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Abstract: Recently the unified method for finding traveling wave solutions of non-linear evolution equations 

was proposed by one of the authors a. It was shown that, this method unifies all the methods being used to find 

these solutions. In this paper, we extend this method to find a class of formal exact solutions to Korteweg-de 

Vries (KdV) equation with space dependent coefficients. A new class of multiple-soliton or wave trains is 

obtained. 
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I. Introduction 
  We consider the equation the following equation 
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Where f is a polynomial in its arguments. When Eq. (1) does not depend explicitly on x  and t, it can be 

reduced to a subclass of ordinary deferential equations by using the Lie groups for partial deferential equations 

[1] or by using similarity transformations. Among these equations, the traveling wave has the form among these 

equations; the traveling wave has the form 
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This results due to the translational symmetry of (1). The Painlevé analysis is used to test the integrability of 

partial differential equations that was developed in [2].  Auto-Bäcklund transformation deals with the exact 
solutions that were obtained for integrable forms of (2) by truncating the Painleve' expansion [3-9].  Recently 

Auto-Bäcklund   transformation that was extrapolated in [10-14] and the homogenous balance method in [15-

19] assert a solution for evolution equations with variable coefficients in the form 
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Where   is the base function. 

  

II. Extended unified method 
        Explicit solutions of evolution equations of type (2) are, in fact, particular solutions. In this respect, 

these solutions are mapped to other solutions that are given in terms of known elementary or special functions. 

Recently in [20] the class of these solutions was obtained by the generalized mapping method (GMM). This 

method generalizes the results as polynomial or rational function solutions. In the present paper, we extend this 

method to handle equations of type (1). 

 

2.1- Polynomial Solutions 
In this section, we search for polynomial solutions of equations (2) in 
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Indeed the set S  contains elementary or elliptic functions for some particular values of kpq ,, and 1k . The 

mapping method  asserts that there exists a positive integer n  and a mapping  
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such that )()( nPuM   and satisfies the properties 
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Thus M is a ring homomorphism that conserves differentiation. By the former conditions, we find that  
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By using the properties of M  and the last results and as ,.....),,,( tuutxff   

is a polynomial in its arguments, we find that )( fM  is a polynomial and there exists ss 0  such that 

 )()(
0
sPfM .It is worthy to notice that all these polynomials have different coefficients. More 

simply the mapping M assigns to u and f  gives two auxiliary equations, the polynomials )(nP  and 

)(
0
sP  respectively. In case of equations (1) kmmns 0 . The utility of the above presentation helps 

us to give arguments to the statements of the conditions in lemmas 2.1 and 2.2. Also, we think that it allows for 

constructing more generalization and it is more appropriate when (1) is a vector equation. 
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together with two auxiliary equations. In the applications we may write directly )(),(
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From the previous analysis we may write 
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Where for instance, we assume that kk 1 , so that the auxiliary equations are  
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Together with the compatibility equation 

                                                          (5)                            

When substituting from (3) and (4) into (1) we find that it is transformed to 0)()(

0
f

sP , that gives rise to 
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nr ,.....,1,00   and krr ,.....,1,0, 21   

By equating the coefficients of
i , 0,.....,1,0 si    to zero, we get a set of ( 10 s ) algebraic (or differential) 

equations, namely the principle equations, in the functions iii cba ,, . On the other hand the equations that result 

from compatibility equation (5) count: 2,12  kk . 

We mention that these later unknown functions count: 32  kn .  

In equation (1), if x
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  are the highest nonlinear and the highest order derivative terms 

respectively, then we get the balancing conditions as kmmnknjns  10 . Thus by solving 

for n , we find that it depends on jm,  and k . The last result and the number of compatibility equations namely 

2,12  kk  determine if the equations to be solved are over-determined or under-determined. The number 

of the determining equations, balances, namely )32()12()1(  knkmkmn  is zero or 

greater than zero or less than zero respectively. From this last conditions we may determine a consistency 

condition that will be identified in the lemmas. In what follows necessary conditions for the existence of 

polynomial solutions will be stated. 

Lemma 2.1. For polynomial- Solutions of (1) (as a polynomial in ) to exist it is necessary that 
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(i) )(:/)1)(1( njkm  is a positive integer 

(ii) mkm  3)1(   when the equation (1) in the absence of  x  and t  passes the Painlevé test. Otherwise 

m  is replaced by 2. 

We notice that the first and the second conditions in lemma 2.1 are the balancing and the consistency conditions 

respectively. For details see [20] 

 

2.2 – The rational function solutions 

  Here, also we search for solution of equation (1) in )(RC S
. For rational function solutions of equation 

(1), we consider the space of functions 

},)(/)(,{ SQPvv rnR    and )(rQ  has no zeros in RK  . 

The definitions in the above and the GMM for rational function solutions assert that there exists a mapping  
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The properties of these mapping are the same properties of the mapping )(uM  in section 2.1. By bearing in 

mind these properties and from equations (4) and (5), we find that  
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So the equation (1) is transformed to 0)(
1

RsP . Equivalently, the last identity becomes   
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nr ,.....,1,00   and krr ,.....,1,0, 31  , also rr ,....,1,02  . 

