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The modified cosmological model (MCM) is explored in the context of general relativity. A flaw
in the ADM positive-definiteness theorem is identified. We present an exposition of the relationship
between Einstein’s equations and the precessing classical oscillator. Kaluza theory is applied to the
MCM and we find a logical motivation for the cylinder condition which leads to a simple mechanism
for AdS/CFT.

“Any intelligent fool can make things bigger,
more complex, and more violent. It takes a
touch of genius – and a lot of courage – to
move in the opposite direction.”

∼ Einstein

The modified cosmological model (MCM) is built on a
reinterpretation of the dynamical bouncing seen in loop
quantum cosmology [1]. In the prevailing interpretation,
the universe passes through the bounce according to some
external time. When we consider the bounce as a fixed
feature of spacetime and move to the reference frame of
the bounce, the external time is abandoned in favor of an
internal time called chiros. In this reference frame, the
objects doing the bouncing are interpreted as the time
evolved trajectories of the processes in the bounce – one
in positive time and one in negative time.

L̂QC|bounce〉 = |t+〉+ |t−〉 (1)

Initially this model of distinct spacetimes was proposed
to (among other things) fix the momentum problem in
the big bang theory. Before the big bang there was no
momentum but for the sake of convenient argument we
equate this with pµ = 0. After the big bang it is possible
to maintain pi = 0 with all forward motion canceling
backward, left right and up down. However, the product
of the big bang only moves in one direction through time
leading to p0 6= 0. Thus we introduce |t+〉 and |t−〉 so
that p0

+ + p0
− = 0.

One of the early criticisms of the MCM was that “the
author clearly has no concept of the ADM mass-energy”
in reference to the classic positive-definiteness theorem
for the zero component of the universe’s 4-momentum [2].
In good keeping with the paradigm of that era, ADM
modeled the cosmos on a non-orientable Riemannian
manifold to derive a surface element at spacelike infin-
ity dSi ≡ 1/2εijkdx

jdxk.
A significant result in modern cosmology, namely the

multipole analysis of the WMAP data, indicates that
there is a so-called “good axis” in the heavens. Con-
sidering this, the cosmos may be modeled more precisely
on an orientable manifold where the surface element is a
symplectic two-form dSi ≡ 1/2εijkdx

j ∧ dxk. We use the

property dxj ∧ dxk = −dxk ∧ dxj to show that there is a
possibility not considered by ADM.

dS+
i ≡

1

2
εijkdx

j ∧ dxk (2)

dS−i ≡ −
1

2
εijkdx

j ∧ dxk (3)

Which of these choices is the correct one? There is no
reason give precedence to one spatial dimension over the
other and an observer will never be able to distinguish
the two. For this reason we invoke Schrödinger’s principle
of cats to conclude that an observer will occupy a linear
superposition of |t+〉 and |t−〉.

Despite the ADM result, many cosmologists adopt the
viewpoint of a zero energy universe. This view is often
motivated by phenomenological equation of state calcu-
lations. For an example see [3]. It is one of the many
unities contained in the MCM that both of these views
are accommodated. We accept the geometric argument
made by ADM with the symplectic caveats (2-3). These
possibilities form a superposition |t?〉 with p0

? = 0 in good
agreement with EOS arguments for zero energy. The
observer does not observe the state of |t+〉 or |t−〉 and
therefore EOS arguments do not apply there.

Another excellent example of why the MCM should be
adopted over ΛCDM is that it reduces to Einstein’s equa-
tions for a classical oscillator parameterized by {r, θ} [4].
To get this result the following maps were invoked.

f3ψ(xµ) 7→ Tµν (4)

iΦ2ψ(x+
µ ) 7→ Gµν (5)

ψ(x−µ ) 7→ gµνΛ (6)

The first map (4) is well-motivated because the energy
density of the vacuum is proportional to the cube of the
frequencies. Likewise, the last map (6) seems well moti-
vated in that the state of a quantum spacetime would be
the metric. In what follows we will explore the motiva-
tions for putting iΦ2 into the Einstein tensor.

Duality between string theory and the MCM is one
of the best reasons to adopt it in favor of ΛCDM. To
demonstrate this consider two 5D spaces Σ± spanned by
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FIG. 1: A graphical representation of the MCM. Chronos
flows upward and chiros flows toward the right.

