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Abstract

We present two models combining some aspects of the Galilei and the Special Relativity

that leads to a unification of both relativities. This unification is founded on a reinterpreta-

tion of the absolute time of the Galilei relativity that is considered as a quantity in its own

and not as mere reinterpretation of the time of the Special relativity in the limit of low veloc-

ity. In the first model, the Galilei relativity plays a prominent role in the sense that the basic

kinematical laws of Special relativity, e.g. the Lorentz transformation and the velocity law,

follows from the corresponding Galilei transformations for the position and velocity. This

first model also provides a new way of conceiving the nature of relativistic spacetime where

the Lorentz transformation is induced by the Galilei transformation through an embedding

of 3-dimensional Euclidean space into hyperplanes of 4-dimensional Euclidean space. This

idea provides the starting point for the development of a second model that leads to a gen-

eralization of the Lorentz transformation, which includes, as particular cases, the standard

Lorentz transformation and transformations that apply to the case of superluminal frames.

1 Introduction

It is common to consider the Galilei relativity as the low velocity limit case of the Special

Relativity (SR). This is revealed by the behavior of the Lorentz transformation when we take
v
c → 0, e.g.

~x ′ = ~x− (1− γ)
~x · ~v
v2

~v − γ~vt −→ ~x ′ = ~x− ~vt (1)

t′ = γ
(
t− ~x · ~v

c2

)
−→ t′ = t .
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In this view, the absolute time of the Galilei relativity, henceforth denoted by τ , is not considered

as an independent quantity but it refers to a particular situation of SR when it is possible to

identify t and t′, which allows us to take τ ≡ t = t′. It is in this sense that the absolute time is

usually conceived. Therefore, the fact that one generally has t′ 6= t seems to deny the possibility

of having an absolute time in SR. We refer to the time of the SR as the physical time.

In our work we intend to reinterpret the notion of absolute time in such way that the Galilei

relativity recovers its role as a theory in its own, correcting then a common view that treats the

principles of the Galilei and the Special relativity as irreconcilable notions. One of the difficulties

we encounter to carry out this goal is related to the way we currently understand the concept

of time, which is somehow already shaped by ideas of the SR. Here, we focus our efforts on the

development of two models, called Model I and II, that are built in order to allow to introduce

the concept of absolute time in a general set up that also incorporates the concept of time of

SR.

In model I, the fact that t 6= t′ suggest us not to identify the absolute time with t but with a

function depending on t and, perhaps, on the spatial location where the event occurred. Then,

if for a certain instant τ we have (t, ~x), (t′, ~x ′) representing the same event with respect to two

inertial frames, we would expect the absolute character of τ to imply that τ(t, ~x) = τ(t′, ~x ′), this

expression being verified for any value of the ratio v/c. In addition, we would also expect to

obtain the Lorentz transformation by replacing τ(t, ~x) into the Galilei law ~x ′ = ~x− ~vτ . Having

established this, the next step would be to obtain the velocity law of SR from the corresponding

velocity law of the Galilei relativity, d~x ′

dτ = d~x
dτ − ~v. The fulfillment of these two laws places the

Galilei relativity as a guiding principle for deriving some of the SR laws.

From a calculational perspective, the Lorentz transformation can be obtained by considering

as variables the set {t, ~x, t ′, ~x ′}, together with the equation ~x ′2 − c2t ′2 = ~x 2 − c2t2. In model

I, we will show that in order to combine the Galilei and the Special relativity it is sufficient to

enlarge the variables’ set of SR to {t, ~x, t′, ~x ′, τ} and to consider the pair of equations{
~x ′2 − c2t ′2 = ~x 2 − c2t2

~x ′ = ~x− ~vτ .
(2)

Here, the effect of this enlargement is to produce not only the usual Lorentz transformation but

also an extra equation relating the absolute and the physical time, which gives an operational

definition for the absolute time associated to the occurrence of an event.

In what concerns the structure of spacetime, we notice that both relativities are formulated

in terms of a 4-dimensional space R4 ≡ R×R3. In the Galilei view, two observers belonging to

inertial frames S, S ′ describe the occurence of an event respectively as a point (τ, ~x) ∈ RS×R3
S ≡

R4
S , and (τ, ~x ′) ∈ RS′ × R3

S′ ≡ R4
S′ . Here, due to the nature of the absolute time, for a fixed τ ,

the Galilei transformation reduces itself to a map R3
S → R3

S ′ .

In the SR view, the observers describe the event as a point (t, ~x) ∈ RS × R3
S , and (t′, ~x ′) ∈

RS′ × R3
S′ , where now, due to the nature of the physical time, the Lorentz transformation is

not restricted to be a map R3
S → R3

S ′ , as before, but it is considered as a map on the whole
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space, R4
S → R4

S′ . In model I, the existence of the absolute time allows us to unveil an additional

structure present in the SR spacetime that is already present in the Galilei view. In fact, when we

express the absolute time in terms of the physical time, τ(t), τ(t′), we will show that we can define

embeddings R3
S

iτ
↪→ R4

S , R3
S′

i′τ
↪→ R4

S′ in terms of certain hyperplanes στ ⊂ R4
S , σ′τ ⊂ R4

S′ . The

Lorentz transformation is then seen as a map στ → σ′τ between these 3-dimensional hyperplanes

that is induced by the Galilei transformation acting on R3
S → R3

S′ , for a certain τ . In addition,

the spacetime splits as the union of these hyperplanes, e.g. R4
S = ∪τστ . In the spacetime of

Galilei relativity this splitting is self-evident and corresponds to the hyperplanes of τ = constant.

Inspired by the equation that defines the embeddings R3
S

iτ
↪→ R4

S , R3
S′

i′τ
↪→ R4

S′ , we develop

Model II by taking αx0 − ~β · ~x = αx ′0 + ~β · ~x ′ as our fundamental equation, where α, ~β are

arbitrary parameters that will allow us to define a generalization of the Lorentz transformation.

In model II the absolute time is introduced by modifying the previous equation to

τ ≡ αx0 − ~β · ~x = αx′0 + ~β · ~x ′ .

Here, the Galilei relativity arises assuming in addition the relation ~x ′ = ~x − ~vτ . This is suffi-

cient to reduce the generalized transformation to the particular form of the standard Lorentz

transformation, showing then the consistency of both relativities. In Model II, however, we will

show that we are allowed to have the Lorentz transformation weather or not we consider the

Galilei relativity, a situation that doesn’t happen in model I.

Some work [1, 2] deal with the Galilei and the Special relativity but focus on opposite goals

not proposing a scheme for unifying both relativities. In fact, in [1] the assumption that the

Galilei law of velocity applies to the motion of bodies, signals and forces leads to inconsistencies

that are solved by the introduction of the postulate of the constancy of the speed of light, which

ultimately leads to SR. In [2], it is established a transformation relating the Galilei and the

Minkowski-Einstein coordinates, which may signalize that relativistic effects are due to motion

relative to an actual 3-space 1. In our work we follow another direction as our goal is to harmonize

both relativities by a convenient treatment of the absolute time and the fundamentals laws of

both relativities. We are not aware of any work devoted to this issue, therefore, we hope our

work may provide a convenient starting point for further investigation on this topic.

Our work is organized as follows. The Model I is developed in section 3. In section 3.1

we introduce a set of assumptions settling the main properties of the physical space and time

that are necessary to develop a model incorporating both the Galilei and the Special Relativity.

We axiomatize the existence of two times, the absolute time of the Galilei relativity and the

physical time of SR, and we discuss an important issue, due to C. Moller, concerning the correct

interpretation of the physical space where equation (1) is defined. In section 3.2 we obtain

the Lorentz transformation from the Galilei law ~x ′ = ~x − ~vτ and the assumptions of section

3.1. In section 3.4 we obtain from the law of velocity transformation of Galilei relativity the

corresponding velocity law of SR. We also discuss a problem associated to the so-called Thomas

1The author continues this development in a model that is known by Process Physics.
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precession. In section 3.5 we give a geometric interpretation for the spacetime of SR, and show

how the concept of absolute time allows to define a partition of the spacetime in terms of certain

3-dimensional hyperplanes. The Model II is developed in section 4. In section 4.1 we establish

a set of assumptions that is slightly different than the assumptions of Model I, namely in what

concerns the introduction of the Special and the Galilei relativity (respectively numbered as

assumptions III and IV). In section 4.2 we derive a transformation that we call Generalized

Lorentz Transformation, and in section 4.3 we analyze the velocity transformation associated to

it. We then show that the Generalized Lorentz Transformation includes, as particular cases, the

standard Lorentz transformation together with transformations that may be used when we have

superluminal frames. We then analyze in section 4.4 how to introduce the Galilei relativity in

the framework of Model II. In section 4.5 we analyze the conservation of momentum and obtain

the corresponding relativistic expression for the mass. Finally, in section 5 we analyze how

elementary considerations from the differential structure of the projective space RP(5) allows us

to think on the concept of the absolute time as associated to one of the dimensions of Euclidean

space R4.

2 Basic Definitions

We recall some basic definitions that are necessary for the statement of our assumptions.

