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INTRODUCTION

World data centres used*
1% of the total world electricity consumption in 2005
equivalent to about seventeen 1000MW power plants

growth of around 76% 1in five years period (2000-2005,
2005-2010)

Improper usage of 44 million servers in the world **
Produce 11.8 million tons of carbon dioxide
Equivalent of 2.1 million cars

* Koomey, J.G. ,”"Worldwide electricity used in data centres”, Environ.Res. Lett. , 2008
** Alliance to Save Energy (ASE) and 1E, "Server Energy and Efficiency Report," 2009



INTRODUCTION

U.S. data centres used 61 billion kWh of electricity in
2006**

1.5% of all U.S. electricity consumption
double compare to 2000
Estimation of 12% growth per year

Improper usage of server in U.S.

produces 3.17 million tons of carbon dioxide
Equal to 580,678 cars

* Koomey, J.G. ,”Worldwide electricity used in data centres”, Environ.Res. Lett. , 2008
** Alliance to Save Energy (ASE) and 1E, "Server Energy and Efficiency Report," 2009



ENERGY CONSUMPTION IN DISTRIBUTED
SYSTEMS

Resource/Hardware
level
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OUR RESEARCH

Resource/Hardware
level

Proposing Multiple Frequency
Selection algorithm using DVFS

Mathematically proving of efficiency

of this algorithm
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PART 1 - ENERGY EFFICIENCY IN
DISTRIBUTED COMPUTING SYSTEMS USING
DVEFS




BACKGROUND — Dynamic Voltage
Frequency Scaling

In CMOS circuits: {E =kfvit | p o 3y
fxv
Example:
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BACKGROUND — Dynamic Voltage
Frequency Scaling

Power Power
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Original scheduling Optimum continuous frequency DVES

o KEach task has a maximum time restriction.
o In hypothetical world

» processors has continuous frequency.

» For k" task, Optimum Continuous Frequency (fo(;{t)imum)

1s a frequency that uses the maximum time restriction o
the task.




BACKGROUND - Dynamic Voltage
Frequency Scaling

Power Power Power
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Original scheduling Optimum continuous frequency DVFS

o In reality

» processors has a discrete set of frequencies
{fi> >/}
(k)

» The best frequency i1s slightly over foptimum :




BACKGROUND — Energy-Aware Task
Scheduling Using DVFEFS

Research question:

What is the suitable frequency selection to schedule
tasks on a set of processors (1) to meet tasks’ time
restrictions, (2) to consume less energy

Energy-aware scheduling scheme:

Optimize a new cost function including energy
Cost function = f(Makespan, energy)

e.g.,
Cost function = a X Makespan + f X Energy



BACKGROUND — Energy-Aware Task
Scheduling Using DVFS

» Slack reclamation
o On top of scheduled tasks

o Any slack on processors is used to reduce the speed of running
task

Task scheduling Proc.
algorithm on two 2
processors

ime
Slack reclamation
algorithm




OUR WORK — Multiple Frequency Selection
(MFS-DVFS) for Slack Reclamation

o Current scheme: use one frequency for a task (RDVFS
algorithm)

o Our 1dea: use linear combination of all processor’s
frequencies for each task.

Power

Multiple Frequency
time - Selection - DVFS
algorithm

Power




OUR WORK - Optimization Problem in
MFS-DVFS

o In literature: P,(f,v) = kfv*
o For k" task in scheduling

( N N
Minimize : E® = Z tl-(k)Pd(fi; v;) + Praie (T(k) - Z ti(k)>
i=1 i=1
subject to: pouer
N
< L. z ti(k)fi — K(k) Proc.
i=1 .
N
2. z ti(k) < T(k) Proc. Task 1
i=1 2 E

sync

-

\ 3. tl(k) > O, fOT' [ = 1,2, .., N ty t, ty time H




MFS-DVFS — Algorithm

Input: the scheduled tasks on a set of P processors

1. For k'™ task (A%)) scheduled on processor P;

2. Solve optimization problem by linear programming
3. end for

4. return (the voltages and frequencies of optimal

execution of the task)




