Predicting the Binding Energies of the 1s Nuclidewith High Precision, Based on Baryons
which are Yang-Mills Magnetic Monopoles
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Abstract: We employ the thesis that baryons are Yang-Millgmaic monopoles to predict the
binding energies of the alpiale nucleus to less than four parts in one milliohthe®He helion
nucleus to less than four parts in 100,000, anthefH triton nucleus to less than seven parts in
one million, all in AMU. Of special import, we &tig relate the neutron—proton mass
difference — which pervades all aspects of nugsssics and beta decay — to a function of the
up quark, down quark, and electron masses, whi¢arimenables us to predict the binding
energy for théH deuteron nucleus most precisely of all, to jusrd parts in ten million. The
thesis that Baryons are Yang-Mills magnetic monepthereby appears to have ample, indeed
irrefutable empirical confirmation, establishes asis for finally “decoding” the mass of known
data regarding nuclear masses and binding energied,may lay the foundation for
technologically realizing the theoretical promisenaiclear fusion.
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1. Introduction

In sections 11 and 12 of [1] we applied a pure ediedd Lagrangian® , .. to specify

the energy of the Yang-Mills magnetic monopolesoating to [11.7] of [1], part of which is
reproduced below:

E = ~[[[ gued®>x = 4 Tr[[[F,, F#dx. (1.1)

We then made use in (1.1) of the field strengtls@emfor protons and neutrons, [11.3] and
[11.4] of [11], respectively,

TrF ,uvP — _|[Zlf [nyyv]?lyd + 247/: [V”D}/]?‘UUJ , (12)
pd - rrli lpu - mJ
TrF llvN — _i(wu[y"u;/]t//u + zézd [yﬂmyv]wd J , (13)
p—m” P My

to deduce three relationships that yielded remaekadncurrence with empirical data:

First, we found in [11.22] of [1] that the massioé electron is related to the masses of
the up and down quarks according to:

m, =0510998928VeV = 3(m, - m, )/(2z):, (1.4)

where the diviso(Zn)% results as a natural consequence of a three-dioma€saussian
integration. Second and third, we found in [12.42¢ [12.13] that if onpostulategshe mass of
the up quark to be equal to deuterti fucleus) binding energy based on a) empirical
concurrence within experimental errors and b) réiggrthe nucleons or nuclei to be bound
resonant cavitiesvith binding energies determined in relation teitlup and down quark
content, then the latent binding energies (enem@radable for binding) intrinsic to the proton
and neutron, respectively, are:

B, =2m, +m, - (md +4./m,m, +4mu)/(27r)g =7.640679M& (1.5)
B, =2m, +m, —(mu +4,/m m, +4md)/(2ﬂ)§ =9.812358M¥ . (1.6)

So for a nucleus with an equal number of protorts regutrons, the average binding energy per
nucleon is 8.726519 MeV. Not only does this explahy a typical nucleus beyond the very
lightest (which we shall be studying in detail Henmas a binding energy in exactly this vicinity,
but when applied to B2with 26 protons and 30 neutrons, which has théndison of using a
higher percentage of this available binding endhgyn any other nucleus, we find timasaximum
availablebinding energy ipredictedto be (see [12.14]):

B, ., (Fe®) = 26x 7.64067MeV +30x 9.812358/eV = 493.02839MeV . (1.7)



This contrasts remarkably with the actudiservedinding energy92.253892 MeV That is,
precisely 99.8429093% of tlavailablebinding energyredictedby this model of nucleons as
Yang-Mills magnetic monopoles goes into bindingetihgr the F& nucleus, with the small
balance of 0.1570907% serving to confine the quarisn each nucleon.

However, in deriving (1.4) through (1.6) therarsaspect of (1.1) which, when carefully
considered, requires us to amend the usual Yanig-Mié&gnetic monopole Lagrangian (1.1) in a
slight but important way. This amendment will pidiersome further insights which will allow
us to theoretically derive the observed bindingrgies for all of the triton*H nucleus), helion
(*He nucleus) and very importantly, the alpha paet{tie nucleus), as well as the neutron—
proton mass difference, all with extremely closecsion in relation to the empirical data.