An event is any physical occurrence taking place on a certain location and on a certain

instant. We adopt the standard definitions of observer and reference frame as stated concisely

in [3], i.e. by an observer we understand any entity equipped with a standard rod and a standard

clock that allows for the measurement of length and time (in fact, the physical time as we will

introduce in the assumption II below) and that is able to communicate with other observers by

means of light signals. A reference frame is understood as an infinite set of observers each one at

rest relative to the other and having their standard clocks synchronized. Abstractly, the infinite

set of observers composing a reference frame is idealized in such way that for any event there

is an observer present on the same location where the event took place, which then establishes

the space coordinate of the event. This observer also determines, by the reading of his clock,

the instant of time when the event occurred. We will consider reference frames endowed with a

rectangular coordinate system. By an inertial frame we understand any frame in which a body

free of forces is unaccelerated.

We use the notation (tSP , ~xSP ) to denote the description of an event P relative to a frame S.

We write (tSP , ~xSP ) ∼ (tS′P , ~xS′P ) to indicate the same event P as seen by the frames S, S ′. In

the particular case when one frame S analyzes the movement of another frame S ′, we will assume

the frame S ′ is entirely represented by its origin, and write ~xSS′ for the position of S ′ relative

to S, and tSS′ for the time measured by S. Finally, in our work by a Lorentz transformation

we always mean a Lorentz boost, except in section 5 where a Lorentz boost attains its precise

meaning as a particular Lorentz transformation.
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3 Model I

3.1 The Assumptions

In what concerns space and time our basic assumptions are as follows.

I. Space

Each inertial frame describes space as being an euclidean 3-dimensional vector space.

II. Time

We model time as any variable that can be used to describe what we intuitively understand as

the “instant when events occur”. We distinguish two kind of choices as follows. By physical

time, denoted by t, we understand a choice for the time variable that can be measured with the

use of standard devices, like atomic clocks, under suitable arrangements (e.g. when they are

the clocks of a reference frame and are all conveniently synchronized etc.). By absolute time,

denoted by τ , we understand a choice for the time variable having the property that given an

event all observers assign to it the same value for the instant when the event occurred 2. As a

principle, we assume that any variable that serves to describe time may be expressed in terms

of the physical time in such way that by the measurement of the latter one can determine the

value of the former. Therefore, for any frame in which one knows how to shift from τ(t)↔ t(τ)

it is possible to describe an event writing its coordinates as (t, ~x) or (τ, ~x).

III.

Given two inertial frames S, S ′ moving with relative velocity ~v, and an event P whose coordi-

nates are (tSP , ~xSP ), (tS ′P , ~xS ′P ) relative to S, S ′, we have

~x 2
SP − c2t2SP = ~x 2

S′P − c2t2S′P . (3)

When we consider speed calculated in terms of derivatives relative to the physical time, the

relation (3) expresses the constancy of the speed of light.

IV. The Galilean Relativity Principle

Given two inertial frames S, S ′ moving with relative velocity ~v, and an event P whose coordi-

nates are (τ, ~xSP ), (τ, ~xS′P ) relative to S, S ′, we have componentwise that

~xS′P = ~xSP − ~vSS′τ . (4)

V. The relation between (tSP , ~xSP ) and (tS ′P , ~xS ′P ) is linear.

Remarks:

(i) In assumption I, it is assumed that observers in inertial frames see physical space endowed

with an euclidean structure. This assumption is supported by the lack of evidence signalyzing

deviations of space properties from the euclidean structure (see the discussion of A. P. French

in [4], pp. 59-61). The position of an event P relative to inertial frames S, S ′ is written as

2Later, through the analysis of their transformation properties, we will identify the physical time as the ordinary

time of the special relativity, while the absolute time will be identified with the time of the Galilei relativity.
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~xSP ≡ (x1, x2, x3) ∈ R3
S , ~xS′P ≡ (x′1, x′2, x′3) ∈ R3

S′ and since each frame is endowed with its

own coordinate system the spaces R3
S and R3

S′ are conceived as distinct spaces, therefore, we

must understand the relation between the vectors ~xSP and ~xS′P established in (4) not as a

vector equation defined in one and the same vector space. However, it is possible to do so if we

reinterpret the vectors ~xSP and ~xS′P as follows 3. Given two frames S, S ′ we assume there is

a single space R3
SS′ where the components (x1, x2, x3), (x′1, x′2, x′3) of the vectors ~xSP , ~xS′P are

seen as images of maps

R3
S → R3

SS′ : ~xSP → (x1, x2, x3)

R3
S′ → R3

SS′ : ~xS′P → (x′1, x′2, x′3)

and such that for a fixed τ they satisfy equation (4), i.e. we can think of the vectors ~xSP , ~xS′P as

vectors in R3
SS′ , which justify using the same notation for them. Equation (4) is now understood

as an equation defined in R3
SS′ .

From the perspective of the Galilei relativity, it is clear that the vector ~xS′P ∈ R3
S′ can be

measured directly from the observers of the frame S that at the instant τ are placed respectively

at the positions corresponding to the origin of the frame S ′ and the event P , i.e. componentwise

we identify R3
S′ 3 ~xS′P ↔ ~η ∈ R3

S ,

~xSP
~ηP

~xSS′ = ~vSS′τ

S

S′

where

~η := ~xSP − ~xSS′ = ~xSP − ~vSS′τ .

This corresponds to the same equation (4), now referred entirely to the space R3
S . This procedure

is equivalent to identify R3
SS′ with R3

S . A similar procedure allows to identify R3
SS′ and R3

S′ .

The assumption that spaces R3
S , R3

S ′ are euclidean is then consistent with the interpretation we

obtain for the equation (4) through the identification R3
S ' R3

SS ′ , R
3
S ′ ' R3

SS ′ .

A different picture emerges in SR. Instead of (4) we have the relation 4

~xS′P = ~xSP − (1− γ)
~xSP · ~vSS′
v2
SS′

~vSS′ − γ~vSS′ tSP . (5)

Here, the vectors ~xSP ∈ R3
S , ~xS′P ∈ R3

S′ are mapped into an abstract space VSS′ where we

understand the equation (5) is defined. From the perspective of SR and according to the frame

3This reasoning is originally due to Moller [5].
4It seems it was C. Moller (see section 2.4 in [5]) who first noticed the importance of giving a correct interpre-

tation for equation (5) as an equation established in an abstract vector space, where it would make sense to relate

the vectors ~xSP and ~xS′P that, in principle, belong to different spaces. C. Moller did so thinking exclusively from

the perspective of the SR. However, the same question is already manifest from the perspective of the Galilei

relativity if we intend to interpret correctly equation (4).
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S, if the the event P occurs at the instant tSP the observers on the frame S that occupy

respectively the positions of the origin of the frame S ′ and the event P allow us to define a

vector ~η

~η := ~xSP − ~vSS′tSP , (6)

which is not componentwise equal to the vector ~xS′P as measured by the frame S ′.

~xSP
~ηP

~xSS′ = ~vSS′tSP

S

S′

In fact, using the relation

tS′P = γ
(
tSP −

~xSP · ~vSS′
c2

)
together with (5) to write ~xSP in terms of ~xS′P , tS′P we obtain componentwise that

~η = ~xS′P +
1− γ
γ

~xS′P · ~vS′S
v2
S′S

~vS′S

therefore, from the perspective of SR, we cannot identify the vectors ~η and ~xS′P as we did before.

Physically, this means that measurements performed by the observers of the frame S are not

sufficient to identify the equation (6) with the equation (5) of VSS′ . We then distinguish the

spaces R3
SS′ and VSS′ in the sense that we cannot identify R3

S or R3
S′ with VSS′ as we did in the

case of the Galilei relativity.

(ii) In assumption III we consider equation (3) holds for every event, not only for the events

associated to the movement of a light ray. As we know [6], in the standard treatment of SR

if we assume that (3) is verified for a light ray then from the assumption of the linearity of

the transformation involving ~x, t and ~x ′, t′ we obtain that condition (3) is also verified for any

event. In our approach, since we work essentially with two equations (3, 4) and an extended set

of variables {τ, t, t′, ~x, ~x ′} there is no guarantee that assuming (3) is true for a light ray would

imply its validity for all events 5. Therefore, in the development of our model it is necessary

to assume from the beginning that (3) is verified for all events and not only for those events

associated to the movement of a light ray. This will become evident in the derivation shown in

section 3.2.

(iii) The physical and the absolute time introduced in assumption II assume their specific char-

acteristic from the conditions they have to obey in assumptions III and IV. These conditions

identify t as the time of Special Relativity and τ as the time of Galilei relativity.

(iv) Whenever we set a transformation between two frames we assume that at τ = 0, or equiv-

alently at t = t′ = 0, the origins of both frames coincide and their coordinate axis are parallel.

5For the case of the standard treatment of the SR, Landau gives an heuristic argument justifying it in [7],

pp.5, while Einstein put it axiomatically in [8], appendix one.
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(v) In assumption V, by a linear relation between the pairs (t, ~x), (t′, ~x ′) we mean that t′ and

~x ′ depend only on the first order power of t, ~x.

3.2 Deriving the transformation

In order to obtain the transformations we start from assumption IV

~xS ′P = ~xSP − ~vSS ′τ (7)

which gives

~x 2
S ′P = ~x 2

SP − 2~xSP · ~vSS ′τ + v2
SS ′τ

2 .