ξA± with A running from 0 to 4. Connect these spaces
with a string having its behavior uniquely determined
by two sets of 5D boundary conditions at its ends. In
this circumstance the string effectively lives in 10D as it
should. Truncate each Σ along ξ4 = 0 so that ξ4 takes
on only positive values in Σ+ and only negative in Σ−.
The resulting half spaces do not contain their respective
boundaries at ξ4

± = 0.
Join Σ+ and Σ− at this boundary as in figure 1. This

boundary is 4D and we impose a condition that this is
the flat observable universe. MCM quantum gravity is
developed using three geometry basis states of constant
curvature: one flat, one spherical and one hyperbolic. On
each of these spacetimes we put one of three quantum
vector spaces {ℵ,H,Ω}.

In [1] we show that the string-like qualities of the MCM
are represented with a string of length Φ in Ω (the fu-
ture) and one of length −ϕ in ℵ (the past.) Since ξ4

+ is
always positive and ξ4

− is always negative we will iden-
tify this dimension with string length. Having defined
the flat space for H at ξ4 = 0, we need to define spaces
of constant curvature for ℵ and Ω. To this end, impose a
hyperboloid condition in Σ+ and Σ− based on the string
length.

Φ2 = −(ξ0
+)2 +

4∑
α=1

(ξα+)2 (7)

−ϕ2 = −(ξ0
−)2 +

4∑
α=1

(ξα−)2 (8)

When we restrict ξ4
+ ∈ (0,Φ] and ξ4

− ∈ [−ϕ, 0) the
global geometry of the model will depend on Φ2 and we
see why it appears in Gµν . However, it is not yet clear
why Gµν should be complex. If we impose a periodic

boundary condition on ξ4 it becomes identically chiros.
Starting at the origin in H and moving in the direction of
increasing chiros we reach Ω where a periodic boundary
transports the trajectory to ℵ before it reaches H again.
The equivalence is illustrated with the tensor evolution
operator for chiros defined in [4].

M̂3 : H → Ω→ ℵ → H (9)

M̂ := ∂4 (10)

The curvature of the spacetime between ℵ and Ω
should change smoothly implying the existence of an
affine hyperboloid parameter γ such that the following
conditions are satisfied.

γ2
∣∣
ℵ = −ϕ2 (11)

γ2
∣∣
H = 0 (12)

γ2
∣∣
Ω

= Φ2 (13)

We almost satisfy the conditions (11-13) when we set γ
to ξ4. Unfortunately, we do not recover the negative sign
in (11). As with the Einstein tensor, we must introduce
a factor of i into Σ− to arrive at a consistent theory.

One possible method to introduce this factor is to in-
voke the basis vector î which identifies quantum states
as belonging to ℵ. This condition is necessary to satisfy
γ ≡ ξ4 but it is not immediately clear that î should be
extended throughout Σ−. To develop an argument for
why Σ− should acquire a complex phase with respect to
Σ+, let there be a standard Kaluza metric gAB in both
Σ spaces. See [5] for an excellent review of Kaluza-Klein
theories.

gAB =

(
gαβ + κ2φ2AαAβ κφ2Aα

κφ2Aβ φ2

)
(14)

A scalar field φ appears in this metric, gαβ is the 4D
metric tensor, Aα is the electromagnetic potential and
κ ≡ 4

√
πG.

Assuming for now that ξ4 is imaginary in Σ− and real
in Σ+, the subspaces ℵ and Ω are surfaces of constant
ξ4. This provides a logical motivation to invoke Kaluza’s
cylinder condition ∂4f = 0 for any function f(ξA)|ℵ,Ω. In
solidarity with Einstein, we consider the case where there
is no 5D matter-energy so that 4D physics may be moti-
vated purely through higher-dimensional geometric con-
siderations. The absence of higher-dimensional matter-
energy sets a condition on the 5D Ricci tensor.