2. The Lagrangian of Nuclear Binding Energies

The Lagrangian used in (1.1), because of suppresdithe Yang-Mills matrix indexes,
actually has an ambiguous mathematical meaningcandbe either an ordinary matrix
multiplication, or a tensor (outer) product. Th#er, outer product, is the most general bilinear

operation that can be performed Bp,F**, while the former represents a contraction which

reduces the Yang-Mills rank by 2. When carefuttpsidered, this provides an opportunity for
developing a nuclear Lagrangian based on the t'Hoohopole Lagrangian in [2.1] of [2].

If we know that; F; F/” =3F F* as we do from the terms in [11.7] of [1] omitted

from (1.1) above, and also given thafl'T' =1 4", then with explicit indexe#,B,C,D = 123
for the 3x3 Yang-Mills matrices of th8U(3).. isospin-modified color group developed in
section 8 of [1], an explicit appearance of Yandiindexes would cause (1.1) to be written as:

E= —jﬂsgauged3x = %Tr”_[ F,F*d®x= %Tr”f F P 07X

, 2.1
=4 Tr [[[Fap TFepd® = 4 [[[ Fr (Fed®x @D
where we suppress the spacetime indexes Usidg = F,,F* to focus attention on the
contractions of the Yang-Mills indexes. That rsthe fourth and fifth terms above, we perform
a contraction over theB” index, which means thaf,; [Fg;, is aninner product formed with
ordinary matrix multiplication, and is a contractiover inner indexes of the most general
bilinear Yang Mills tensor, the fourth rank (3x3:&xF,, O F* = F,; [F,, down to rank two.

In the sixth, final term, we write the tradeF,; [F;, = F,5 [Fg, Via a second index contraction.

We point this out because (1.4) through (1.7) Wwiseccessfully match the empirical
nuclear binding data, and most particularly whigad to (1.5), (1.6) and (1.7), are in fact based
not only on (2.1), but also taking ttensor outer produadf F,; [F.,, that is, on taking

(carefully contrast the Yang-Mills indexes as betwéhe final terms in (2.1) and (2.2)):



E= j”sgauge —1TrmFWDFWd x—lTrmFWA Fr  dx

(2.2)
=371 [[[Fre (Fopd®x = 4 [[[ F o (Faed®x

Here, in the final terms, we udeF,; OF., = F,, (Fgs, as opposed OrF 5 [Fgp = Fag [Fgas

which highlights the notational ambiguity in (1d9 well as the difference between the outer and
inner matrix products.

Now, in general, the trace of a product of two sgumaatrices isotthe product of traces.
The only circumstance in which the “trace of a prct equals the “product of traces” is when
one forms a tensor product using the most gendna¢ér operation:

Tr(AOB)=Tr(A)Tr(B). (2.3)

Specifically, to obtain the term®s, +4,/m,m, +4m, and m, +4,/m,m, +4m, in (1.5) and
(1.6), we are must use (2.2), while to obtam, +m, and2m, +m, in the same expressions, we

instead must use (2.1). So (1.5) and (1.6) areddrby a linear combination of both inner and
outer products. And because (1.5) and (1.6) prédhcing energies per nucleon in the range of
8.7 MeV and yield an extremely close match to’fife binding energies, nature herself appears
to be telling us that we need to combine inner@untér products in this way in order to match up
with empirical data. This, in turn, gives us imjamt feedback for how to construct our
Lagrangian to match the empirical data.

To see this all most vividly, we start with [11a8}d [11.9] from [1] as reproduced below:

J’II(I// [y uyv]t//d +2l// [y uyv]l// j [Z?[yﬂmyl/]ﬁ,”d +24?f[y”DyV]lf/”Jd3x, (2.4)
pu _rTL pd _rnd pu - rTL

m{w ey ]wu +zwd[y oy ]wdj [wf[ymyv]éffu wd[ymyv]wd} (2.5)
"Pg — My P, —m, Py — My

Using these in (2.2) following the developmentéctson 11 and [12.12] and [12.13]

of [1], we rewritem, +4,/m,m, +4m, andm, +4,/m,m, +4m,, respectively, also via (2.3), as
the traces of Yang-Mills matriguter products

