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Abstract

The gravitational energy, momentum, and stress are calculated for the
Robertson-Walker metric. The principle of energy conservation is applied,
in conjunction with the Friedmann equations. Together, they show that the
cosmological constant A is non-zero, the curvature index k£ = 0, and the
acceleration R is positive. It is shown that the gravitational field accounts
for two-thirds of the energy in the Universe.



1. Introduction

In the standard treatment of cosmology, no attempt is made to directly cal-
culate the energy, momentum, and stress of the gravitational field. The
following calculation derives from the scalar, three-vector theory of gravita-
tion.[1,2] In this theory, displacements in time and space are expressed in the
form

cdt = ey(z)dx® dr = e;(z)dx’ (1)

where e, = (eg, €;) is a scalar, 3-vector basis. The fundamental interval® is
given by

ds® = cdt* —dr® = (epd2’)® —e; - e; dv'da’
= gudztdz” (2)
where
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Iu 0 9ij (3)
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is the scalar, 3-vector metric.
The basis e, (z) changes from point to point according to the formula

V,,eu = 6)\@2” (4)

This separates into scalar and 3-vector parts

Vieo = eoQp, (5)
vuei ek’ny (6)

By definition QF, = Q% = 0. The Q" are related to the Christofel coefficients
as follows:

IThis interval is invariant under a Lorentz transformation. At any point P, the vector
dr may be projected onto an orthonormal 3-frame: i-dr, j-dr, k-dr. These projections, to-
gether with the time interval dt, are then transformed into new values, which are observed
in a relatively moving 3-frame. No coordinates are involved with this procedure.
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Qo = Toh= 59005/\900 (7)
o = Lh= 29 DoGn; (8)
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e = = igm (OkGjn + 05Gnk — Onjk) (9)

They comprise the formula

Q FH}\ + gupg)\nQ[yp (1())

where

Qﬁ,,\] =@\ — @\ (11)

An observer is free to introduce new coordinates {#*}. The new coordi-
nates must be at rest with respect to the old. Displacements (1) will then
be invariant, which preserves the scalar, 3-vector character. The coordinate
transformations are of the form 2% = 2% (2°) and 2% = 2 (27). In particular,
guv (3) transforms as a tensor

0z 0x° ox™ Ox"

nn = 5 i/ ;) = 7l7/ mn 12
go'o 0x0/ 8370/ goo g 7 axz 61'] g ( )
The non-zero components of @}, (11) are
00 i i L i
Oz] Qm = g Digoo Q[jo] = Qjo = 59 Aogn; (13)
They transform as tensor components
/ ox" oz 9x" Oz°
o _ 7 N0 i _ m
o — axi/ QO’I’L Q 0" T I.m 8x] a 0/ n0 (14>

This field strength tensor plays a central role in dynamics. It serves to define
the gravitational energy tensor

Tﬁi): {Q[)\M]Q[PV1+Q“QV_ 59" (@ + @QQ0)}  (15)

where @), = Q[ o] The coefficient is chosen such that T ) reduces to the
Newtonian stress-energy tensor
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Ty = R{ai¢3j¢—§5ij(v¢)} (18)
when
2
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2. Gravitational energy, momentum, and stress

The Robertson-Walker metric is given by [3]

R2(t)
r3(1 + kr?/4rd)?
where k = —1,0, or +1. Since ggo = 1, all QY; = 0. This leaves only energy
and stress components in (15)

ds? — (da)? (dr? +12d6® + 1% sin?0.dg?)  (20)
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C m n m n
Y =0 (22)
(9) ! (9)
Tij = 167G Gij (QnoQmo + Qmo@no) = —3i; 100 (23)

A straightforward calculation yields Qt, = Q%, = @3, = R/R and

R? R?

Q% Zzo =3 ﬁ EOQZO =9 ﬁ (24)

where R is the derivative with respect to 2° = ct. Therefore, the non-zero

components of the mixed energy tensor are

)0 _ 304 R72 T-(g)j _ _5]376452 — _djT(g)O (25)
447G R2 ey

According to (25), the gravitational energy density is positive, the stresses

are compressive, and they are functions of time alone.

