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Abstract. In this article I pick up with [4] as well as [3] and show that
the mathematical relations of quantum mechanics derive from classical
electrodynamics, albeit without the use of the principle of indetermi-
nacy.

1. Integrability Revisited

In [4] I showed that R4 decomposes into five different sets, the light cone itself,
which is a closed hypersurface, and four open regions, namely: the forward
and backward time-like regions, and the space-like regions of positive and
negative parity. Further, it has been shown Maxwell’s equations in Lorentz
gauge can be (locally) integrated in each of the four open regions. However,
whereas the time-like regions are convex sets and therefore simply connected,
the two space-like regions are not simply connected, and on these regions the
integration along a closed path are no more guaranteed to yield a zero result.
Therefore, whereas the integral in the time-like regions is unique up to an
additive constant, on the space-like regions this is not so: The obstacle are
closed paths in the space-like regions around the origin, which does belong
to the light cone, and which therefore cannot be contracted to a single point
within these regions.

Still, we can integrate, both sources and the electromagnetic field A =
(A0, · · · , A3): Let Ω∪{0} ⊂ R4 be one of these space-like regions including the
origin, and let γ : [0, 1] → Ω be a continuous closed path around the origin,
i.e.: γ(0) = γ(1), and let j = (j0, · · · , j3) be the 4-tuple of charge density and
flux which is assumed to be a continuously differentiable function of space
and time as in [4], for which charge conservation holds:

∂j0/∂x0 +∇ · j = 0.

Let
∫
jdγ = k0 ∈ R ⊂ C, and let k0 be unequal zero. Now, note that this

integral reverses sign upon parity inversion, so this functional is a pseudovec-
tor, which we can write by means of the exterial (or Grassmann algebra) as
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k0e1 ∧ e2 ∧ e3 where e1, e2, e3 denote the spatial unit vectors at the origin
(see: [1]). The result then is that on Ω the the integral of j = (j0, · · · , j3) is
given by

Φ(x) =

∫ x

a

jdγ + k0e1 ∧ e2 ∧ e3 + λ,

where a ∈ Ω\{0}, and k0, λ ∈ C are arbitrary constants, and the similar
result holds for the integration of the vector field A = (A0, · · · , A3) on Ω. In
other words, k0e1 ∧e2 ∧e3 is an arbitrary constant of integration, which can
be chosen to be zero.

Now, let me show that the discussion around the term k0e1∧e2∧e3 just
arises, because of the unconvenient restriction of space-time to be real: The
Minkowski metrics leads to algebraic equations which mathematically always
are discussed within C rather than R, because these equations can be always
solved in C, but not always in R. So let’s embed R4 into C4. Then we can
diffeomorphically displace time on the space-like region with positive parity
by iε with ε > 0, and on the negative parity space-like region by −iε. So,
in both regions, closed loops around the origin diffeomorhically contract to
points, (±iε, 0, 0, 0), where the determinant of the Lorentz metrics is strictly
unequal zero, in other words: integration along these loops gives zero! In other
words, in the complex, both positive and negative pariity space-like regions
are simply connected: In there it is the union of the two space-like regions,
which is no more simply connected.

So, even in the complex, crossing from positive to negative parity space-
like regions is not possible (due to the lack of injectivity of the Lorentz met-
rics). That means that the Lorentz metric itself enforces chiral symmetry
breaking. In other words, as long as the Lorentz metrics holds, chriral sym-
metry is explicitly broken.

2. Gauge Invariance Revisited

Leaving out the constants of integration, the Maxwell equations in the Lorentz
gauge can be integrated on each of the four regions above, yielding a scalar
wave equation �F (x) = Φ(x), where F (x) =

∫ x
a
Adγ, Φ(x) =

∫ x
b
jdγ, a, b ∈

R4 are elements of either region, and A = (A0, · · · , A3) and j = (j0, · · · , j3)
are the 4-tuples of electromagnetic field and charge density flux, respectively
(see: [4]). As discussed in [4], the problem is that this scalar equation must
be relativistically invariant, and if so, then (A0, · · · , A3) and j = (j0, · · · , j3)
do no more transform as Minkowski 4-vectors. In order to become 4-vectors,
we need to add additional energy from one Lorentz boost to the other, and
then A and j will be Minkowski 4-vectors, however both sides of the equa-
tion �F (x) = Φ(x) will change from boost to boost. Formally, on the left
hand side, this is resolved by basing the Maxwell equations not on A, but
on (∇A0,∇ × A). But look: The right hand side faces the same problem:
We’d have to add curls to j0 and divergences of j and base calculation
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on∇j0 and ∇ × j in order to get both sides of the equations straight.
So, what does that mean?