E, 1Trj”FPWDF‘”d x—lTrmFPAB oo x-l”jFPAAEFPBde

NI

Jm, 0o 0 (Jm, 0
1
= - Tr o Jm, 0O |O| O m, 0 , (2.6)
(27): o o0 Jm 0o 0 Jm

=1 (m, +4/mm, +4m,)=171569MeV




N

Tr[[[ Py O R A3 =2Tr [[[Fy o TFrcod®x =4 [[[ o [Frygedx
Jm, 0 0 Jm 0o o
= 1§Tr o Jm, o |Oj 0 Jm O . (2.7)
2 O O

0 Jm 0 Jm,

=1 (m, +aymm, +4m,)=2226696eV

The above connect the energy and Lagran@ian- I ”ﬁgauge X to a very-transparent matrix
format, and in turn, to the energy numbers thaewepart responsible for empirically-matching

the F&° binding energies.
Further, in this form, we also see that the sinsplasZm, = 2m, + m, and

Zm, =2m, +m, of the quark masses in a profoar neutrom are similarly given by the Yang-
Mills matrix inner products

=1 (2n) e [[[Fo , Fo™d?x

Jm O 0 |[my 0 0 , (2.8)
0 0 0 Jm, 0 =2m, +m, =9.356376MeV
0 0

0 m,

2 2”)%Tr_[_[_[FPAB EFPBD % 2” H_[FPAB EFPBAd X

Jm,

56, =) [ o 0= ) T o= o) o

N BA

Jymi, 00 Yym, 0 0 (2.9)
=Tl 0 Jym; O | 0 Jmy O ||=2m,+m, =12.03905MeV

o o Jym)|o o ym

These expressions use the ordinary matrix prodhathwappear in (2.1), and differ from (2.6)

and (2.7) only insofar as how the indexes are ected. The factor 0(1271)% recall, originates
from the three-dimensional Gaussian integration.

This means that we can reproduce equations (tcb§la6) for the latent binding energy
of a proton and neutron by combining (2.6) witt8j2and (2.7) with (2.9), ifinear
combinations of inner and outer Yang-Mills matriogucts as follows:



B, = 3, - E, =3 T [[[{(2n) Fo, " - Ry, OF JoPx= 370 []{(27) o P = oo oo o

Puy

:%JIJ((ZH)%FPABEFPBA FeanlF PBB)d3x 2m, +m = (271r)§( 4\/7+4”L)

(2.10)
Jmp 0 o )J/m, 0o o0 Jm 0 o) (ymy 0 o0
=T 0 Jym 0| 0 ym o |-—2lo Jm oo o Jym o
o o ymjo o ym) o o ym)lo o ym
=935637 MeV-171569'MeV = 7.640679M&/
B, =E, - 2E, =1 Tr[[[(2nf Fy Fy ~ Fu,, DR a3 =3 Te [[[ (27 Fiy o e = Fu e o A7
:%”'[((271)% Fuae Frvea— Fuaa EIFNBB)d3x: 2m, +m, ——— (mh +4./mm, +4md)
(2x) (2.11)
Jm o oYfm o o Jm o o) (ym o o
=1l o ym, o | o0 Jm o0 |—-1]o0o Jym o0 |00 Jm O
o o ymjo o ym) @0 o ym)lo o Jm

=1203905: MeV -2.22669(MeV = 9.812358M¢&/

This now provides a fully-covariant, Yang-Mills matexpression for the intrinsic, latent
binding energies of the proton and neutron, cotegchdown to the scalars which specify these
binding energies. And it is from these, that we ow clued into how we can amend the
Lagrangian in (1.1) to provide a foundation for siolering nuclear binding energies in general.

Contrasting (2.10) and (2.11) with (2.1) and (223 see that the general form of a
Lagrangian for théatentnuclear binding energy of a nucleon (which maylpeoton or neutron
or any other baryon) is:

Soang = 3Tr(27)F F F 7 = F,, D F )= 31270 Frp Ty~ Fop Fp)

binding 2

(2.12)
%( FAB EFBA - FAA EFBB)

Using this, we now start to amend the t'Hooft Lamgian [9.2] of [1], reproduced below:
v 2
£=-;F,FR" -1D,p D"y -%ﬂz%(ﬂa—%/l( a(ﬂa) : (2.13)