From assumption III we obtain

v2
SS ′τ

2 − 2~xSP · ~vSS ′ τ + c2(t2SP − t2S ′P ) = 0

that allows us to write

τ =
~xSP · ~vSS ′ ±

√
(~xSP · ~vSS ′)2 − v2

SS ′c
2(t2SP − t2S ′P )

v2
SS ′

. (8)

Now, according to assumption V, we look for a relation between tSP and tS ′P such that the

corresponding expression for τ given in (8), when replaced into (7), results in a transformation

involving at most terms to the first power in ~xS ′P , ~xSP . In order to obtain that, let us consider

the following particular relation between tSP and tS ′P , e.g.

tS ′P = a tSP + b ~xSP · ~vSS ′ (9)

which gives t2SP − t2S ′P = (1−a2)t2SP − 2ab ~xSP ·~vSS ′ tSP − b2(~xSP ·~vSS ′)2. The constants a and

b must be chosen in such way that (~xSP ·~vSS ′)2− v2
SS ′c

2(t2SP − t2S ′P ) becomes a perfect square,

i.e.

(~xSP · ~vSS ′)2 − v2
SS ′c

2(t2SP − t2S ′P ) = (1 + v2
SS ′c

2b2)(~xSP · ~vSS ′)2 + 2v2
SS ′c

2 a b ~xSP · ~vSS ′ tSP +

+(a2 − 1)v2
SS ′c

2 t2SP

≡
[
(~xSP · ~vSS ′)

√
1 + v2

SS ′c
2b2 −

√
a2 − 1 c vSS ′ tSP

]2
(10)

which gives a2 = 1 + v2
SS′c

2b2 6. We have then

τ =
~xSP · ~vSS ′ ±

∣∣∣~xSP · ~vSS ′ |a| − √a2 − 1 c vSS ′ tSP

∣∣∣
v2
SS ′

. (11)

Here, the choice for the sign of τ is fixed as follows. Replacing τ given by (11) into (7), and

considering the time transformation (9) we assume the transformation (tSP , ~xSP )→ (tS ′P , ~xS ′P )

6We could have written equation (10) in the form (~xSP ·~vSS ′)
√

1 + v2
SS′c2b2 +

√
a2 − 1 c vSS ′ tSP . As we will

see, the minus sign adopted in (10) becomes necessary if we intend to obtain the standard Lorentz transformation

of SR.
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is invertible upon replacing (tS ′P , ~xS ′P , ~vS ′S)↔ (tSP , ~xSP , ~vSS ′) with ~vS ′S = −~vSS ′ . Therefore,

we notice that:

• If ~xSP · ~vSS ′ |a| −
√
a2 − 1 c vSS ′ tSP ≥ 0 we must choose

τ =
~xSP · ~vSS ′ −

∣∣∣~xSP · ~vSS ′ |a| − √a2 − 1 c vSS ′ tSP

∣∣∣
v2
SS ′

= (1− |a|)~xSP · ~vSS
′

v2
SS ′

+

√
a2 − 1

vSS ′
c tSP .

• If ~xSP · ~vSS ′ |a| −
√
a2 − 1 c vSS ′ tSP < 0 we must choose

τ =
~xSP · ~vSS ′ +

∣∣∣~xSP · ~vSS ′ |a| − √a2 − 1 c vSS ′ tSP

∣∣∣
v2
SS ′

= (1− |a|)~xSP · ~vSS
′

v2
SS ′

+

√
a2 − 1

vSS ′
c tSP .

In both cases, we obtain the transformation ~xS′P = ~xSP − (1− |a|)~xSP ·~vSS ′
v2
SS ′

~vSS ′ −
√
a2−1
vSS ′

c tSP ~vSS ′

tS ′P = |a|tSP −
√
a2−1
vSS ′c

~xSP · ~vSS ′
(12)

τ := (1− |a|)~xSP · ~vSS
′

v2
SS ′

+

√
a2 − 1

vSS ′
c tSP . (13)

As we have expected, the transformation (12) satisfy the condition ~x 2
S ′P−c2t2S ′P = ~x 2

SP−c2t2SP ,

and leave τ invariant, i.e.

τ ′ = (1− |a|)~xS ′P ·~vS ′S
v2
S ′S

+
√
a2−1
vS ′S

c tS ′P = (1− |a|)~xSP ·~vSS ′
v2
SS ′

+
√
a2−1
vSS ′

c tSP = τ (14)

since it was built in order to satisfy those assumptions. Here, we assume the parameter a depends

on the relative speed vSS ′ , which for convenience we denote by avSS ′ . Under this assumption,

we also obtain that avS ′S = avSS ′ .

The transformation (12) depends on the velocity ~vSS ′ that is defined as the derivative relative

to the absolute time

~vSS ′ =
d~xSS ′

dτ
. (15)

Now, considering the physical time tSS ′ we can define another velocity

~̃vSS ′ :=
d~xSS ′

dtSS ′
. (16)

We obtain a relation between ~̃vSS ′ , ~vSS ′ as follows. Identifying P with the origin of the frame

S ′ we have from (13)

τ =

√
a2
vSS ′
− 1

|avSS ′ |
c

vSS ′
tSS ′

which allows us to write

~xSS ′ = ~vSS ′

√
a2
vSS ′
− 1

|avSS ′ |
c

vSS ′
tSS ′

9



and then

~̃vSS ′ = ~vSS ′

√
a2
vSS ′
− 1

|avSS ′ |
c

vSS ′
. (17)

Since the parameter avSS ′ depends on vSS ′ we obtain that ṽSS ′ also depends on vSS ′ through

the expression

ṽ2
SS ′

c2
=
a2
vSS ′
− 1

a2
vSS ′

(18)

which gives

ṽSS ′ < c . (19)

Therefore, in our formalism every speed calculated as the derivative relative to the physical time

is always less than c. Since in SR this is the type of derivative we consider, it seems the problem

of tachyons is ruled out in SR. From (18) we may express avSS ′ in terms of ṽSS ′ as

avSS ′ =
1√

1− ṽ2
SS ′
c2

≡ γṽSS′ (20)

and the transformation (12) becomes ~xS ′P = ~xSP − (1− γṽSS ′ )
~xSP ·~̃vSS ′
ṽ2
SS ′

~̃vSS ′ − γṽSS ′ tSP
~̃vSS ′

tS ′P = γṽSS ′

(
tSP − ~xSP ·~̃vSS ′

c2

) (21)

that is the familiar Lorentz transformation. Hence, we have obtained a complete equivalence

between the Galilei and the Lorentz transformation.

From (17) we obtain a similar expression relating ~̃vS ′S and ~vS ′S , i.e.
ṽ2
S ′S
c2

=
a2
vS ′S

−1

a2
vS ′S

, and

since avS ′S depends on the absolute value |~vS ′S | = |~vSS ′ | we end up with

ṽS ′S = ṽSS ′ .

From (17) we could also have considered ~̃vSS ′ as a vector in R3
SS ′ . However, we avoid this

interpretation as it would lead to an inconsistency associated to the so-called Thomas precession

that we will analyze in section 3.4.3.

3.3 On the role of the parameter a

As we have seen, the parameter a was introduced in equation (9) as a free parameter in the sense

it was assumed to depend only on the relative speed vSS′ between the frames. The assumptions

give no prescription on how to fix this dependence. Having established the relation between the

absolute and the physical time, we introduced another velocity ~̃vSS′ , considered as a derivative

relative to the physical time, which is related to ~vSS′ and the parameter avSS′ through equations

10



(17, 18). Whatever the form we may take for avSS′ , once we obtain ṽSS′ as a function of vSS′ we

may rewrite avSS′ in terms of ṽSS′ , which results in avSS′ = γṽSS′ (20). This gives a “universal”

character for the Lorentz transformation with the transformation (12) becoming (21). Despite

this, the constraint between ~vSS′ and ~̃vSS′ arising from a particular choice of avSS′ may signalize

different behaviors.

In fact, let us assume vSS′ > c and choose a such that

avSS′ ≡ γ̃ :=
1√

1− c2

v2
SS′

.

With this choice, the transformation (12) becomes ~xS′P = ~xSP − (1− γ̃)
~xSP ·~vSS′
v2
SS′

~vSS′ − γ̃ c2

v2
SS′

tSP~vSS′

tS′P = γ̃(tSP − ~xSP ·~vSS′
v2
SS′

)
(22)

that agrees with the expression obtained originally by Shankara (see eqs. (16),(17) of [9]) and

also by Duffey [10] in the description of superluminal frames. From (18) we obtain

ṽSS′ =
c2

vSS′
, (23)

a relation that is also present in the tachyonic model of [9], whose context is of a wave propagating

in a medium with the velocities being interpreted in a different way, namely ~̃vSS′ is the group

velocity of the wave, while ~vSS′ is the phase velocity. Here, even though the transformation (22)

reduces to the form given on (21), which has the usual Lorentz form, the physical distinction

between ~vSS′ and ~̃vSS′ may be employed to select one of the forms of the transformation as being

physically relevant for the problem one is analyzing. We return to this issue in section 4.3.2.

3.4 The velocity transformation

Following the program of deducing transformations directly from the assumptions given in I-IV

and the results previously obtained, we now intend to obtain the law of velocity transformation

and analyze some of its consequences.