OBSERVATION — Mathematical Proofs*

In literature: P,(f,v) = kfv?
Generalization: Py(f,v)

If (f;,v;) < (fj,vj) then P;(f;, v;) < Pd(fj, vj)
Observation #1

In hypothetical world, the cont. frequency that uses

maximum time restriction of k" task gives the

optimum energy saving (fo(;ct)imum)

Observation #2

For k" task, always up to two voltage-frequencies
are involved 1n optimal energy consumption (f; < f;)

Proof: theorem 1, 2

* N.B.Rizvandi, et al., “Some observations on optimal frequency selection in DVFS-
based energy consumption minimization”, J. Parallel Distrib. Comput. 71(8): 1154-
1164 (2011)



OBSERVATION — Mathematical Proofs*

o Observation #3
(k)
’ fl < foptimum < f]
» Proof: lemma 1, 2

o Observation #4

 The associated time for these frequencies (t;, t;) 1s
(t(k) _ KB 1),
=

fi—fi
[ _ T®f =K ®
\J fi—fi

» Proof: Corollary 1

* N.B.Rizvandi, et al., “Some observations on optimal frequency selection in DVFS- Q
based energy consumption minimization”, J. Parallel Distrib. Comput. 71(8): 1154-

1164 (2011)




OBSERVATION — Mathematical Proofs*

Observation #5

The consumed energy of processor for this task
assoclated with these two voltage-frequencies is

Flo — T f ;-0 K( ) T( )fl
fi—fi
Proof: Corollary 2

Observation #6

Using less time to execute the task results in more
energy consumption

Py(fi,vi) + d(f]'v])

Proof: theorem 3

* N.B.Rizvandi, et al., “Some observations on optimal frequency selection in DVFS-
based energy consumption minimization”, J. Parallel Distrib. Comput. 71(8): 1154-
1164 (2011)



OBSERVATION — Mathematical Proofs*

o In a simplified version, f « v then
Py(f,v) = Af3
o Observation #7
» These two frequencies are neighbors. 1.e., two

. : : k
1immediate frequencies around fo(pgimum

» Proof: theorem 4, 5

* N.B.Rizvandi, et al., “Some observations on optimal frequency selection in DVFS-
based energy consumption minimization”, J. Parallel Distrib. Comput. 71(8): 1154-

1164 (2011)




MFS-DVFS — New Algorithm

Input: the scheduled tasks on a set of P processors
1. For k' task (A%)) scheduled on processor P;

2. Calculate f (o)

optimum
3. Select the neighbour frequencies in the

processor’s frequency set before and after
(k)

optimum*
4. Calculate associated times and energy consumption.

5. Select ( R(ll){)' R(g)_l) assoclated to the lowest

energy for this task
6. end for

return (individual frequencies pair for execution of each
task)

These frequencies are fR(g) and fR(g)—l'




EXPERIMENTAL RESULTS - Simulator

Simulation settings
Scheduler

o List scheduler
o List scheduler with Longest Processing Time First (LPT)
o List scheduler with Shortest Processing Time First (SPT)

Processor power model *
o Transmeta Crusoe

o Intel Xscale
o Two synthetic processors



EXPERIMENTAL RESULTS - Simulator

Task graphs (DAG)
o Random
o LU-decomposition
o Gauss-Jordan
o Assumption: switching time between frequencies can be ignored

compare to task execution time

Experimental parameters

Parameter Value
# of tasks 100, 200, 300, 400, 500
# of processors 2.4 8 16, 32




EXPERIMENTAL RESULTS — Results (1)

Typical List Scheduler

Energy saving (in %)
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EXPERIMENTAL RESULTS — Results (2)

Energy saving (in %)

LU decomposition Gauss-Jordan
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EXPERIMENTAL RESULTS — Results (3)

Experiment Random Gauss- LU-
tasks Jordan decomposition
RDVFS 13.00% 0.1% 24.8%
MFS-DVFS 14.40% 0.11% 27.0%
Optimum Continuous 14.84% 0.14% 27.81%
Frequency




PART 2 — PERFORMANCE ANALYSIS AND
PROVISIONING IN MAPREDUCE CLUSTERS




BACKGROUND — MapReduce

A parametric distributed processing framework for
processing large data sets.