First, we applyTrT'T! =14 together withF*’ =T'F* and ® =T?g, to rewrite (2.13)
in the Yang-Mills matrix form:
¢ =-1T1(F, F*)-Tr(D,0D*®)- £2Tr(®D) -1 A(Tr(®d))*
_iTr(F/IVABFHVBD)_Tr((D,UcD)AB(D/JcD)BD) 2-I-r(cDABcDBD) %A(-I-r(q)ABcDBD))2 ’ (214)
1 F F WBA - (Dqu)AB (DHCD)BA - IUZCDABCDBA 3 (CDAB BA)2

MV AB



with [9.4] of [11] also written in the compacted tmaform:
(DHCD)AB :a,uq)AB _i(l.Gﬂ’cDJ)AB' (215)

Now, we compare (2.14) closely with (2.12), esalégithe term-1F,  F* , In(2.14)

2 WwpaB B
with 1(277): F,, [F,, in (2.12). Based on this, wenstructa Lagrangian such that the leading
(pure gauge) terms specify the latent nuclear hménergies, that is, we choose to make
%((271)% F s Fan— Far EIFBB) the leading Lagrangian term, because we know {f#rl.0) and
(12.11) that this yields latent binding energiesyvauch in accord with what is empirically
observed in nuclear physics. Thus, we take (2ifti¢pduce a factor of (271)% in front of all

the ordinary matrix products, subtract off a tefiy [Fg;, introduce similarly-contracted terms
everywhere else, and so fashion the Lagrangian:

2 T wag et (DNCD)AB (Dﬂq))BA + ILIZq)ABq) BA +%A (CDABCD BA)Z]
_% FWAAF W BB (DucD)AA(qu))BB - :UZ(D anPes _%/1 ((D an®P BB)2

=(2n)’|tF,, F™
* (ﬂ)[ , (2.16)

It is readily seen that the pure gauge teffps=*" in the above are identical to (2.12), which

means that these terms now represent the empyrigladlerved latent nuclear binding energies.
However, in constructing this Lagrangian, we caingy same index structure forward to all the
remaining terms and thus extend this understartditigze vacuum terms as well.

The benefit of all of this can be seen from (2.40) (2.11). For a nucleus wifhprotons
andN neutrons, which therefore hAsZ+N nucleons, we may write tlavailable latent binding

energy,B as:

;B =3Z qjj((ZH)% Foae tFrea = Fran Fres 3X+% N EHJ((ZH)% Fuae (Pnea = Froan (Pues SXI (2.17)
=Z [7.640679Mé&/ + N [0.812358Mé&/

This simply restates in more formal terms, the ltsfound in sections 11 and 12 of [1]. But, it
ties the formal, invariant, theoretical expressibased on the general form(] —%Tr(F [F)

with energiesk = —”_[Ed3x, to a very practical formula for deriving real,meric, empirically-
accurate nuclear binding energies.

On the foregoing basis, we now show how to demiveonly theavailablebinding
energies (designatd®) via (2.17), but thebservedinding energies (which will be designated
throughout asB, with a “0” subscript) for several basic nuclideSpecifically, we now derive

3B, for the®H triton, B, for the®He helion, and most importantly given that it isiadamental

building block of the larger nuclei and many depagcess,, B, for the*He alpha, all extremely
closely to the empirical data. We also lay a fatmh for doing the same with larger nuclei.
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3. Foundation for Deriving Observed Binding Energes of the 1s Nuclides

Now, it is our goal to derive thebserved, empiricadbinging energies for all nuclides
with Z <2; N <2, on atotally theoreticalbasis. Using a nuclear shell model similar to wwha
used for electron structure, all of these nucligi@ge nucleons in the 1s shell and so we refer to
them as the 1s nuclides. We thereby embark oarttlertaking set forth at the end of [1], to
understand in detail, hoeollectionsof Yang-Mills magnetic monopoles — which monopole
collections we now understand to be nuclei whemtbaopoles are protons and neutrons —
organize and structure themselves.