3.4.1 Obtaining the transformation from the Galilean velocity law

Let us assume two frames S and S ′ moving with velocity ~vSS′ and such that at τ = 0 (or

equivalently at t = 0 = t′) both origins coincide. The position of a moving particle is written as

~xSP (τ), ~xS′P (τ), and from ~xS′P = ~xSP −~vSS′τ we obtain the rule of velocity addition in Galilei

relativity

d~xS′P
dτ

=
d~xSP
dτ
− ~vSS′ . (24)

11



From (13), and using the chain rule, we have

d~xS′P
dtS′P

−(1− |avSS′ |)
d~xS′P
dtS′P

· ~vSS′
v2
SS′

+

√
a2
vSS′

−1

vSS′
c

=

d~xSP
dtSP

(1− |avSS′ |)
d~xSP
dtSP

· ~vSS′
v2
SS′

+

√
a2
vSS′

−1

vSS′
c

− ~vSS′ . (25)

Let us denote
~̃vSP ≡

d~xSP
dtSP

, ~̃vS′P ≡
d~xS′P
dtS′P

.

Taking the scalar product by ~vSS′ on both sides of (25) we obtain

~̃vS′P · ~vSS′ = c vSS′
|avSS′ |~̃vSP · ~vSS′ −

√
a2
vSS′
− 1c vSS′

−
√
a2
vSS′
− 1 ~̃vSP · ~vSS′ + |avSS′ |c vSS′

.

Using this last expression back in (25) together with (17) and (18) we obtain the final form

~̃vS′P =

~̃vSP − γṽSS′
~̃vSS′ −

(
1− γṽSS′

) ~̃vSP ·~̃vSS′
ṽ2
SS′

~̃vSS′

γṽSS′

(
1−

~̃vSP ·~̃vSS′
c2

) . (26)

Since ~̃vS′P and ~̃vSP are derivatives of the position vectors ~xS′P , ~xSP with respect to the physical

times tS′P and tSP , we see (26) as the “physical time” counterpart of the rule of velocity addition

of the galilean relativity. It is straightforward to obtain that

ṽ2
S′P

c2
= 1 +

ṽ2
SP
c2
− 1

γṽSS′

(
1−

~̃vSP ·~̃vSS′
c2

)2 (27)

and we conclude that ṽSP > c ⇒ ṽS′P > c, and ṽSP < c ⇒ ṽS′P < c. However, for a particle

moving with a constant velocity relative to the frames S, S ′ we also have similar relations as

the ones given in (18),

ṽSP < c , ṽS′P < c , (28)

therefore, the only possibility for having ṽSP > c, ṽS′P > c is related to a situation that does not

demand relation (18), perhaps the case of an accelerated particle that would result in a relation

for τ different from the one obtained in (13) that is the base for deducing (18).

3.4.2 The light speed as a derivative relative to τ

Let us assume the propagation of a light ray with ~xSP , ~xS′P being the position of a point P in

the wave front as seen by S and S ′, i.e

d~xSP
dtSP

= ~c,
d~xS′P
dtS′P

= ~c ′

12



with |~c ′| = |~c| = c. We then have

d~xSP
dτ

=
d~xSP
dtSP

dtSP
dτ

⇒ cS =
c∣∣(1− |a|)~c·~vSS′

v2
SS′

+
√
a2 − 1 c

vSS′

∣∣ (29)

d~xS′P
dτ

=
d~xS′P
dtS′P

dtS′P
dτ

⇒ cS′ =
c∣∣− (1− |a|)~c

′·~vSS′
v2
SS′

+
√
a2 − 1 c

vSS′

∣∣
that implies different values for the speed when considered as a rate of change relative to the

absolute time, i.e.

cS =

∣∣∣∣d~xSPdτ

∣∣∣∣ 6= c′S =

∣∣∣∣d~xS′Pdτ

∣∣∣∣ .
Here, there is one more consistency check to be performed. We expect to have the following

relation |~xSP | = cS∆τ = c∆t. In fact, consider an event P : (t, ~x) ∼ (τ, ~x) as described by S.

At this instant, assume the observer in the frame S that is at the same location of the event P

sends a light ray towards the observer that is at the origin of S. The arrival of the light ray at

the origin of S corresponds to another event described by S as (t1, 0) ∼ (τ1, 0). Here, in order

to relate t and τ , and t1 and τ1 we assume any auxiliary frame S ′ moving relative to S with

velocity ~v and employ (14). For the events (t, ~x) ∼ (τ, ~x), (t1, 0) ∼ (τ1, 0) we then have

τ = (1− |a|)~x · ~v
v2

+

√
a2 − 1

v
ct

τ1 =

√
a2 − 1

v
ct1 .

Denoting ∆t := t1 − t and expressing ~x = −~c∆t we obtain

∆τ := τ1 − τ =
[√

a2 − 1
c

v
+ (1− |a|)~c · ~v

v2

]
∆t .

Then,

|~x| = c∆t =
c√

a2 − 1 cv + (1− |a|)~c·~v
v2

∆τ

and from (29) we obtain |~x| = cS∆τ .

3.4.3 The composition of velocities

Let us assume three frames Σ, S, S ′ moving relative to each other with velocities ~vΣS , ~vΣS′ , ~vSS′ ,

having their axes parallel and their origins coinciding at τ = 0. According to Galilei relativity

we write

~xΣS′ = ~xΣS + ~xSS′ (30)

with

~xΣS′ = ~vΣS′ τ , ~xΣS = ~vΣS τ , ~xSS′ = ~vSS′ τ . (31)

13



In particular, we have ~xΣS′ = −~xS′Σ, which results

~vΣS′ = −~vS′Σ , (32)

We now analyze the movement of S ′ relative to S and Σ, and then the movement of Σ relative

to S and S ′ using the same procedure that led to (26).

(i) The movement of S ′ relative to Σ and S

For the movement of S ′ relative to Σ and S we have (tΣS′ , ~xΣS′) ∼ (tSS′ , ~xSS′) and

τ =


(1− |avΣS |)

~xSS′ ·(−~vΣS)

v2
ΣS

+

√
a2
vΣS
−1

vΣS
c tSS′

(1− |avΣS |)
~xΣS′ ·~vΣS

v2
ΣS

+

√
a2
vΣS
−1

vΣS
c tΣS′ .

(33)

From (30) we obtain

d~xΣS′

dtΣS′

dtΣS′

dτ
= ~vΣS +

d~xSS′

dtSS′

dtSS′

dτ
. (34)

Denoting

~̃vΣS′ ≡
d~xΣS′

dtΣS′
, ~̃vSS′ ≡

d~xSS′

dtSS′

and using (33), we obtain by the same procedure employed in obtaining (26) the following

expression

~̃vΣS′ =

~̃vSS′ + γṽΣS
~̃vΣS −

(
1− γṽΣS

) ~̃vSS′ ·~̃vΣS

ṽ2
ΣS

~̃vΣS

γṽΣS

(
1 +

~̃vSS′ ·~̃vΣS

c2

) . (35)

(ii) The movement of Σ relative to S and S ′

For the movement of Σ relative to S and S ′ we have (tSΣ, ~xSΣ) ∼ (tS′Σ, ~xS′Σ) and

τ =


(1− |avS′S |)

~xSΣ·(−~vS′S)

v2
S′S

+

√
a2
vS′S

−1

vS′S
c tSΣ

(1− |avS′S |)
~xS′Σ·~vS′S
v2
S′S

+

√
a2
vS′S

−1

vS′S
c tS′Σ .

(36)

From (30) and using that ~xS′Σ = −~xΣS′ , ~xΣS = −~xSΣ, ~xS′S = −~xSS′ we now have

d~xS′Σ
dtS′Σ

dtS′Σ
dτ

=
d~xSΣ

dtSΣ

dtSΣ

dτ
+ ~vS′S . (37)

Denoting

~̃vS′Σ ≡
d~xS′Σ
dtS′Σ

, ~̃vSΣ ≡
d~xSΣ

dtSΣ
(38)

we obtain

~̃vS′Σ =

~̃vSΣ + γṽSS′
~̃vS′S −

(
1− γṽSS′

) ~̃vSΣ·~̃vS′S
ṽ2
S′S

~̃vS′S

γṽSS′
(
1 +

~̃vSΣ·~̃vS′S
c2

) , (39)
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where we have used that ṽSS ′ = ṽS′S to identify γṽSS ′ = γṽS′S . We recognize equations (35, 39)

with the velocity transformations obtained by C. Moller in his analysis of the Thomas precession

[5]. As we know, in this particular case, the velocities ~̃vΣS′ , ~̃vS′Σ are related by a rotation [5, 11].

We notice that each of the equations (35, 39) involve vectors belonging to different spaces,

therefore we should interpret each equation in the same way as we did for equation (5), i.e.
~̃vΣS′ , ~̃vS′Σ are vectors belonging to an abstract space V where the equations (35, 39) make sense.

It is in this space that we have

~̃vΣS′ 6= −~̃vS′Σ , (40)

which accounts for the Thomas precession. However, the vectors ~vΣS′ , ~vS′Σ are defined in the

space R3
ΣSS′ where they satisfy (32), which is a consequence of the frames Σ, S, S ′ having

their axis parallel during its translational movement. Now, it becomes clear the reason for not

identifying the velocities ~̃vΣS′ , ~̃vS′Σ as vectors in R3
ΣSS′ . Indeed, if this were the case, then using

(17) we would associate each of them with the vectors ~vΣS′ , ~vS′Σ through

~̃vΣS′ = ~vΣS′

√
a2
vΣS′
− 1

|avΣS′ |
c

vΣS′
, ~̃vS′Σ = ~vS′Σ

√
a2
vS′Σ
− 1

|avS′Σ |
c

vS′Σ

and from (32) we would have ~̃vΣS′ = −~̃vS′Σ, which contradicts (40).