Introduced by Google in 2004.

Typically used for distributed computing on clusters
of computers.

Widely used 1n Google, Yahoo, Facebook and
LinkedIn.

Hadoop 1s famous open source version of
MapReduce developed by Apache



MOTIVATION

o Many users have job completion time goals
o There 1s strong correlation between completion
time and values of configuration parameters

» No support from current service providers, e.g. Amazon
Elastic MapReduce

» Sole responsibility of user to set values for these
parameters.

o Our research work

» Estimate a function to model the dependency between
completion time and configuration parameters by using
Machine Learning techniques on historical data.




CLASSIFICATION

Classification
Two MapReduce applications belong to the same group if
they have similar CPU utilization pattern for several
1dentical jobs.
An 1dentical job in two applications means they run with
the same values for configuration parameters
the same size of small input data.

hypothesis

Similar Applications share the same optimal values for
the configuration parameters.

obtain the optimal values of configuration parameters for one
application and use for others in the same group.



CLASSIFICATION - Uncertainty

Uncertainty in CPU utilization pattern

Variation in values of each point in CPU utilization
pattern for identical jobs of an application

time



CLASSIFICATION — Similarity (1)

High similarity i1s equal to low distance

Current scheme
Average values of each point in patterns

Apply Dynamic Time Warping (DTW) on average CPU
patterns = patterns become the same length

Calculate Euclidean distance between two average
patterns (i.e., @ - and yY ur)

N
Z(%W.[i] — Xawr. [ID* <7
=1

r predefined distance threshold



CLASSIFICATION — Similarity (2)

o Our 1dea®
» Comes from computational finance background.

» Each point in the pattern has a Gaussian distribution.

A

|

1
N

u,lk)o, [K]

by

time
* N.B.Rizvandi, et al., "A Study on Using Uncertain 'I''me Series Matching Algorithms @
in Map-Reduce Applications”, Concurrency and Computation: Practice and Experience,

2012

-




CLASSIFICATION — Similarity (3)

rgoundry,norm_zliil E(DZ [Z])
\/Z{\Ll Var(D2[i])
Tboundrynorm = \/E X el‘f_l(ZT - 1)

If choose r < 1p4ynary, this guarantees that
P(DST(<pu X)) < rboundry) =T

Thoundry =

S0, Thoundary 18 the minimum distance between two
patterns with probability 7

P(DST(QDu X)) = rboundry) =1

* N.B.Rizvandji, et al., “A Study on Using Uncertain Time Series Matching Algorithms
in Map-Reduce Applications”, Concurrency and Computation: Practice and Experience,
2012



CLASSIFICATION - technique

Set pre-defined Probability threshold (t = 0.95)
For the same input data size and configuration parameters’ values
Run applications ¢ and ) ten times
Calculate mean and variance of ¢ and ) at each point in pattern
Endfor
Calculate joint mean and variance of distance between ¢ and y from Eqns. 5 and 6*

Calculate 7poynary from Eqn.10*

Two applications with lowest 7444y has highest similarity and can be in the same group.