There are two answers to this question: a technical and a physical one:
Technically, it means that A = (A0, · · · , A3) and j(x) = (j0, · · · , j3(x) are
being added differential 4-forms f(x)(e0 ∧ e1 ∧ e2 ∧ e3)(x), where f is a
continuously differentiable function (in either space-like/timelike region and
e0∧e1∧e2∧e3( denotes the exterior product of the 4 space and time unit vec-
tors at x ∈ R4, whereas (A1, · · · , A3). Since d(f(x)e0 ∧ e1 ∧ e2 ∧ e3) = 0, the
4-form is integrable. So, A(x) and j(x) are added the tuples (

∫ x
a
f(x)dx0e1 ∧

e2 ∧ e3, · · · ,
∫ x
a
f(x)dx3e0 ∧ e1 ∧ e2).

Physically, the addition of f(x)e0 ∧ e1 ∧ e2 ∧ e3 to j and A means adding
(signed) energy, and, since mass is equivalent to energy, it means adding
(signed) mass. Taken verbatim, a charge that accelerates would curl up
charges of either sign, and that was to be equivalent to a mass gain. So
there would be inertia with the charges themselves, and through this, the
electromagnetic field could transmit inertia, thus also ensuring that A and j
become relativistic 4-vectors.

The fact that we are allowed to add any mass of either sign and the
fact that electromagnetic energy always is taken to be the square root of its
absolute square, signals that some important restrictions are still missing.
Obviously, we want any good scalar equation of electromagnetic fields to be
relativistically invariant in all its involved quantities. According to [3], we
can get at it the following way:

Because jµ are scalar, j can also be integrated w.r.t. the differential
form ds = γ0dx0 + · · · + γ3dx3, where γ0, · · · , γ3 are the Dirac matrices
(see [3]). With this,

∫ x
a
jdγ becomes a 4 × 4 matrix Sj, and its differential

yields j again. We then suppose that the jµ, apart from being smooth, have
a compact support within Ω, where Ω denotes either of the four regions
(forward/backward time-like and positive/negative parity space-like regions
as above). (Generally, the jµ always are locally limits of a sequence of such
functions jµk , (k ∈ N), and a relation that holds locally for the jµk will also
hold for the jµ.) We then have by partial integration:∫

Ω

jµ(x)jµ(x)d4x =

∫
Ω

|ρ2(x)| − ‖ρv(x)‖2 = ρ2
0(x)d4x =

∫
Ω

Φ(x)�Φ(x)d4x,

where Φ =
∫ x
a
jdγ =

∫
γ
j0γ0(dx(s)0/ds = ds+· · ·+j3γ3(dx3(dx(s)/ds)ds,

so that the electromagnetic potential Aµ becomes a quantity that derives from
the interaction of two different fluxes:

Let χµ be another smooth charge flux with compact support in Ω, and let
Ψ(x) =

∫ x
a
χdγ. Then

∫
Ω

Ψ(x)Φ(x)d4x =
∫

Ω
χµ(x)Aµ(x)d4x, i.e.:

Aµ(x) = S2jµ, (0 ≤ µ ≤ 3),

where S is the operator
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S : j →
∫ x

a

jdγ =

∫ x

a

(j0(t)γ0dx0(s) + · · · j3(t)γ3dx3(s))ds.

The integrability of the electric fluxes now also allows to base the calculus
on the action integrals Φ instead of the fluxes j themselves:

We can extract the unit (of action) from Φ =
∫ x
a
jdγ, which makes

Φ dimensionless, and give the differential operators the dimension of action
instead, defining P 0 = E := i~∂0 and P k := −i~∂k, (1 ≤ k ≤ 3) to be the
energy and momentum operators respectively, acting on Φ.

This directly equates the flux j to the energy momentum density (P 0Φ,
· · · , P 3Φ), which now is a 4-vector, and it equates j2

0 − ‖j‖ to be the square
of a rest mass density:∫

Φ(x)(P 2
0 − ‖P ‖2)Φ(x)d4x =

∫
(j2

0(x)− ‖j(x)‖2)d4x.

In particular, it is seen that within classical electrodynamics, there are
two conserved quantities at work: the net charge and the the absolute value
of the charges, which is the energy or mass of the charged particles.