The nuclear weights (massgéM ) of the nuclides of immediate interest are sethfor
below in Table 1 (agai®d=Z+N). Because we wish to do very precise calculatiand because
nuclide masses are known much more precisely atam(ic mass units, AMU) than in MeV due
to the “relatively poorly known electronic chard@], we shall work in AMU. When helpful for
illustration, we shall convert over to MeV via £1931.494 061(21) MeVfcbut only after a
calculation is complete. The data for these nesglihnd the electron mass below) is from [3]
and / or [4], and is generally known to ten-digiegision in AMU with experimental errors
specified at the eleventh and twelfth digits. &threr nuclides not listed at these sources, we
make use of a very helpful online compilation afraic weights and isotopes at [5]. Vertical
columns list isotopes, horizontal rows list isoten@nd diagonal lines link isobars of likRe-The
nuclides with border frames are ttablenuclides. M(n)=;M =100866491600u is the mass

of the neutron, and/(p)=;M =100727646682u is the mass of the proton.

sNuclide on H ,He

Table 1: Nuclear Weights ¢ M) of 1s Nuclides (AMU)

Theobservedinding energie8, are readily calculated from the above using tloeqor
and neutron massed(p)=;M and M(n)=/M via 2B, = Z[}M + NJM -2M , and are given by:

B, sNuclide on H ,He

w N R O Z

Table 2: Empirical Binding Energies (§B,) of 1s Nuclides (AMU)



Now let’s get down to business. We already showgdl2.9] of [1] that by identifying
the mass of the up quark with the deuteron bindmgrgy bydefiningvia hypothesis that
m, = B,. =2.224566MeV , we can not only establish very precise massethéup and down

quarks but also can explain the confluence of cemfient and fission and fusion’&te in a

very profound way, wherein 99.8429093% of &wailablebinding energy predicted by this
model of nucleons as Yang-Mills magnetic monopagtess into binding the E&nucleus and

only the remaining 0.1570907% is used to confimegiarks. And, we established that in some
manner, nucleons will fuse based on some formeagdnant cavity” analysis based on the quark
content of the nucleons. So we now write this fifieation of the up massn, with the

observedieuteron binding energdB, , in the notations to be employed here, in AMU, as:

m, =B, = B,(?H) = 0.002388170100u.. (3.2)

In AMU, the electron mass is:

m, = 0.00054857999u . (3.2)

We then use (1.4) (see also [12.10] of [1]) witlhJ3and (3.2) to obtain the down quark mass:

m :—Zm +m, = 0. u. .
) (27;) _ +m, = 0005268143209 (3.3)

It will also be helpful in the discussion follovgrio use the mass construct:
4Jm,m, =0.00354700186u, (3.4)

because this expression appears frequently indtierediscussion, starting with (1.5) and (1.6).

We then use the foregoing in (1.5) and (1.6) toudate in AMU, thelatent, available
binding energy of each of the proton and neutresjghated by without the “0” subscript:

3
2

B(p)=1B = 2m, +m, —(md +4,/m,m, +4m, )/ (2z): =000820260732u (3.5)
B(n)=B = 2m, +m, - (m, + 4/mm, +4m, ) (2x)} =001053400082u. (3.6)

Via (2.17), (3.5) and (3.6) are used to calculaeegally, thdatent, availablebinding energy:

tB=z2m, +m, - TNV A | o, 4, - LAV 24T
(271)2 (271)2 (3.7)
=Z[0.00820260732u + N [0.01053400082u



in AMU, for anynuclideZ, N. For the nuclides in Tables 1 and 2, thisoretically-available,
latentbinding energy, ipredictedto be:

sNuclide on H ,He

w N P O 2 W

Table 3: Theoretically Available Binding Energies ¢ B) of 1s Nuclides (AMU)

Taking theratio of theempirical values in Table 2 over thkeoreticalvalues in Table 3 yields:

B,/B(%) zNuclide on H ,He

30.7566598954%
81.0623286777%

w N = O

Table 4: Used-to-Available Binding Energies {B,/4B(%)) of 1s Nuclides (%)

So we see, for example, that fike alpha nucleus uses about 81.06% of its total
available binding energy to bind itself togetheithwthe remaining 18.94% retained to confine
the quarks inside each nucleon. Tiee proton and neutron, of course, use 100% of thénta
energy to bind their quarks, but as soon as treey tst fuse together, they release some of this
energy and the negative of this energy goes irgarthss loss and binds together the nuclei. The
deuteron releases about 12.74% of what is avaitalddénd, while the isobars wih=3 use
about 31% of what is available for binding with thedance reserved for quark confinement.