3.5 The structure of space and time

Spacetime is the physical arena where events occur. Therefore, in order to describe spacetime

we must endow it with a suitable coordinate system, e.g. the one provided by a reference frame,

which is how we describe events. In our approach, we have an equivalence between the absolute

and the physical time that allows an observer to associate coordinates to events according to

(τ, ~x) or (t, ~x), and from each of these coordinatizations originates a particular view for the

spacetime. In what follows, we search for a description of spacetime that combines the views of

the Galilei and the Special relativity.

Given two frames S, S ′ let us write the Galilei transformation as

(τS , ~xS)→ (τS′ , ~xS′) :

{
τS = τS′ ≡ τ
~xS′ = ~xS − ~vτ .

Due to the absolute character of τ we have that for a fixed τ ≡ τS = τS′ the Galilei transformation

is essentially a map R3
S → R3

S′ , where R3
S 3 ~xS ,R3

S′ 3 ~xS′ denote the 3-dimensional Euclidean

space. When spacetime is described using (τ, ~x) as coordinates we refer to it as the Galilei

spacetime, that admits the following representation ∪τ∈R
(
{τ}×R3

)
≡ R×R3. In this sense, the

Galilei spacetime decomposes in terms of 3-dimensional spaces R3 that are indexed by τ ∈ R.

Now, let us analyze the transformation under the form (12). For the same fixed value of τ ,

we rewrite equation (14) as

τ = x0n0 + ~x · ~n = x′0n′0 + ~x ′ · ~n′ (41)
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with

nµ ≡ (n0, ~n) :=

(√
a2 − 1

v
,−(|a| − 1)~v

v2

)
(42)

n ′µ ≡ (n′0, ~n ′) :=

(√
a2 − 1

v
,
(|a| − 1)~v

v2

)
and xµ ≡ (x0, ~x) := (c t, ~x), x′µ ≡ (x′0, ~x ′) := (c t′, ~x ′). We identify (41) as the equation of two

hyperplanes στ : τ = x0n0 + ~x · ~n and σ′τ : τ = x′0n′0 + ~x ′ · ~n′ defined respectively in the spaces

R4
S and R4

S′ (the spaces R4
S 3 (ct, ~x), R4

S′ 3 (ct′, ~x ′) serve here as the background in terms of

which each observer describes spacetime). Then, for a fixed value of τ the transformation (12)

is seen as a transformation στ → σ′τ between these hyperplanes. Here, we refer the spacetime

as the SR spacetime and it decomposes as ∪τ∈R στ ≡ R4.

From the previous considerations the properties of the spacetime that arise from our unified

model are summarized as follows. First, we notice that the Galilei and SR spacetime refers to

the same spacetime, in fact, they are just different descriptions of the same structure. Second,

both the Galilei and the SR spacetime are sliced by 3-dimensional spaces, the Galilei spacetime

being “sliced” by hyperplanes that are normal to the τ -direction or, equivalently, by planes that

correspond to the space R3. For the SR spacetime the “slicing” is made by hyperplanes στ , σ′τ
that are orthogonal to the direction of the vectors n and n′. In particular, the relation between

the Galilei transformation and the Lorentz transformation is clarified by the diagram below,

R3
S 3 (τ, ~x)

iτ−−−−→ (ct(τ, ~x), ~x) ∈ στ ⊂ R4
SyϕG yϕL

R3
S′ 3 (τ, ~x ′)

i′τ−−−−→ (ct′(τ, ~x ′), ~x ′) ∈ σ′τ ⊂ R4
S′

where for a fixed τ and relative to two frames of reference S, S ′ that move with relative velocity

~v we have defined mappings
iτ : R3

S → R4
S

~x→ (ct(τ, ~x), ~x)

t(τ, ~x) = v
c
√
a2−1

(
τ + (|a| − 1)~x·~v

v2

)


i′τ : R3
S′ → R4

S′

~x ′ → (ct′(τ, ~x ′), ~x ′)

t′(τ, ~x ′) = v
c
√
a2−1

(
τ − (|a| − 1)~x

′·~v
v2

)
.

We notice that endowing R3
S , R3

S′ , R4
S , R4

S′ with the standard Euclidean topology we obtain

iτ (R3
S) = στ , i′τ (R3

S′) = σ′τ as embedded respectively in R4
S and R4

S′ . Then, given a Galilei

transformation (τ, ~x)
ϕG−→ (τ, ~x ′) the embeddings iτ , i

′
τ transfer ϕG to the spaces R4

S , R4
S′ where

it assumes the form of the Lorentz transformation (ct, ~x)
ϕL−→ (ct′, ~x ′), which is shown in the

schema below
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iτ
R3
S τ−

i′τ

ϕG

R3
S′ τ−

R4
S

ηµ

στ

R4
S′

σ′τ

η′µ

ϕL

This view of the transformation provides an alternative way to analyze some aspects of the

composition of Lorentz transformations. Indeed, let us write the Lorentz transformation as

ϕL(vSS′) = i′τ (vSS′) ◦ ϕG(vSS′) ◦ i−1
τ (vSS′) (43)

and consider three frames S, S′, S′′ that move with relative velocity ~vSS′ , ~vSS′′ , ~vS′S′′ . Consider

then the following diagram

R3
S στ ⊂ R4

S

R3
S′

σ′τ ⊂ R4
S′

σ′∗τ ⊂ R4
S′

R3
S′′ σ′′τ ⊂ R4

S′′

iτ (vSS′ )

i′τ (vSS′ )

i′τ (vS′S′′ )

i′′τ (vS′S′′ )

ϕG(vSS′ ) ϕL(vSS′ )

ϕG(vS′S′′ ) ϕL(vS′S′′ )

We notice that since the hyperplanes σ′τ and σ′∗τ are different the Lorentz transformations

ϕL(vSS ′) and ϕL(vS ′S ′′) may be composed only through the maps i′τ (vS ′S ′′) ◦ i′−1
τ (vSS ′), e.g.

ϕL(vS ′S ′′) ◦ i′τ (vS ′S ′′) ◦ i′−1
τ (vSS ′) ◦ ϕL(vSS ′)

and we have

ϕL(vS ′S ′′) ◦ i′τ (vS ′S ′′) ◦ i′−1
τ (vSS ′) ◦ ϕL(vSS ′) = i′′τ (vS ′S ′′) ◦ ϕG(vS ′S ′′) ◦ ϕG(vSS ′) ◦ i−1

τ (vSS ′)

= i′′τ (vS ′S ′′) ◦ ϕG(vSS ′′) ◦ i−1
τ (vSS ′)

6= ϕL(vSS ′′) .
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Therefore, from this interpretation of the Lorentz transformation acting on hyperplanes associ-

ated to the same value of τ , we reobtain the common fact that the composition of two Lorentz

transformations is not a Lorentz transformation. Here, the reason is that even though the com-

position ϕG(vS ′S ′′) ◦ ϕG(vSS ′) may be identified with ϕG(vSS ′′) the later induces the Lorentz

transformation ϕL(vSS′) only through the embeddings i′τ (vSS′), i
−1
τ (vSS′), as shown in (43).

4 Model II

4.1 Assumptions

We propose another model based on the following assumptions:

I. Space

Each inertial frame describes space as an euclidean 3-dimensional vector space.

II. Time

Time is described by a variable t that depends on the frame, in such way that two inertial frames

S and S ′ measure time t and t′.

III. The speed of light is constant relative to inertial frames.

IV. Relative to two inertial frames any event (t, ~x) ∼ (t′, ~x ′) satisfies

αx0 + ~β · ~x = αx′0 − ~β · ~x ′ (44)

with α, ~β arbitrary parameters.

V. The relation between (t, ~x) and (t′, ~x ′) is linear.

Remarks:

(i) Postulates I and II are essentially the same postulates I and II of model I, except that in the

current postulate II of model II there is no mention to the absolute time.

(ii) The condition αx0 + ~β · ~x = αx′0 − ~β · ~x ′ is suggested by a previous condition given in (41),

but now with the constants α, ~β being arbitrary parameters. Here, equation (44) is the starting

point from which we will derive the transformation. In this sense, it plays the same role as the

relation ~x ′2 − c2t′2 = ~x 2 − c2t2 of the standard SR formulation. However, while in SR this last

equation may be expressed in terms of the invariance of the quadratic form Q(xµ) := ~x2 − c2t2,

which is a quantity defined uniquely in terms of the spacetime coordinates, the same can’t be

said of the equation (44), since it contains explicitly the parameters α, ~β that, in general, don’t

refer to any known property of the space and time. Therefore, unless we are able to identify the

parameters α, ~β with any intrinsic property of the spacetime it will not be possible to associate

any mathematical structure to the equation (44) as it was done with Q(xµ).
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4.2 The Generalized Lorentz Transformation

From V we write

x ′0 = A0
0x

0 +A0
ix
i

x′i = Ai0x
0 +Aijx

j .

From IV, we obtain by replacing them into (44) that

A0
0 = 1 +

1

α
Ai0β

i (45)

A0
i =

1

α

(
βi +Ajiβ

j
)

(46)

which momentarily gives

t′ =
(
1 + 1

αA
i
0β

i
)
t+ 1

αc

(
βi +Ajiβ

j
)
xi

x′i = Ai0ct+Aijx
j .