RAB = 0 (15)

Using the cylinder condition and equation (15) we may
derive the following field equations in ℵ and Ω where
TEMαβ ≡ gαβFγδF γδ/4−F γδ Fβγ and Fαβ ≡ ∂αAβ−∂βAα.
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Gαβ =
κ2φ2

2
TEMαβ −

1

φ
[∇α(∂βφ)− gαβ�φ] (16)

∇αFαβ = −3
∂αφ

φ
Fαβ (17)

�φ =
κ2φ3

4
FαβF

αβ (18)

If we require that the scalar field φ is a function of
chiros only, we recover the Einstein and Maxwell equa-
tions. Note that these are only valid in subspaces such
as ℵ and Ω where we have have a well-motivated cylinder
condition.

Gαβ = 8πGφ2 TEMαβ (19)

∇αFαβ = 0 (20)

While ℵ, H and Ω appear disconnected in figure 1 it
is important to recall that these spaces form a Gel’fand
triple {ℵ,H,Ω} where ℵ ⊂ H ⊂ Ω. In this picture there
is a direct causal connection of the spaces. If electromag-
netic potentials in Σ± are equated with the advanced and
retarded potentials Aα(t+) and Aα(t−) of classical elec-
tromagnetism we are able to induce electromagnetism in
H though it was never part of any 5D space.

Aα
∣∣
H = c1A

+
α

∣∣
Ω

+ c2A
−
α

∣∣
ℵ (21)

The constants c1 and c2 take the value 1/2 in the clas-
sical theory but presently they may be determined from
higher-dimensional boundary conditions.

If our theory is robust it should also be true that the
flat metric ηµν in H is smoothly connected to the metric
in Σ+ and Σ−. We may express the smoothness condition
as follows.

lim
ξ4→0+

g+
AB + lim

ξ4→0−
g−AB =

(
ηµν 0
0 0

)
(22)

To solve this problem we mark all components of the
metric in Σ+ with a + sign and likewise for Σ−. It is triv-
ial to derive the following conditions for the limit ξ4 → 0.

±iφ+ = φ− (23)

iκ+ = κ− (24)

−iA+
α = A−α (25)

ηµν = g+
αβ + g−αβ (26)

This is just the result that we have been looking for to
motivate the complex factor i for the entire space Σ− and
by proxy the Einstein tensor. Note the good agreement
of equations (26) and (12). Equation (22) is also satisfied

with κ+ = κ− and A+
α = A−α but we take the complex

solution for consistency.
An interesting consequence of this solution is that the

electromagnetic fields in Σ− will be imaginary. The en-
ergy is proportional to the field squared so we find a
negative energy density in Σ−. In the next paper we will
explore the idea that this energy is related to the nega-
tive energy solutions of the Klein-Gordon equation which
can also be derived from the Kaluza metric.

An intuitive choice of coefficients in equation (21) is
c1 = Φ and c2 = −iϕ. In this case the real coefficients
will sum to unity since the electromagnetic potential in
Σ− is imaginary and negative. If the constants c1 and c2
can be determined from geometry alone we are able to
derive full AdS/CFT duality.

We have already shown that 5D gravity induces 4D
electromagnetism in H. Now consider that there is a
conformal field theory in H which completely specifies
the potential A?α. Using an off-diagonal component of
equation (22) it is possible to write the following system
of two equations in two unknowns.

lim
ξ4→0+

κ+φ
2
+A

+
α = lim

ξ4→0−
κ−φ

2
−A
−
α (27)

A?α
∣∣
H = c1A

+
α

∣∣
Ω

+ c2A
−
α

∣∣
ℵ (28)

This system can be solved for A±α with the the aid of
equations (23-25). In turn we can write the electromag-
netic stress-energy tensor in Σ+ and Σ− as a function of
A?α. Making use of the cylinder condition and equation
(19) we can determine Einstein’s equations on Ω and ℵ.

Gαβ = 8πGφ2(ξ4)TEMαβ (A?µ) (29)

Given this, it is a straightforward boundary value prob-
lem in Ricci flow to determine the general form of the
metric in Σ. Thus, up to a scalar field acting as a gauge,
a conformal field theory on a 4D boundary induces grav-
ity in a 5D space.

Once the relevant quantities are determined, the equa-
tions of motion can be derived from the least action
principle. The observer takes the form of a non-Dirac
delta function δ(ξ4) which returns an undefined value at
ξ4 = 0. As such the observer acts as a topological ob-
struction to direct integration over chiros. We propose a
general form for MCM action.

