2 hours of exercise; with a total of 54 recordings. The main objective was to evaluate the

robustness of the algorithms against the non-stationary effects, low SNR, and high heart rate exhibited

after exercise in conditions of heat stress. Under normal conditions, analyzing stationary APG signals

is straightforward; as a waves have similar amplitudes, the statistical characteristics of the signals (i.e.,

mean and standard deviation) do not change appreciably with time, and a simple threshold level can

effectively detect a waves. Figures 8(a) and 9(a) represent the APG signals with stationarity effects for

volunteer G2 (before exercise) and L3 (after 2 hours of exercise) (all a waves are almost straight-lined).

By contrast, under stress, APG signals become non-stationary, which makes analysis difficult since the

standard deviation changes with time (a wave amplitudes vary with time and simple level thresholds

cannot optimally detect a waves). This has a negative effect on detection algorithm performance, which

is clearly seen in Table 3 when the nine amplitude-dependent algorithms were applied to the APG

signals. Moreover, Matsuyama [19] reported that none of the nine amplitude-dependent algorithms

achieved acceptable a wave detection rates even after optimizing the threshold values. Most of these nine
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algorithms, such as AF2, AF3, FD1, FD2, DF1, and FS1, strictly followed the morphology of the QRS

complex. However, it is clear that amplitude-dependent algorithms are not optimal methodologies for

detecting a waves in APG signals under varying conditions.

The proposed algorithm scored the highest sensitivity and positive predictivity rates when compared

to the nine algorithms. The proposed algorithm appears to be more robust against effects of post-exercise

measurement non-stationarity. The results show that the proposed method was able to detect a waves

correctly in non-stationary APG signals before exercise, as shown in Figure 8(b), and after 2 hours of

exercise, as in Figure 9(b). Moreover, the proposed algorithm was also able to detect a waves correctly

in low amplitude APG signals (small voltage), as shown in Figure 8(c), and after 2 hours of exercise,

as in Figure 9(c). However, the algorithm did incur a few instances of failure, with exactly five FNs, as

shown in Table 3. The cause of the failure was due to the sudden drop in amplitude of the a waves in

heat-stressed APG signals (cf. Figure 10). The proposed method, however, handled varying amplitudes

well compared to the other nine algorithms. In fact, it is clear that the proposed algorithm is more

amplitude-independent and was able to detect the a waves in various voltage ranges.

The analysis of a regular heart rhythm is simple, as the a waves are repeated with an equally spaced

pattern. This regularity helps the time-domain threshold methodologies to detect a waves successfully.

The regular heart rhythm is called the normal sinus rhythm in APG signals [26], which means the rhythm

is constant and the occurrence of the next beat is predictable. The proposed algorithm easily detects a

waves correctly in APG signals with a regular heart rhythm, as shown in Figure 8(a,b,c). The sensation of

an irregular heart rhythm is usually related to either premature beats or atrial fibrillation. The proposed

algorithm also successfully detected the a waves with premature beats in both conditions at rest and

after exercise, as shown in Figures 8(d) and 9(d).

As the detection of b waves depends on the detection of a waves, the performance of the b wave

detection scored almost the same result as the a detection algorithm. Because the proposed b detection

incurred only one instance of failure, which is a TP shown in Figure 10, the +P becomes 99.95%. This

result reflects the robustness of the proposed b detection algorithm against noisy APG signals.
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Limitations of the Study and Future Work

One of the next steps regarding the results of this study is to examine the correlation of the a/b ratio

(based on the accurately detected a and b waves) using APG signals with age, body mass index, and core

temperature. Moreover, there is a need for developing an algorithm that detects the c, d, and e waves.

It is important to note that the number of PPG records (total of 27) used in the training was modest.

A larger sample size and a more diverse data set are needed in order to generalize the findings of this

study. The evaluation of a wave detection was challenging in this study because the number of annotated

beats did not allow all possible morphologies found in APG signals under conditions of heat stress to be

well represented. To our knowledge, there is no available APG database measured after heat stress that

would allow a more thorough assessment and comparison of the tested algorithms.

Technically, the event-related moving average methodology for detecting events in APG signal is

promising in terms of computational complexity and efficiency. This can be further improved by investi-

gating other bandpass filters, with different orders, and also by developing fast moving average techniques

for real-time analysis and mobile phone applications.