(47)

Here we assume

Ai0 = λβi

Aij = δij + ξβiβj
(48)

with λ, ξ arbitrary quantities that will be fixed later. We require the inverse transformation is

obtained by the change (t, ~x, βi) ↔ (t′, ~x′,−βi) into (47). This fixes λ = ξα. Let us consider

now the expression for the velocity. Here, we have

dx′i

dt′
=

Ai0c+Aij
dxj

dt

1 + 1
αA

i
0β

i + 1
αc

(
βi +Ajiβ

j
)
dxi

dt

. (49)

From III the speed of light is constant relative to any inertial frame. Then for a light wave we

have
d~x ′

dt′
= ~c ′,

d~x

dt
= ~c ≡ cη̂ with η̂ · η̂ = 1 and |~c ′| = |~c|.

From (49), (48), using λ = ξα, and due to the arbitrariness of the direction of the unit vector η̂

we obtain

ξ =
2

α2
(
1− β2

α2

) (50)

which then fixes all the transformation constants A0
0, A

0
i, A

i
0, A

i
j in terms of α, β as follows

A0
0 =

1 + β2

α2

1− β2

α2

, A0
i = Ai0 =

2

1− β2

α2

βi

α
, Aij = δij +

2

1− β2

α2

βi

α

βj

α
(51)

and finally leave us with the transformations

t′ =

(
1 + β2

α2

1− β2

α2

){
t+

2

c
(

1 + β2

α2

) ~β

α
· ~x
}

(52)

~x ′ = ~x+
2

1− β2

α2

~β

α
· ~x

~β

α
+

2ct

1− β2

α2

~β

α
.
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We have then obtained a class of transformations that is compatible with the invariance of

the speed of light and that depends on arbitrary parameters α, ~β. We call this transformation

Generalized Lorentz Transformation (GLT). It is immediate to check that it satisfies ~x ′2−c2t′2 =

~x 2−c2t2 (and not only for a light wave), which shows that it must include the standard Lorentz

transformation as a particular case.

Remark: It is possible to work with a more general relation than the one given in (44), for

example, if we assume that ~β can be transformed then we would write

αx0 + ~β · ~x = αx′0 − ~β′ · ~x ′

and the effect of the invariance of ~β ′ · ~x ′ in this new condition corresponds to replace ~β → R~β,

~x→ R~x in (52), i.e. 
t′ =

(
1+ β2

α2

1− β2

α2

){
t+ 2

c

(
1+ β2

α2

) ~β
α · ~x

}
~x ′ = R~x+ 2

1− β2

α2

~β
α · ~x

R~β
α + 2ct

1− β2

α2

R~β
α

(53)

with R an arbitrary space rotation.

In [12] E. Kapuscik using only the assumption of the linearity of the transformation and the

constancy of the speed of light proposed a generalization of the Lorentz transformation having

the form  t′ = At+ ~B · ~x

~x ′ =
√
A2 − c2 ~B2 (R~x) + A−

√
A2−c2 ~B2

~B2
(R ~B)( ~B · ~x) + c2(R ~B)t .

(54)

Comparison of the time transformation given in (53) and (54) suggests the identification

A =
1 + β2

α2

1− β2

α2

, ~B =
2

c
(

1− β2

α2

) ~β
α

(55)

that also shows the equivalence of the space transformation. In our formalism, up to the deriva-

tion of (53), there is no restriction on the parameters α, ~β, while in the development of [12] they

have to obey A2−c2 ~B2 > 0. Since in [12] the relative velocity ~V between the frames is identified

with −c2 ~B
A , the previous inequality leads to the restriction V < c. As we will show in sections

4.3.1 and 4.3.2, in our formalism there is no restriction on the relative speed of the frames.

Having obtained the GLT given in (52) we analyze in the sequence some of its properties.

4.3 Transformation of Velocity

Associated to GLR we obtain by replacing (51) into (49) the associated transformation of velocity

as

d~x ′

dt′
=

d~x
dt + 2c

1− β2

α2

~β
α + 2

1− β2

α2

~β
α ·

d~x
dt

~β
α

1+ β2

α2

1− β2

α2

+ 2

c(1− β2

α2 )

~β
α ·

d~x
dt

(56)
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and (
d~x ′

dt′

)2

− c2 =

(
d~x
dt

)2 − c2(
1+ β2

α2

1− β2

α2

+ 2

c(1− β2

α2 )

~β
α ·

d~x
dt

)2 (57)

therefore we obtain for the GLT that∣∣∣∣d~xdt
∣∣∣∣ < c⇔

∣∣∣∣d~x ′dt′

∣∣∣∣ < c or

∣∣∣∣d~xdt
∣∣∣∣ > c⇔

∣∣∣∣d~x ′dt′

∣∣∣∣ > c

i.e. relative to two frames described by transformation (52) a particle that is described as sublu-

minal (superluminal) particle by one frame will also be described as subluminal (superluminal)

particle by the other frame.

4.3.1 A transformation involving subluminal frames: ṽ < c

As a particular case of transformation (52) let us choose the parameters α, ~β in such way that

1 + β2

α2

1− β2

α2

=
1√

1− ṽ2

c2

with ṽ < c. We obtain

~β

α
= −c

(
1−

√
1− ṽ2

c2

) ~̃v
ṽ2

that replacing in (52) leads to the transformation

t′ = γ

(
t− ~x · ~̃v

c2

)
~x ′ = ~x− (1− γ)

~x · ~̃v
ṽ2

~̃v − γ t~̃v

with γ := 1√
1− ṽ2

c2

, that corresponds to the Lorentz transformation.

4.3.2 A transformation involving superluminal frames: ṽ > c

Let us choose α, ~β satisfying

1 + β2

α2

1− β2

α2

=
1√

1− c2

ṽ2

with ṽ > c. Now we obtain

~β

α
= −1

c

(
1−

√
1− c2

ṽ2

)
~̃v
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and replacing it into (52) gives the transformation

t′ = γ̃
(
t− ~x · ~̃v

ṽ2

)
(58)

~x ′ = ~x− (1− γ̃)
~x · ~̃v
ṽ2

~̃v − γ̃ c
2

ṽ2
t~̃v

with γ̃ := 1√
1− c2

ṽ2

. Here, we reobtained Shankara and Duffey’s transformation for tachyons

[9, 10]. This transformation (58) appeared originally in [9] in the description of the propagation

of a wave in a medium with one of the frames being at rest relative to the medium and the other

moving with a speed greater than c (in fact, in [9] since the medium is not the vacuum, instead

of c the light speed is denoted by w0). The physical content of this transformation has been

discussed more generally in [10], which we refer the reader for details. Here we wish to analyze

the role played by the velocity ~̃v in the transformation. We consider two situations.

First, let us consider the movement of an object such that according to the frame S the

object is at rest relative to the frame S ′. Assume ~̃v is the relative velocity between the frames.

Then the frame S writes for the position of the object ~x = ~̃vt. Replacing it in (58) we obtain

t′ = 0 and ~x ′ = 1
γ̃ t
~̃v = 1

γ̃~x. Therefore, for an interval (0,∆t), S associates to the movement of

the object the set of events {(t, ~x) := (t, ~̃vt) : 0 ≤ t ≤ ∆t}, while S ′ associates the set of events

{(t′, ~x ′) = (0, 1
γ̃~x) : ~x = ~̃vt}. Since the whole movement of the object as described by S reduces

in S ′ to a static situation where t′ = 0, and since there are many ~x ′ corresponding to the many

possible values of ~x, we conclude that relative to S ′ the object seems to have a spatial extension.

Therefore, from the perspective of the frame S ′ the object cannot be seen as a particle in the

classical context. This is reinforced by noticing that the possibility of considering ~x = ~̃vt leads

to the vanishing of the denominator of (56) that shows the velocity transformation law does not

apply.

Let us consider now the movement of an object such that according to the frame S ′ the

object is at rest relative to the frame S ′, i.e. ~x ′ = 0. Replacing it in (58) we now obtain t′ = 1
γ̃ t,

and ~x = c2

ṽ2
~̃vt. Therefore we get ∣∣∣∣d~xdt

∣∣∣∣ =
c2

ṽ
,

and being ṽ > c we end up with
∣∣d~x
dt

∣∣ < c. Here, it is natural that instead of ~̃v we assume the

relative velocity between the frames to be ~V := c2

ṽ2
~̃v, in terms of which the transformation (58)

becomes

t′ = γ
(
t− ~x · ~V

V 2

)
~x ′ = ~x− (1− γ)

~x · ~V
V 2

~V − γ t~V

with γ = 1√
1−V 2

c2

. Then, from a theoretical perspective, we conclude that a transformation like

(58) may refer to different situations according to the interpretation one gives to ~̃v.
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4.3.3 Another superluminal transformation

As another class of transformation let us choose α, ~β such that

1 + β2

α2

1− β2

α2

=
1√
ṽ2

c2
− 1

with ṽ > c, which gives

~β

α
= −

√√√√√1−
√

ṽ2

c2
− 1

1 +
√

ṽ2

c2
− 1

~̃v

ṽ
.

Replacing it in (52) we obtain the transformation

t′ =
1√
ṽ2

c2
− 1

{
t−
√

2− ṽ2

c2

~x · ~̃v
cṽ

}

~x ′ = ~x+
1−

√
ṽ2

c2
− 1√

ṽ2

c2
− 1

~x · ~̃v
ṽ2

~̃v −

√
2− ṽ2

c2√
ṽ2

c2
− 1

c

ṽ
t~̃v .