S =

∫ t2

t1

LH dt+

∫ Φ

−iϕ
δ(ξ4)LΣ dξ

4 (30)

The LΣ part of this action can be computed by per-
forming a complex rotation [4]. We have shown that the
phase factor associated with this path integral is the fine
structure constant.
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1

α
= 2π + (Φπ)3 (31)

The factor Φπ is generated by translation from one ba-
sis geometry to the next. As illustrated by equation (9),
we integrate from the present to future chiral infinity,
to past chiral infinity and back to the present so that
three factors of Φπ appear. Before discussing 2π we note
a historical precedent for this process. In 10th century
Baghdad it was recognized by Islamic scholars that at
each step in time, a given system will be annihilated and
then reformed in the advanced time state [6]. This is es-
sentially the process defined in equation (9). Such things
are beyond the scope of this article, but why did the
Greeks have two words for time? It is also worthwhile to
note that 20 applications of the operator M̂ to the state
|ψ〉π̂ will generate 13 powers of Φ giving a symmetry with
the 20x13 Mayan Tzolkin. If the engineering principles
of time travel can be developed on MCM physics that
may explain many historical anomalies.

The factor 2π is associated with the periodic boundary
condition on ξ4 and it may be related to a homology on
the unit circle. The numbers ϕ and Φ lie on the real line
inside and outside the unit circle respectively so one may
imagine that some manner of rotation through 2π can
map Φ to −iϕ. For instance, it is an elementary exercise
to map the unit circle to a spiral through 2π which starts
at ϕ and ends on Φ.

When a quantum phase advances by 2π we say that
nothing has changed in any way whatsoever. Why should
this be? The Aharonov-Bohm effect gives good reason to
conclude that the phase should have some physical man-
ifestation. However, as quantum theory stands there is
no manifestation and this leads to the strange identity
2πi = 0. Given the material presented here and else-
where, it seems that quantum theory takes place in a
Poincaré section of a higher-dimensional space and it is
the phase that connects these regimes. If this connec-
tion exists and can be developed we may discover a map
2πi 7→ 0 which will replace 2πi = 0 in the formalism.

In the quantum regime equation (30) is replaced with
the operator Υ̂ [4].

〈ψ|Υ̂|ψ〉 = 〈ψ|Û |ψ〉+ 〈ψ|M̂3|ψ〉π̂ (32)

This form is similar to the form of an elliptic func-
tion of a complex variable y2 = z + z3 which in general
will have very complex solutions containing many highly
symmetric subspaces. It may be in this domain that we
recover a map Φ 7→ −iϕ associated with a rotation of 2π.
We do not treat these things with rigor but only mention
them to show what is possible.

The MCM was formulated on a cyclic universe model
of bangs and crunches yet it is an eternal universe model.
No matter how much time passes, the bang and crunch
at conformal infinity will always be infinitely far away.
For clarification see [4]. In place of a cyclic cosmol-
ogy we have modeled the universe as a brane flowing
through chiros. To preserve the idea regarding reference
frames presented in equation (1), we may also consider
a fixed brane through which chiros flows. In the lat-
ter case, what appears to be equilibrium in the brane is
a lower-dimensional projection of non-equilibrium chiral
flow. Structures of this type have been described by Pri-
gogine [7]. His Nobel Prize winning result was to show
that irreversible processes such as the flow of chiros can
lead to novel dynamic states which he calls “dissipative
structures.” Is it possible that our universe is one of these
structures? If so, we forge a new path toward a general
covariant statistical mechanics.

We have previously shown that under certain condi-
tions the third derivative can contribute to the motion
of a classical object [4]. In this case, it may be true
that the most general form of physical phase space is
3N -dimensional rather than 2N -dimensional.

ω =

∫
dq dp dχ (33)

If it is true that the third derivative can contribute
to the motion, the Hamiltonian function on which the
quantum theory depends so closely H = pq̇ − L cannot
completely specify the motion. We have shown that third
derivative contributions are scaled by the fine structure
constant and very small variations in the curvature of
spacetime [4]. When these corrections to Hamiltonian
motion are accordingly small it is possible that devia-
tions from computed trajectories often attributed to fric-
tion may be caused in part by an insufficiency of the
Hamiltonian.
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