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               Abstract 
 
The Lorentz transformations are not true coordinate transformations as Einstein derives them.  
That is, they do not represent a one-to-one mapping of a single set of coordinate values in one 
coordinate system onto another set in an identical coordinate system moving at a constant 
velocity relative to the first.  Rather, they represent a mapping of an average of two sets of 
coordinate values from the first coordinate system onto a single set of values in the second.  If 
the measurement system used in an experiment is inconsistent with Einstein’s averaging method, 
then the Lorentz transformations will give incorrect results.   A simple example is given of a 
photon-emitting clock moving at a constant velocity, v, in a straight line between two photon 
detectors.   The time of travel of the clock between detectors measured by the front detector 
would be t = τ, and by the rear detector would be t = τ (1-v/(c+v)).   The Lorentz transformation 
gives a value of t = τ / √(1-v2/c2) for both detectors.  It is also noted that the Lorentz 
transformations give results inconsistent with the coordinates of photons in a light pulse of the 
form c2t2-x2-y2-z2=0, when measured in an inertial reference frame different from that of the 
source. 
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Einstein [1] gave no reason for his unusual method of determining coordinate values, and he 
seems to have regarded it as universally applicable.  He simply starts his derivation of the 
Lorentz transformations by the definition of a time interval, τ1, in a moving coordinate system, as 
the average of two values, ½ (τ0 + τ2), where τ0 represents the time of emission of a pulse of light 
along the x axis at the origin of the moving coordinate system, and τ2 the time of return of the 
pulse to the origin after having been reflected from an arbitrary point on the x axis.  He then 
expresses τ2, τ1, and τ0 as functions of c, the coordinates of the stationary coordinate system, and 
the relative velocity of the two systems.  Using rather general arguments, he then derives a set of 
coordinate transformations that leave invariant the form of a spherical pulse of light, c2t2-x2-y2-
z2=0, in a coordinate system moving relative to the emitting system.  He previously uses a 
similar method of measuring the time of travel of a light pulse over the same distance in opposite 
directions in his definition of clock synchronization, and also in his definition of the velocity of 
light using the average of the two times.  Both of these definitions seem to me largely irrelevant.  
Such a method of clock synchronization is not necessary, and the measurement of the velocity of 
a photon certainly does not require an average of its time of travel over the same distance in 
opposite directions. 
 



Personally, I do not believe Einstein derived the transformations this way, but rather in the 
manner he hints at in a footnote.  It seems to me highly unlikely that he could recognize that this 
coordinate averaging scheme would result in transformations that would leave the form of a 
spherical light pulse invariant under a change in velocity of the coordinate system.  He more 
likely started from the assumption that the spherical pulse was unchanged, found the 
transformations that left c2t2-x2-y2-z2=0 formally invariant, and then figured out a method of 
coordinate determination which would give him the transformations.  But this of course, is 
speculation.  Regardless of which way he derived them, they seem to me inconsistent with the 
behavior of photons representing a spherical light pulse, and Einstein’s example illustrates an 
important limitation of the Lorentz transformations.  We can see this as follows:   
 
A determination of the velocity of light requires the measurement of the time of travel of a 
photon between an emitter and a detector at a known distance.  The photon has the peculiar 
property that its velocity is independent of the velocity of the emitter.  But it is not independent 
of the velocity of the detector.   That is, any velocity of the detector relative to the photon must 
be accounted for in order to obtain a correct result.   This means that the measured velocity of the 
photon is constant in both the emitting and detecting coordinate systems if the emitter is moving 
relative to the detector, but it is not constant in the coordinate system of the detector if the 
detector is moving relative to the emitter.  We can see this in a simple example: 
 
If the emitter is located at x=0, and emits a photon at t=0 in the positive x direction towards a 
stationary detector located at x=x, then the photon will arrive at the detector at t=t, and the 
measured velocity of the photon will be x/t.   If, however, the detector is moving towards the 
emitter with a velocity, v, then the photon will arrive at the detector at some t=t’ (t’<t) at x=d 
(d<x), where d= x-vt’.   The measured velocity will then be d/t’, which will equal x/t as long as 
the physical speed of the photon is the same in both cases.   This is true in the coordinate system 
of the emitter.   But it is not so in the coordinate system of the detector.    
 
If the detector is stationary, the coordinate system of the detector will give the same result as the 
coordinate system of the emitter.   Similarly, the result will be the same if the emitter is moving 
relative to the detector.  But, if the detector is moving relative to the emitter it will not.  The 
coordinate system of a moving detector cannot account for the motion of the detector with 
respect to the photon.  In the coordinate system of the moving detector, the detector is stationary, 
and the photon is emitted towards it at x= -x, and t=0.    Since the detector remains at x=0, the 
photon must travel the entire distance, x, even though it arrives at the detector at t=t’.    So the 
velocity of the photon as measured in the coordinate system of the detector will be x/t’ rather 
than x/t.   In order to obtain the correct result in the coordinate system of the detector, the 
measured velocity of the photon must be changed to c+v.   
 
Einstein certainly recognized this necessity to some extent, as he uses this modified value of the 
speed of light, (c±v) for the determination of the average time interval, τ1 = ½ (τ0 + τ2), in his 
derivation of the Lorentz transformations.  But he seems not to have understood its significance.  
The emitter defines a unique inertial reference frame.  All other coordinate systems become 
detector coordinate systems with respect to it, and must be treated as such.  That is, the velocity 
of the detecting coordinate system relative to the emitter determines the velocity of the detector 
relative to the photon, and therefore the photon’s velocity as measured in the detecting 



coordinate system.  The issue of the consistency of Einstein’s use of the modified value of the 
speed of light with his principle of relativity has been to some degree debated elsewhere [2,3], 
but without, in my view, any real illumination of the problem. 
 