* N.B.Rizvandi, et al., “A Study on Using Uncertain Time Series Matching Algorithms @
in Map-Reduce Applications”, Concurrency and Computation: Practice and Experience,
2012




EXPERIMENTAL RESULTS — Setting

Hadoop cluster settings
Five servers, dual-core
Xen Cloud Platform (XCP)
Xen-API to measure performance statistics
10 Virtual machines

Application settings

Four legacy applications: WordCount, TeraSort, Exim
Mainlog parsing, Distributed Grep

Input data size
5GB, 10GB, 15GB, 20GB

# of map/reduce tasks
4, 8, 12, 16, 20, 24, 28, 32

Total number of runs in our experiments
8X8Xx5%Xx4x10x4=51200



EXPERIMENTAL RESULTS — Results (1)

Exim MainLog parsing

WordCount 5-1 5-2 5-3 S-4
5-1 24044 117017 04472 228071
S5-2 80648 64063 58351 138222
5-3 79431 63232 54309 104255
5-4 147014 83655 81434 70427

Exim MainLog parsing

Terasort 5-1 S-2 S-3 S-4
5-1 27400 65102 65606 132799
5-2 155038 67293 68455 70198
5-3 123668 76859 56114 76589
5-4 166234 77829 81751 74693

WordCount

Distributed Grep 5-1 S-2 S-3 S-4
5-1 21529 105309 00012 199451
5-2 79965 62890 68553 122279
5-3 77549 62949 51876 101280
5-4 142703 83089 72987 69927

Thounary Detween the applications for T = 0.95 for 5G of input @
data on 10 virtual nodes.
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EXPERIMENTAL RESULTS — Results (2)
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HOW TO USE THIS TECHNIQUE

For frequent running jobs (e.g., Indexing, Sorting,
Searching), run jobs with different values of conf.

parameters
For a new job, try to find most similar application

in DB (using this algorithm). Then use 1ts optimal
values of parameters for running the new job.



MOTIVATION

o Many users have job completion time goals

o There 1s strong correlation between completion
time and values of configuration parameters
» No support from current service providers, e.g. Amazon
Elastic MapReduce
» Sole responsibility of user to set values for these
parameters.

o Our research work

» Calculate similarity between MapReduce applications.
It 1s too likely similar applications show similar
performance for the same values of configuration

parameters.




PERFORMANCE MODELLING AND
PROVISIONING — Our idea (1)

2801 =
& Training data - actual value
——082t+1478
260 | —— (092 +023t+161.58 N
—0.00004t"-0.0005t° +0.072t°-577t* +2748t> - 7763 t° + 120320t - 789020
240 | ——101.47-2.4887 10" texp(-1) ]
2201
2001
—
180}
160
140
1201
100} .
| ] ] | ] ] ] | |
35 40 45 50 55 60 65 70 75
t

Cholesterol level (y-axis) vs. Age (x-axis)




PERFORMANCE MODELLING AND
PROVISIONING — Our idea (2)
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PERFORMANCE MODELLING AND
PROVISIONING — Our 1dea (3)

Prediction accuracy
Mean Absolute Percentage Error (MAPE)
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EXPERIMENTAL RESULTS — Setting

Hadoop cluster settings
Five servers, dual-core

SysStat to measure performance statistics
Hadoop 0.20.0

Application settings
Three applications: WordCount, TeraSort, Exim Mainlog

Input data size
o 3GB, 6GB, 8GB, 10GB
# of map/reduce tasks

o 80 number randomly chosen between 4 to 100
o 56 experiments for model estimation, rest for model testing



EXPERIMENTAL RESULTS— Results (1)
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EXPERIMENTAL RESULTS— Results (3)

MAPE | R? prediction accuracy
WordCount 1.51% 0.83
Exim MainLog 3.1% 0.76
parsing
TeraSort 2.33% 0.79




HOW TO USE THESE TECHNIQUES

For frequent running jobs (e.g., Indexing, Sorting,
Searching), run jobs with different values of conf.
parameters

Fit a model (based on second technique) and
calculate the optimal values of parameters which
minimizes completion time.

Put this application + optimal values into DB

For a new job, try to find most similar application
in DB (using first technique). Then use its optimal
values of parameters for running the new job.

Reducing completion time indirectly reduces
energy consumption.
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