In (8), by equating the coefficients of 
i , 1,.....,1,0 si    to zero, we get a set of ( 11 s ) equations, that 

determine the functions iii cba ,,  and id . We mention that these later functions count 32  rkn . By 

using the same assumptions on equation (1) as in section 2.1, the balancing condition is  
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Now by solving (9) for n , we find that it depends on krjn ,,,  and, in both two cases, we get the same 

equation for rn  . Hereafter, we distinguish between the two cases mentioned in (9).From the last results and 

when 1 mj ,  the number of the determining equations, balances the number of unknowns, is over-

determined or is under-determined when the difference, namely 

)32()12()1(  rknkmrkmmn  is zero or greater than zero or less than  zero.  But 

when 1 mj  this difference is  

)32()12()))1((1(  rknkmjrmrkmmn . From these last 

 Conditions, we may determine the consistency condition that will be identified in the following lemma. 

Lemma 2.2. For solitary wave – rational solutions of equation (2) to exist it is necessary that 
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case when Eq. (1) passes the Painleve' test.  

Otherwise r(m-1)+(k-1)m-k-2 ≤ 2; j < m+1 or r(j-2)+(k-1)m-k-2≤ 2; j > m+1. For details see [20]. 
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III. Exact solutions of space dependent KdV equation 

Here, we extend the unified method to the variable coefficient KdV equation  

0 x0, ,0)()(  tuuxguxfu xxxxt ,                                               (10) 

Where  f and  g are arbitrary functions in x. For x<0, the solutions of Eq. (10) hold if we replace  x by | |x  and 

assuming that  f(−x)=−f(x)  and g(−x)=−g(x). We mention that Eq. (10) describes the propagation of waves in a 

medium with space dependent dispersion and conviction. In fact, differential equations with variable 

coefficients may be of practical interests. Some exact solutions were obtained in Nirmala and Vedan [Error! 

Reference source not found.] and E. Fan [Error! Reference source not found.] when the coefficients in Eq. 

(10) are time dependent, namely f(t) and g(t). In these works, solutions were obtained when f(t)=c g(t), where c 

is a constant.  

 

3.1  The polynomial function solutions 

In what follows we shall derive a polynomial solution of equation Eq. (10In lemma 2.1, the consistency 

condition holds when k =2,3 but it does not hold when k≥4. So that, only the cases k=2,3 will be considered. 

 

I. When k=2, n=2, by substituting into (3), (4) and (10), we get six principle equations. We mention that 

calculations are carried out by using MATHEMATICA where standard functions in calculus and algebra were 

only needed. The steps of computations are as follows; 
Step 1.  Solving the principle equations, where five of them are solved explicitly to  
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together with explicit equations for b
2
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1
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0
(x,t)  (they are too lengthy to written here) where 
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To simplify the computations, we make the transformations  
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where C
0

(x,t), C
1
(x,t)  are arbitrary functions. To evaluate a

0
(x,t)  the following steps are used. 

i- Solve the last equation in (12) for a
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iii- Substitute in the middle equation in (12) to get a
0

(x,t) 

iv- Calculate a
0x

 from the last step and identify it by a
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 from step (i), we get an equation in C
0
, C
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As the computations are too lengthy in the general case, we consider a power law functions 
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v- Solve the equation that result from (iv) in C
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vi- Substitute into the first equation in (12) and solve for C
0t

. Thus (12) solved completely. 

vii- Calculate C
0tx

 from (vi) and balance it with C
0xt

 from (v), we get the following algebraic equations 

 30+5m
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+m(25−9n)−22n+4n

2
=0; (14) 

or  
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The solution of Eq. (14) leads to n=m+3 or n= 
5(2+m)

4
 . 

In what follows we find the solution of Eq. (10): 

Case (1): when n=m+3, Eq. (15) leads to m=2,  
16

3
, −1 . 

First when m=2, we get h(x)=h
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By substituting from (17), into (3) we get a solution of (10) as  
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It is worth noticing that one can verify that the solution given by (18) satisfies (10). 
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and we get the solution of Eq. (10) as  



Exact Solutions of Space Dependent Korteweg-de Vries Equation by the Extended Unified Method 

www.iosrjournals.org                                                             6 | Page 

 u(x,t)=− 
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When m=−1, we get the following results  
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Case (2): when n= 
5(2+m)

4
, Eq. (15) leads to m= 
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3
 and we get the following results  
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2
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Again, the solutions (20) or (22) or (24) verify Eq. (10). 

 

IV. Conclusions 
In this paper, we suggested an extended unified method for finding exact solutions to evolution equations with 

variable coefficients. A wide class of exact solutions to KdV equation with Space dependent coefficients is 

obtained. The method and the solutions that we obtained here are completely new and we can use this method to 

find exact solutions of coupled evolution equations. But in this case we think that parallel computations should 

be used 
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