Because of the difference between the emitting and detecting coordinate systems, an examination 
of Einstein’s example of the shape of a spherical pulse of light must be divided into two cases: 
the detecting coordinate system moving relative to the emitter, and the emitter moving relative to 
the detecting system.   Since the coordinates equidistant in either direction from the origin along 
the x-axis represent radii of a sphere centered at the origin, we only need to look at what happens 
with two photons emitted at t=0 in opposite directions along the x-axis from the origin.  In the 
coordinate system of the emitter, they will always represent the radii of a sphere.  That is, 
detectors located along the x-axis will always, at t=t, measure the same distance of each photon 
from the origin. 
 
But in a coordinate system moving at velocity v along the x-axis, whose origin is coincident with 
that of the emitting system at t=0, this will not be so.  In this system, a detecting system, the 
measured velocity of the photon in one direction will be c+v, and in the other c-v.   Detectors 
located along its x-axis will never see identical values for the length of travel of the two photons 
over the same time interval.  The two x coordinates of the photons on the x-axis will be x=t(c-v) 
and x= -t(c+v), so the light pulse can never be represented by an expression of the form c2t2-x2-
y2-z2=0.  By basing his derivation of the Lorentz transformations on a method of coordinate 
measure that averages values from light signals traveling in opposite directions, Einstein makes 
them independent of this effect.  They define a modified set of coordinates in which the 
dependence on v of the velocities of the photons has been eliminated. 
 
In the alternative case, where the emitter is moving at a constant velocity, v, along the x-axis of a 
stationary detecting coordinate system, the Lorentz transformations do not give correct results 
either, even though they retain the spherical shape of the light pulse.  Let the coordinates in the 
stationary system be x,t , and the moving system X,T.   The photons are emitted in either 
direction when the origins are coincident at t=T=0.   Since the clocks in both systems measuring 
the time of travel of the photons are synchronized, it is always possible to define a time interval 
measured in either system such that t=T.    Because the velocity of the photons is the same in 
both systems, the length of travel of the photons measured at time t=T in both systems must be 
the same.  That is, the length of travel measured in the stationary system will be x= ± ct , and in 
the moving system X= ± cT= ± ct = x.   The Lorentz transformation gives X=(x-vt)/√1-v2/c2 for 
the relationship between the coordinates in the two systems.   Or, if we treat the case as 
equivalent to the detecting coordinate system moving at a velocity of –v relative to the emitter, 
then we have x= (X+vT)/√1-v2/c2.   
 
But let us look at a more practical example of the type of photon behavior that the Lorentz 
transformations would not represent correctly, an experiment that seems to me within the realm 
of possibility: measuring the time of travel of a photon-emitting clock in a straight line between 
two fixed detectors, located at x=0 and x=x.  In this case, the emitter is moving relative to the 
detector, so the velocity of the photon is independent of the motion of the emitting clock relative 
to the detectors.  In my view, such independence does not imply, as Einstein claimed, the 



existence of a universally applicable set of coordinate transformations, independent of the 
experimental arrangement under consideration. 
 
If the clock, traveling at velocity v along the x-axis, emits photons at a fixed rate, starting at t=0 
and x=0, then when it arrives at x=x at t=t, it will have emitted N photons in an arbitrary 
direction.   In its own coordinate system, then, the value of t can be represented by N.  To 
determine what the laboratory detectors will see, that is, the number of photons measured in the 
laboratory, we have to examine what happens to the photons emitted by the clock during the time 
of travel. 
 
Depending on where the detectors are located, the results will differ.  If the photons are emitted 
in the forward direction, then a detector stationed at the end of the path, at x=x, will have 
detected all N photons in the time of travel, t, because each photon emitted during the period of 
travel will move towards the detector more rapidly than the clock, and will have already arrived 
at the detector prior to, or along with the clock’s arrival at x. 
 
For photons emitted in the backward direction, however, this is not the case.  There will be a 
threshold point, at some x-∆ x, where the remaining time of travel of the clock will be less than 
the time of travel of emitted photons to the rear detector.  That is, ∆x/v < (x-∆x)/c.  Equating the 
two, and solving for ∆x, gives ∆x =vx/(c+v).  During such a time period, the number of photons 
emitted will be ∆N=∆t dn/dt, where ∆t is the time of travel of the clock over the distance ∆x, and 
dn/dt is the rate of photon emission of the clock in an arbitrary direction.  These will not arrive at 
the detector during the time interval of travel. Therefore the number of photons detected at the 
rear detector in time t will be N-∆N.    Since the rate of photon emission is constant over the 
length of travel, the ratio of ∆N/N will be the same as ∆x/x, and we can then determine ∆N:  
 
                                    ∆N/N = v/(c+v),  ∆N = Nv/(c+v), so that 
 
                                      N-∆N = N-Nv/(c+v), or N(1-v/(c+v)).   
 
Using t and τ instead of N-∆N and N for the time interval expressed in the two coordinate 
systems, for the rear detector we then have 
 
     t = τ (1-v/(c+v)). 
 
 
If we assume a clock velocity of .9c, the rear transformation gives a value for t of approximately 
.526τ, which indicates that a significant number of photons would not be observed at high 
velocities.   If v = c, then t = .5τ, and of course half the photons would be excluded, as the 
velocities would be the same.   Thus the time measured by the moving clock during time τ as 
seen by the stationary observer would be the same as an equivalent stationary clock if measured 
by the front detector, but reduced by this factor when measured by the rear detector.   The 
Lorentz transformation, τ = t√(1-v2/c2), with v = .9c, gives t = 2.294τ measured by either 
detector. 
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