Conclusion

For all nine QRS algorithms, the detection errors arose from a variety of factors including the existence

of irregular heartbeats, low-amplitude peaks, and signals with non-stationary effects. The application

of an event-related dual moving average would allow the accurate, computationally simple algorithm we

propose to be used for real-time applications and the processing of large databases. A detection algorithm

for a waves in APG signals measured after exercise has not been previously addressed in the literature,

with the exception of Matsuyam’s thesis. However, it has been demonstrated that a robust algorithm

can be developed for detecting a waves in APG signals collected in a noisy environment with high-

frequency noise, low amplitude, non-stationary effects, irregular heartbeats, and high heart rates. The

a wave detection algorithm was evaluated using 27 records, containing 1,540 heartbeats (584 heartbeats

measured at rest and 956 heartbeats measured after 2 hours of exercise), with an overall sensitivity

of 99.78%, and the positive predictivity was 100%, while the b detection algorithm scored an overall

sensitivity of 99.78% and a positive predictivity of 99.95%.
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Tables

Table 1. A rigorous optimization over all parameters of the a wave detection algorithm:
frequency band, W1, W2, and the offset β. All possible combinations of parameters (5,610
iterations) have been investigated and sorted in descending order according to their overall accuracy.
The data used in this training phase were PPG measured after 1 hour of exercise, with 885 heartbeats.
The overall accuracy is the average value of SE and +P.

Iterations
FrequencyA

Band
W1 W2

Offset
(%)

SEA
(%)

+PA
(%)

Overall
Accuracy

(%)
1 0.5-15 Hz 35 200 0 99.72 100.00 99.86

2 0.5-11 Hz 25 200 0 99.92 99.78 99.85

3 1-15 Hz 35 200 0 99.68 100.00 99.84

4 0.5-13 Hz 35 200 0 99.67 100.00 99.84

5 0.5-14 Hz 20 220 0 100.00 99.64 99.82

6 1-14 Hz 35 200 0 99.64 100.00 99.82

7 0.5-14 Hz 20 200 0 99.92 99.71 99.82

8 0.5-14 Hz 20 210 0 99.92 99.71 99.82

9 0.5-13 Hz 25 200 0 99.84 99.78 99.81

10 1-14 Hz 25 200 0 99.84 99.78 99.81

11 1-14 Hz 25 210 0 99.84 99.78 99.81

12 0.5-13 Hz 20 200 0 99.92 99.66 99.79

13 1-15 Hz 30 200 0 99.75 99.82 99.79

14 0.5-15 Hz 30 200 0 99.68 99.89 99.78

15 1-9 Hz 35 200 0 99.55 100.00 99.78

16 0.5-12 Hz 25 220 0 100.00 99.55 99.78

17 0.5-14 Hz 35 200 0 99.54 100.00 99.77

18 1-15 Hz 30 250 0 99.75 99.79 99.77

19 0.5-15 Hz 25 200 0 99.92 99.61 99.76

20 0.5-12 Hz 25 200 0 99.84 99.68 99.76

. . . . . . .

. . . . . . .

. . . . . . .
5606 0.5-8 Hz 40 230 10 90.22 99.88 95.05
5607 0.5-7 Hz 40 230 9 89.80 99.88 94.84
5608 0.5-7 Hz 40 240 9 89.96 99.68 94.82
5609 0.5-7 Hz 40 230 10 89.21 99.88 94.55
5610 0.5-7 Hz 40 240 10 89.38 99.68 94.53
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Table 2. Performance of the proposed a wave detection algorithm on the testing dataset
(APG signals measured at rest and after 2 hours of exercise). The PPG signals were collected
from 27 subjects for 20 seconds during the 5 minutes break between each exercise [19]. To compare the
performance of the proposed algorithm with the nine algorithms [19], two statistical measures were
used: SE = TP/(TP + FN) and +P = TP/(TP + FP), where TP is the number of true positives (a
wave detected as a wave), FN is the number of false negatives (a wave has not been detected), and FP
is the number of false positives (non-a wave detected as a wave).

Before3Exercise After 2 Hours3of3Exercise

Record
No3of3
beats

TP FP FN Se3(L) +P3(L)
No3of3
beats

TP FP FN Se3(L) +P3(L)