Ty’
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3. Field equations

The gravitational field equations are derived by variation of the action

B} / {16(’;7,(9“”3“” —2A) + LM /=g d'z =0 (26)

There are seven field equations, corresponding to the seven variations dg"” =
(09, 697)

v 1 v 14 87TG m)v
R =58,/ R+ N5, = === T (27)

Components R,’ and T| ém)i do not appear. Substitute the Robertson-Walker
metric (20) and the material energy tensor
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PmC
(mv _ —DPm 0
T . o (28)
—Pm
in order to obtain the Friedmann equations [3]
3R> 3k stG
A= e (29)
2R R* k 87G
st M o 2
R R R a bm (30)

At the present time, the material pressure p,, < p,,c®. It will be ignored for
the remainder of the paper (p,, = 0). Equation (30) then becomes

2R Rk

Rk 1

rtmt e 0 (31)

Eliminate k and R? from (29) and (31) to find
R_A 4G

R™3 32/

It follows that a positive cosmological constant is required, if R > 0.

(32)



4. Energy conservation

The differential law of energy and momentum conservation is (appendix)

div T," = T,%, + Q[ Ts* = 0 (33)

where 7%, is the covariant derivative. The total density of energy, momen-
tum, and stress is given by

TV — T}Eg)u + T}sm)y + T/EA)V (34)

n
The final term is implied by the cosmological constant in the field equations.
It is yet to be determined, but it must have the form T (A — = C¢,"” where C
is a constant. The material equations of motion give
(m)v _
)" =0 (35)

so that energy conservation is expressed by

div Ty = Ty + T35 + Qly (T + T + TW):
= T + 12, 1" +rn0T§ 10— (36)
Substitute (25) and I'?, = 3R/R to find
273.’ n }i2 N ArG
R  R? ct
Comparison with (31) shows that k£ = 0 and

7™M =0 (37)

Ny _

H 47TG (38)

In equation (29), set k = 0 and rearrange to find

3R?  8nG
A= R2 T 2 Pm (39)
Substitution into (34) gives
3¢t R? ct
T = m —A

el e

= 3pmc’ (40)



Therefore, the gravitational field (with the cosmological term) accounts for
two-thirds of the energy in the Universe.
5. Concluding remarks

Formula (39) makes possible an evaluation of the constant A, in terms of the
mass density and the Hubble ratio

H R
- 41
il (41)
The experimental value of the Hubble constant is stated to be
km- -1
Hy=T71"20 —93x1078 g7 (42)
pc

For historical reasons, the mass density is expressed in terms of a “critical
density”

3H?
Per = 87rCO¥ =95x 107 g-cm™® (43)

The mass density, including the missing mass, is estimated to be

po = 0.27 per = 2.6 x 107 g-cm ™ (44)

Substitution into (39) yields a positive cosmological constant

87G (3H?
A = 0
c? <87TG po)
87 G
= T (0.73 per) = 1.3 x 1076 e 2 (45)

c2

According to formula (32), the acceleration will be positive, if
2

m < ——

P ArG

Therefore, the acceleration R is now positive and will remain so in the future.
It apparently was negative at times in the distant past.

A=146p, = 1.4 x 107 g-cm™> (46)



Finally, combine the tensors Tlsg)l’ + T ,EA)” in order to obtain the total
gravitational energy density

, 3t R*

PsC =GR T 4nG Ppm€ (47)

and pressure

3! R? N ct
 4AnG R? 4G
Clearly, p, and p,c? are always positive; they satisfy the relation

Py A (48)

C4

27G

Py = pyC + A (49)

Appendix: Conservation of energy and momentum

The differential law of conservation is derived by summing the invariant ex-
pression e, T"" dV,,

> e, dV, = {e, 0,(vV=gT") + (Voe,)V—g T }d'x (50)

The region dR is closed and infinitesimal, while dV,, is the vector

dV, = /=g (dz'dz?*dx®, dx’dx*da®, . ..) (51)
By definition, Ve, = eAQ;\W, so that
1
e, T dV, = e, { ——0,(v/—gT") + QK T /=g d'z 52
% 2 H {\/_—g ( ) A } ( )

Energy and momentum are conserved, if

b

\/_—gau(\/—_gT“”) + Q4T =0 (53)

The Q%, are related to the Christofel coefficients by the formula

div ™ =

f =%, + 0" 9,5Q0 (54)
Substitution yields



div T = T4 + g Q) Ty" (53)

where T"7 is the (contracted) covariant derivative. The divergence of the
mixed tensor is

. v v 153 «a
divT,” =T, + Q,aTs (56)

[oep]
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