Also, note that basing dynamical calculus on the action states Φ instead of the
fluxes j runs up to shift the concern from the particles to their (action) fields
which goes with no loss of information: dynamical invariants of the particles
become generalized eigenvectors of the energy momentum operators and vice
versa. I illustrate that in the following:

3. The Free Field

Let q(t) = (q0, q0dx1/dt, q0dx1/dt, q0dx3/dt) be a charged particle moving
freely in space time. Then its action function Φfree - omitting the Dirac
matrices γ0, · · · , γ3 - is given by

Φfree(x) = a+ q0x0 + q0v1x1 + · · ·+ q0v3x3,

where a = (a0, · · · , a3), (q0x0, q0v1x1, · · · , q0v3x3) ∈ R4, are constants of
motion. In here, the distributions

q0Eδ(y0 − q0x0)δ(y1)δ(y2)δ(y3), · · · q0v3δ(y0)δ(y1)δ(y2)δ(y3 − q0v3x3)

are the generalized eigenvectors for the energy momentum operators P 0, · · · , P 3,
and q0, q0v1, · · · , q0v3 their eigenvalues.

(Note: Through this there is a slight shift of paradigm: Instead of Φfree
representing a system with fixed and constant combinations of distinct values
q0v0, · · · , q0v3 of a point charge only, by passing over to generalized eigenvec-
tors, one allows Φ to be the action of a continuous flux of charges,in which the
singular points are represented in terms of the Dirac distributions δ(x0,x).)
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With P = (i~∂0,−i~∂1, · · · − i~∂3) as above, Φ obeys in each of the
four space-like and time-like regions Ω of definitions:∫ x

a

PΦ · dγ = 0

for all smooth paths γ in Ω connecting a, x ∈ Ω, where

x · y := x0y0 − x1y1 − · · · − x3y3.

This allows us to define the free field to be given by an action function Φ for
which

∫ x
a
PΦ ·dγ = 0 holds (in each of the four regions Ω of definition). Now,

that holds if and only if Φ is the Fourier inverse of a distribution Φ̂ which
vanishes outside the light cone, i.e.: supp Φ̂ ⊂ ΓC, or, equivalently: �Φ = 0
(see: [3]).

In the non-relativistic limit, the space-like regions drop out, and on the
time-like ones, the wave operator is positive, so that �1/2 is a well-defined
selfadjoint operator within the timelike regions. Therefore, as c → ∞, the

equation converges to i~∂0Φ = − ~2

2|q0|∇
2Φ, which is the free Schrödinger

equation for the mass m = |q0|.

4. External Electromagnetic Field

The dynamics of charged particles in an external electromagnetic field comes
half way between free theory and the interaction of two electromagnetic par-
ticles: In it, the interacting particle is disregarded, and only the interaction
of its field with the particle is considered.

This means that the action FΦ :=
∫ x
a
AΦ · dγ of the external electro-

magnetic field A = (A0, · · · , A3) adds to the the action Φ of the free theory,
replacing

∫ x
a
PΦ · dγ = 0 by∫ x

a

PΦ · dγ =

∫ x

a

AΦ · dγ.

So, the we get the equation of motion of charged psrticles in the ex-
ternal electromagnetic field by the replacement of P by P − A, hence the
nonrelativistic limit of that is given by

i~(∂0 −A0)Φ = − ~2

2|q0|
(∇−A)2Φ.

This is the Schrödinger equation of an electrical particle state Φ in an
external electromagnetic field (see: [2], Vol. III, Sec. 21-2).

5. Wrapping Up

So, we derived Schrödinger’s equation (of a particle within an external elec-
tromagnetic field) from classical electrodynamics, an equation that cannot be
derived from within quantum mechanics itself, and therefore had to be pos-
tulated. Along with the derivation, most, if not all results of non-relativistic
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quantum mechanics are now accessible from within classical electrodynamics,
including black body radiation and the spectral values of the Hydrogen atom.

One might ask, how the Planck constant ~ comes in to the electro-
dynamics: Citing [4], within the Maxwell equations, we have two factors of
electronic charge in the terms of either sign, and taking the time derivative
gives an additional factor 1/c, where c is the speed of light (which in our units
is set equal to 1). The resulting constant q2

e/c has the dimension of action, so
it’s got to be proportional to ~, which has the same dimension. The factor of
proportionality is the dimensionless fine-structure constant. The point now
is that q2

e/c is in electrical units, whereas ~ is in mechanical units in terms
of mass m[kg]. As was seen above, the absolute value of charge appears to
be equivalent to mass which would make the electron’s charge a good candi-
date for the definition of mass, either. But that was not known then, when
Planck discovered ~ from studying the black body radiation. So again, ~ can
be explained without the uncertainty principle.
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