A1 26 26 0 0 100 100 43 41 0 2 95.34 100

A2 24 24 0 0 100 100 47 47 0 0 100 100

B1 17 17 0 0 100 100 44 43 0 1 97.72 100

B2 26 26 0 0 100 100 38 38 0 0 100 100

C2 20 20 0 0 100 100 37 37 0 0 100 100

C3 20 20 0 0 100 100 23 23 0 0 100 100

D2 22 22 0 0 100 100 39 39 0 0 100 100

D3 19 19 0 0 100 100 27 27 0 0 100 100

E1 22 22 0 0 100 100 30 30 0 0 100 100

E2 22 22 0 0 100 100 30 30 0 0 100 100

E3 19 19 0 0 100 100 38 38 0 0 100 100

G2 30 30 0 0 100 100 49 48 0 1 97.95 100

G3 19 19 0 0 100 100 42 41 0 1 97.61 100

H3 23 23 0 0 100 100 32 32 0 0 100 100

I1 22 22 0 0 100 100 35 35 0 0 100 100

I2 17 17 0 0 100 100 31 31 0 0 100 100

J2 23 23 0 0 100 100 41 41 0 0 100 100

L2 24 24 0 0 100 100 37 37 0 0 100 100

L3 24 24 0 0 100 100 39 39 0 0 100 100

N2 18 18 0 0 100 100 24 24 0 0 100 100

N3 20 20 0 0 100 100 31 31 0 0 100 100

O1 24 24 0 0 100 100 33 33 0 0 100 100

O2 17 17 0 0 100 100 34 34 0 0 100 100

P1 26 26 0 0 100 100 34 34 0 0 100 100

P2 20 20 0 0 100 100 34 34 0 0 100 100

Q1 22 22 0 0 100 100 28 28 0 0 100 100

Q2 18 18 0 0 100 100 36 36 0 0 100 100
27 

volunteers 584 584 0 0 100 100 956 951 0 5 99.57 100
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Table 3. Comparison of different a wave detection performance on the testing dataset
(APG signals measured at rest and after 2 hours of exercise). The PPG signals were collected
from 27 subjects for 20 seconds during the 5 minutes break between each exercise [19]. To compare the
performance of the proposed algorithm with the nine algorithms [19], two statistical measures were
used: SE = TP/(TP + FN) and +P = TP/(TP + FP), where TP is the number of true positives (a
wave detected as a wave), FN is the number of false negatives (a wave has not been detected), and FP
is the number of false positives (non-a wave detected as a wave). Here, NA stands for Not Applied,
while NaN stands for Not-a-Number.

Algorithm
TP
(%)

FN
(%)

FP
(%)

Se
(%)

+P
(%)

ThresholdDValues

THR1 THR2 THR3

ProposedD
algorithm

100 0.32 0 99.78 100 MAbeat + α W2 NA

AF1D[19] 69.5 7.5 30.5 90.25 69.5 0.31 0.0001 -0.001
AF2D[19] 0.018 0.27 99.98 6.25 0.018 0.21 0.75 NA
AF3D[19] 0 0 100 NaN 0 62 NA NA
FD1D[19] 0.27 2.8 99.73 8.79 0.27 0.099 NA NA
FD2D[19] 0 0 100 NaN 0 150 NA NA
DF1D[19] 0 0 100 NaN 0 21 NA NA

DF2 [19] 48.8 14.2 51.2 77.46 48.8 1 0.06 NA

FS1D[19] 2.42 0.3 97.58 88.97 2.42 154.5 NA NA
FS2D[19] 42.46 6.9 57.54 86.02 42.46 0.55 0.47 NA
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Figure 1. Fingertip photoplethysmogram signal measurement [24]. (a) Fingertip
photoplethysmogram. (b) Second derivative wave of photoplethysmogram. The photoplethysmogram
waveform consists of one systolic wave and one diastolic wave, while the second derivative
photoplethysmogram waveform consists of four systolic waves (a, b, c, and d waves) and one diastolic
wave (e wave).
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Figure 2. An example of PPG recordings for the same volunteer measured (a) at rest and
(b) after exercise. It is clear that the heart rate after exercise was higher than at rest.
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Figure 3. Flowchart of the knowledge-based a wave detection algorithm. The algorithm
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extraction (generating blocks of interest based on prior knowledge), and thresholding (based on prior
knowledge).
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Figure 4. Fourier transform of noisy PPG signals: (a) PPG signal and (b) Fourier
transform (spectrum) of the PPG signa. The spectrum illustrates peaks at the fundamental
frequency of 50 Hz, as well as the second and third harmonics at 100 Hz. The spectrum shows that the
main energy of the PPG signal lies below 20 Hz.
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Figure 5. The proposed algorithm output for PPG measured at rest and after exercise.
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Figure 6. Demonstrating the effectiveness of using two moving averages to detect a and b
waves. (a) Two beats APG signal; (b) generating blocks of interest after using two moving averages:
the dotted black line is the first moving average MApeak and the solid green line is the second moving
average MAbeat; and (c) the detected a and b waves after applying the thresholds.
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Figure 7. Demonstrating the local minimum and global minimum of the b wave in the
APG signa. (a) b wave is global minimum, (b) b wave is local minimum.
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Figure 8. Detected a and b waves in APG signals at rest (before exercise). It contains (a)
stationary signals, (b) non-stationary signals, (c) low amplitudes, and (d) irregular heart rhythm. Here,
‘*’ represents the detected a wave and ‘+’ represents the detected b wave by the proposed algorithm.
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Figure 9. Detected a and b waves in APG signals after 2 hours of exercise. It contains (a)
stationary signals, (b) non-stationary signals, (c) low amplitudes, and (d) irregular heart rhythm. Here,
‘*’ represents the detected a wave and ‘+’ represents the detected b wave by the proposed algorithm.
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Figure 10. Instances of failure occurring with the proposed algorithm (subject: A1 after 2
hours of exercise). Here, ‘*’ represents the detected a wave and ‘+’ represents the detected b wave
by the proposed algorithm. The purple pentagon represents a false negative for the a wave, while
purple circle represents the false negative for the b wave. The green square represents the false positive
of the b wave, which was the only false positive inccurred by the proposed b detection algorithm in the
testing dataset.