The condition of having real transformations requires that ṽ < 2c, which becomes an upper

bound velocity for tachyonic motion.

4.4 Introducing the Galilei relativity

Let us modify condition (44) writing it in the form

τ = αx0 + ~β · ~x = αx′0 − ~β · ~x ′ . (59)

where we have introduced the absolute time τ . Therefore, assuming the Galilei transformation

~x ′ = ~x− ~vτ

and using (52) and (59) we obtain that

~v = − 2

1− β2

α2

~β

α2
. (60)

From (59) we also obtain

dt

dτ
=

1

αc+ ~β · d~xdt
.

Let us define

~u :=
d~x

dτ
, ~̃u :=

d~x

dt

~u ′ :=
d~x ′

dτ
, ~̃u ′ :=

d~x ′

dt
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then we obtain

~u ′ =
~̃u ′

αc− ~β · ~̃u ′
, ~u =

~̃u

αc+ ~β · ~̃u
.

From the Galilei relativity we have

~u ′ = ~u− ~v ,

therefore, assuming ~u ′ = 0 we get ~u = ~v, ~̃u = ~̃v and

~v =
~̃v

αc+ ~β · ~̃v
.

Replacing this last expression into (60) we end up with

~̃v = − 2c

1 + β2

α2

~β

α
. (61)

In particular, we notice that

ṽ < c . (62)

Then, the assumption of an absolute time and the Galilean relativity law in model II also leads

to a situation where there are no superluminal frames.

The expression we obtained for ṽ in (61) also leads to the same transformation of section

4.3.1, therefore, when we incorporate the Galilei relativity to the model II we reduce the model

to the standard Lorentz situation. However, differently from the model I, as we have seen in

section 4.3.1 we are allowed to obtain the Lorentz case without the need to impose the Galilei

relativity.

4.5 The momentum

We now search for an expression for the momentum that is conserved in collision processes.

As it is well-known [5], the conservation of momentum in two frames S and S ′ brings to the

analysis the transformation between them. Then, the problem here is to find an expression for

the momentum that satisfies a conservation law as seen by frames related by the GLT.

Let us perform our analysis considering a particular collision process involving two particles

with the same mass and such that relative to S we have before the collision the particles’

velocities ~̃u1 = ũ η̂, ~̃u2 = −ũ η̂, and after the collision ~̃u
∗
1 = ũ η̂ ∗, ~̃u

∗
2 = −ũ η̂ ∗ 7. According to

7As it is typical in the analysis of collision processes, for a more general collision we would obtain constraints on

the final velocities, which are not essential in order to fixing the form of the functionf(~̃u) introduced in equations

(63, 64).
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S ′, we obtain from (56)

~̃u ′1 =

2c

1− β2

α2

~β
α + ũ ~ω

1+ β2

α2

1− β2

α2

+ ũ 2

c(1− β2

α2 )

~β
α · η̂

, ~̃u ′2 =

2c

1− β2

α2

~β
α − ũ ~ω

1+ β2

α2

1− β2

α2

− ũ 2

c(1− β2

α2 )

~β
α · η̂

~̃u ′∗1 =

2c

1− β2

α2

~β
α + ũ ~ω∗

1+ β2

α2

1− β2

α2

+ ũ 2

c(1− β2

α2 )

~β
α · η̂ ∗

, ~̃u ′2 =

2c

1− β2

α2

~β
α − ũ ~ω

∗

1+ β2

α2

1− β2

α2

− ũ 2

c(1− β2

α2 )

~β
α · η̂ ∗

with

~ω := η̂ +
2

1− β2

α2

~β

α
· η̂

~β

α
, ~ω∗ := η̂ ∗ +

2

1− β2

α2

~β

α
· η̂ ∗

~β

α

being two vectors having arbitrary directions due to its dependence to the arbitrary unit vectors

η̂, η̂ ∗. Following [5], we write for the momentum conservation in the frame S

f(~̃u1)~̃u1 + f(~̃u2)~̃u2 = f(~̃u
∗
1)~̃u
∗
1 + f(~̃u

∗
2)~̃u
∗
2 (63)

and relative to S ′ it becomes (assuming the form of the function f is invariant)

f(~̃u ′1)~̃u ′1 + f(~̃u ′2)~̃u ′2 = f(~̃u ′∗1 )~̃u ′∗1 + f(~̃u ′∗2 )~̃u ′∗2 (64)

that is equivalent to

ũ ~ω

{
f(~̃u ′1)

1+ β2

α2

1− β2

α2

+ ũ 2

c(1− β2

α2 )

~β
α · η̂

− f(~̃u ′2)

1+ β2

α2

1− β2

α2

− ũ 2

c(1− β2

α2 )

~β
α · η̂

}
+

−ũ ~ω∗
{

f(~̃u ′∗1 )

1+ β2

α2

1− β2

α2

+ ũ 2

c(1− β2

α2 )

~β
α · η̂ ∗

− f(~̃u ′∗2 )

1+ β2

α2

1− β2

α2

− ũ 2

c(1− β2

α2 )

~β
α · η̂ ∗

}
+

+
~β

α

2c

1− β2

α2

{
f(~̃u ′1)

1+ β2

α2

1− β2

α2

+ ũ 2

c(1− β2

α2 )

~β
α · η̂

+
f(~̃u ′2)

1+ β2

α2

1− β2

α2

− ũ 2

c(1− β2

α2 )

~β
α · η̂

+

− f(~̃u ′∗1 )

1+ β2

α2

1− β2

α2

+ ũ 2

c(1− β2

α2 )

~β
α · η̂ ∗

− f(~̃u ′∗2 )

1+ β2

α2

1− β2

α2

− ũ 2

c(1− β2

α2 )

~β
α · η̂ ∗

}
= 0 .

From the arbitrariness of the scattering directions η̂, η̂ ∗ we must have

f(~̃u ′1)

1+ β2

α2

1− β2

α2

+ ũ 2

c(1− β2

α2 )

~β
α · η̂

=
f(~̃u ′2)

1+ β2

α2

1− β2

α2

− ũ 2

c(1− β2

α2 )

~β
α · η̂

=
f(~̃u ′∗1 )

1+ β2

α2

1− β2

α2

+ ũ 2

c(1− β2

α2 )

~β
α · η̂ ∗

=

(65)

=
f(~̃u ′∗2 )

1+ β2

α2

1− β2

α2

− ũ 2

c(1− β2

α2 )

~β
α · η̂ ∗

.
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In order to satisfy this condition we notice that from (57) we obtain

√∣∣∣∣1− ũ ′2

c2

∣∣∣∣ =

√∣∣∣1− ũ2

c2

∣∣∣∣∣∣∣1+ β2

α2

1− β2

α2

+ 2

1− β2

α2

~β
α ·

~̃u
c

∣∣∣∣ . (66)

For the both cases we analyzed in sections 4.3.1, 4.3.2, we observe that β
α < 1 and for the case

of a subluminal particle, i.e. u < c, u′ < c, we obtain

1 + β2

α2

1− β2

α2

+
2

1− β2

α2

~β

α
·
~̃u

c
> 0 (67)

which suggest us to take for f(ũ) the following expression

f(ũ) =
k√

1− ũ2

c2

.

In the case of a superluminal particle, i.e. u > c, u′ > c, we have in general

1 + β2

α2

1− β2

α2

+
2

1− β2

α2

~β

α
·
~̃u

c
< 0 (68)

which suggest us to take

f(ũ) =

k sgn

[
1 + β2

α2 + 2
~β
α ·

~̃u
c

]
√∣∣∣1− ũ2

c2

∣∣∣ . (69)

The constant k is identified with the rest mass of the particle in the case one can effectively

define such frame. In the case of tachyons we refer to the discussion of [13]. The term in

the numerator, sgn
[
1 + β2

α2 + 2
~β
α ·

~̃u
c

]
, becomes necessary in order to fulfill the conservation of

momentum as expressed in condition (65). This term introduces a dependence of the tachyon

mass with the quantity
~β
α , which is ultimately a parameter depending on the relative velocity

between the frames. A detailed discussion on the implications of this term may be found in [13].

5 An alternative way to induce a concept of absolute time

The concept of the absolute time was introduced in models I and II by means of certain relations

involving the space and time variables, equations (4), (59). These relations may be seen as

kinematical requirements allowing to bring the special and the Galilei relativity into the models.

In this view, we could think on the physical and the absolute time without having to consider

them as coordinates of a 4-dimensional space. Now, we reverse the construction and we will

show that by considering a higher dimensional space we can think on the absolute time with no

reference to kinematical relations.
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5.1 Setting the Lorentz transformation in R(1,4)

We denote by R(1,4) the space R5 endowed with the quadratic form

Q(xa) = −(x0)2 + (x1)2 + (x2)2 + (x3)2 + (x4)2 .

Here R(1,4) 3 x ≡ (xa), a = 0, 1, 2, 3, 4. The transformations leaving Q invariant have the form

x′a := Λabx
b (70)

with [Λab] ∈ SO(1, 4). We consider now two subgroups of SO(1, 4) as follows. The first consists

on transformations defined by matrices

LΛ :=

[
Λµν 0

0 1

]

with Λ ∈ SO(1, 3) (µ, ν = 0, 1, 2, 3). The second consists on transformations defined by matrices

LR :=

[
1 0

0 Rij

]

with R ∈ SO(4) (i, j = 1, 2, 3, 4).

Now, we define new coordinates as follows:

(i) (xa/x4) = (x̂µ, 1) with x̂µ ≡ xµ/x4. For the subgroup {LΛ} ⊂ SO(1, 4) the transformation

(70) becomes

x′µ = Λµνx
ν x′4 = x4 (71)

and in particular

x̂ ′µ = Λµν x̂
ν .

(ii) (xa/x0) = (1, x̃i), with x̃i ≡ xi/x0. For the subgroup {LR} ⊂ SO(1, 4) the transformation

(70) becomes

x′0 = x0 x′i = Rijxj (72)

and in particular

x̃ ′i = Rij x̃j .

We notice that these coordinates x̂ ≡ (x̂µ) and x̃ ≡ (x̃i) can’t be identified with the coordinates

of the hyperplanes x0 = 0, x4 = 0 of R(1,4).

5.2 Inducing Lorentz transformation in Euclidean space R4

There is a natural way to reinterpret the coordinates x̂ = (x̂µ), x̃ = (x̃i) as local coordinates on

certain open sets of the real projective space RP4 [14]. In fact, let RP4 3 [x0, x1, x2, x3, x4] :=
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{λ(x0, x1, x2, x3, x4) : λ ∈ R∗}. Recall that a smooth atlas for RP4 is given by RP4 :=

{(Va, ϕa)}a=0,...,4 where Va := {[x0, x1, x2, x3, x4] : xa 6= 0} and

ϕa : Va → R4

[x] ≡ [x0, x1, x2, x3, x4]→ ϕa([x
0, x1, x2, x3, x4]) :=

(x0

xa
, · · · , x

a−1

xa
,
xa+1

xa
, · · · , x

4

xa

)
which shows that x̂ = ϕ4([x]), and x̃ = ϕ0([x]) 8.

The transformation on R(1,4), x ′a = Λabx
b, induces a transformation on RP4 : [x] → [Λx]

that has the particular cases

[x0, x1, x2, x3, x4]
LΛ−→ [Λ0

αx
α,Λ1

αx
α,Λ2

αx
α,Λ3

αx
α, x4]

[x0, x1, x2, x3, x4]
LR−→ [x0,R1

ix
i,R2

ix
i,R3

ix
i,R4

ix
i] .

Therefore, ϕ4 ◦LΛ ◦ϕ−1
4 reduces to an ordinary Lorentz transformation in ϕ4(V4) ' R4: x̂µ −→

x̂ ′µ = Λµν x̂ν , while ϕ0◦LR◦ϕ−1
0 reduces to a 4-dimensional rotation in ϕ0(V0) ' R4: x̃i −→ x̃ ′i =

Rij x̃j . We have then modelled Minkowski and Euclidean four-space as homeomorphic to open

sets ϕ4(V4), ϕ0(V0) of projective space where Lorentz and 4-dimensional rotations are induced

by transformations (71, 72) of SO(1, 4) acting in R5. In the intersection of the neighborhoods,

V0 ∩ V4, we have x̃i = ϕ0 ◦ ϕ−1
4 (x̂), i.e.

x̃1 =
x̂1

x̂0
, x̃2 =

x̂2

x̂0
, x̃3 =

x̂3

x̂0
, x̃4 =

1

x̂0
. (73)

Therefore, in the intersection V0∩V4 an ordinary Lorentz transformation on ϕ4(V4), x̂µ → x̂ ′µ =

Λµν x̂ν , induces on ϕ0(V0) the transformation

x̃i → x̃ ′i =
LiΛ0 + LiΛj x̃

j

L0
Λ0 + L0

Λj x̃
j

(74)

that also obeys a group law, e.g.

x̂
Λ(1)−→ x̂(1)

Λ(2)−→ x̂(2)

↓ ↓ ↓

x̃
L(1)−→ x̃(1)

L(2)−→ x̃(2)

≡
x̂

Λ(2)Λ(1)−→ x̂(2)

↓ ↓

x̃
L(2)L(1)−→ x̃(2)

i.e.

x̃i(2) =
(L(2)L(1))

i
0 + (L(2)L(1))

i
j x̃
j

(L(2)L(1))
0
0 + (L(2)L(1))

0
j x̃
j
.

Equation (74) may be seen as a non-linear realization of the Lorentz group in ϕ0(V0).

8Notice that the space R4, appearing as the image of the homeomorphisms ϕa, is not seen as a subset of R(1,4).
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5.3 Interpreting the boost transformation in Euclidean space R4

Now, let us introduce some physics in our analysis. So far, we have considered homogeneous

coordinates x̂, x̃ that carry no dimension. In order to give a physical meaning to them let us

assume there is a scale factor λ with dimension of length and let us define yi := λx̃i, y′i :=

λ′x̃′i. Here λ′ is the transformed scale factor whose form is left arbitrary for a moment. Then,

transformation (74) may be seen as a transformation

yi → y ′i = λ′
LiΛ0λ+ LiΛj y

j

L0
Λ0λ+ L0

Λj y
j
. (75)

For a boost we have Λ0
0 = γ, Λ0

i
= Λi0 = −γ

c v
i, Λi

j
= δi

j
− (1− γ)v

ivj

v2 , and we obtain

y′i = λ′
yi − (1− γ)y

jvj

v2 vi − γ
cλv

i

γ(λ− 1
cy
jvj)

(76)

y′4 = λ′
y4

γ(λ− 1
cy
jvj)

where i = 1, 2, 3. Now, let us assume the scale factor writes as λ′ = ct′, λ = ct with c the speed

of light and t and t′ having the dimension of time. Here, denoting ~y = (yi), ~v = (vi) equation

(76) becomes

~y ′ = t′
~y − (1− γ)~y·~v

v2 ~v − γt~v
γ(t− ~y·~v

c2
)

y′4 = t′
y4

γ(t− ~y·~v
c2

)

If t′ = γ(t− ~y·~v
c2

) we obtain

~y ′ = ~y − (1− γ)
~y · ~v
v2

~v − γt~v (77)

y′4 = y4 .

Eq. (77) together with t′ = γ(t− ~y·~v
c2

) constitute the standard transformation of special relativity,

and y′4 = y4 can be considered as defining the absolute time, e.g. τ ≡ y′4/c = y4/c. In this

way, the absolute time acquires an intrinsic characteristic as the coordinate (in fact with y4

c )

of a 4-dimensional Euclidean space R4 ' ϕ0(V0), while the physical time of SR appears as a

non-invariant scale factor (through the relation λ = ct, λ′ = ct′) transforming homogeneous

coordinates x̃i of Euclidean space R4 into dimensional coordinates yi. If in addition we impose

the kinematical relation of the Galilei relativity, ~y ′ = ~y−~vτ , we end up with τ = (1−γ)~y·~v
v2 ~v+γ~vt.

6 Conclusion

In our work we have consistently unified the Galilei and the Special relativity. In Model I the

main equations were ~x ′ = ~x − ~v and ~x ′2 − c2t′2 = ~x 2 − c2t2, while in Model II we have used
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~x ′ = ~x − ~vτ and τ = αx0 + ~β · ~x = αx′0 − ~β · ~x ′. Here, contrarily to the intrinsic geometric

meaning associated to the relation ~x ′2 − c2t′2 = ~x 2 − c2t2, it is not clear the role played by

αx0 + ~β · ~x = αx′0 − ~β · ~x ′. If there is a certain anisotropy in space, represented by a particular

direction in space (not necessarily related to the relative velocity of the two frames), then we

could encode it into ~β. In this way, the physics derived from the general transformation (52)

may provide a framework to describe situations other than the one we contemplated in our work.

The assumption of the absolute time leads to a distinction between the velocities ~v = d~r
dτ

and ~̃v = d~̃r
dt . As we have seen in (19, 62), the Galilei relativity imposes a relation between these

velocities in such way that ṽ becomes less than c, which rules out tachyons since in SR we

consider velocities only as derivatives with respect to t. However, as we have seen in Model II, it

is possible to have superluminal frames provided we don’t impose the existence of the absolute

time and the Galilei relativity. Having distinguished between the absolute and the physical

time, the assumption of the constancy of the speed of light is understood only with respect to

the derivative relative to the physical time. In fact, as we have seen in the discussion of section

3.4.2, for the light speed calculated as a derivative relative to the absolute time we obtained

cS 6= cS ′ .

Finally, the implications of the existence of an absolute time in the formulation of a quantum

theory is an old topic. Dirac, for example, has used it in his attempt to develop electrodynamics

[15]. In the context of our work, one possibility that arises is related to the development of

quantum theory following the Schwinger Quantum Action Principle (SQAP). When applied to

quantum mechanics this approach uses an hamiltonian formalism that singles out the time as

parameter. As we have shown in [16], a consequence of the application of a modified form of the

SQAP to quantum mechanics has lead to the commutator of the Lie algebra of the Galilei group.

Now, we could apply the same procedure using the absolute time as parameter together with

its relation to the physical time as given by (44) and search for the corresponding modifications

it would originate in the Galilei algebra. Then, we could check if it corresponds to the group of

transformation leaving the quantity τ = αx0 + ~β · ~x = αx′0 − ~β · ~x ′ invariant.
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