As a point of comparison, féfFe, which has the highest percentage of used-titaale
binding energy, the nuclear weiglfiM =55920674421 (cf. Table 1), the empirical binding

energy is; B, =052846119 (cf. Table 2), the available binding energy;§8 = 052928781

(cf. Table 3), and the used-to-available perceniageB,/ 5. B(%)= 9984382846 (cf. Table 4).

No nuclide has a higher such percentage tfam While®*Ni has a larger empirical binding
energyper nucleonits used-to-available percentage is lower, bex#us calculation in (3.7)
literally and figurativelyweights the neutrons more heavily than the protmna ratio of:

B(n) _ B _ 0.010534000@2u
B(p) !B 000820260732u

=128422588025 (3.8)

The above ratio also explains, at least in pary mdavier nuclides tend to have a greater
number of neutrons than protons: As a nucleon giavger, because the neutrons carry an
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energy available for binding which is about 28.42%¢er than that of the proton, neutrons will
in general find it easier to bind into a large rwd by a factor of 28.42%. Simply put: neutrons
bring more available binding energy to the tabntprotons and so are more welcome at the
table. The nuclides running froffGa to*®Cd tend to have stable isotopes with neutron-to-
proton number ratiog\(Z) roughly in the range of (3.8). Additionally, ahkkely for the same
reason, this is the range in which, beginning Wittb and**Mo, and as the N/Z ratio grows
even larger than (3.8), one begins to see nuclidesh become theoretically unstable with
regard to spontaneous fission.

Next, we subtract Table 2 from table 3, to obtamunusedy) binding energy;U for
each nuclide. Of course, for the proton and neyiat of this energy is unused. This yields:

U sNuclide on H ,He

w N = O 2

Table 5: Unused Latent Binding Energies § U of 1s Nuclides (AMU)

This is the latent binding energy thatésainedfor quark confinement.

Finally, to lay the groundwork for predicting theserved binding energi®y in Table 2,
let us return to (2.6) and (2.7), remove the traoe, specify two (3x3)x(3x3) tensor (outer)
product matrices, one for the protoa(,;., ) and one for the neutrork( .., ), according to:

Jmg 0 0 Jm,{ 0 o0
(277)% Er asco % 2” ”_[ Foas Fpepd™x=| 0 \/I‘TTU 0O |O] O ﬁ 0 (39)
o o0 Jm o o0 Jm
Jmo 0o o) (Jym o0 o0
(277) N ABCD % 2m): j” Fuas DFNCDdSX_ 0 m, o (Ol O \/E 0 (3.10)
o 0 Jm 0o 0 Jm

From the above, one can readily deduce that theesg diagonal outer produmimponents

(nine for the proton and nine for the neutron)@nith E; ;. = Ey xscp =0 Otherwisg:
EN 1111 = EP 2222 = EP 3333 = EP 2233 = EP3322 = mu /(277-)E

- - - - - s : 3.11
EPllll =Ey 2222~ = 3333 ~ Ex 2233 © = 3322 = My /(277)2 ( )
EP1122 = EP1133 = EP 2211 = EP3311 = EN 1122 = EN 1133 = EN 2211 = EN 3311 m md /(277.)E

11



This is why (3.1), (3.3and (3.4) will be of special interest in the developrm®llowing.
With the foregoing, we now have all the ingrediemtsneed to closely deduce the empirical
binding energies in Table 2 on totally theoretigalunds. We start with the alplaie.

4. Prediction of the Alpha Nuclide Binding Energyto 3 parts in One Million

The alpha particle is tH&le nucleus. It is highly stable, with fully satted 1s shells for
protons and neutrons, and is central to many aséctuclear physics insofar as many other
nuclei will decay into more stable states by ralgasalpha particles via so-called alpha decay.
In this way, it is a bedrock building block of naal physics. Thenusedbinding energy for the

alpha particle iU = 0.007096629@9u, as shown in Table 5. Looking over the mass nusnbe
developed in section 3, we see that thigeiy closeo being twice the value qfmm, in (3.4),

that is, that2,/m,m, =0.00709400332u. In fact, these energies are equal to 2.26 parts
million! Might this be an indication that the alpha paetieses all of its available binding
energy, les2,/mm, , for nuclear binding, with the balanceafmm, retained to confine the

guarks inside each of its four nucleons? Fir$t leok at the numbers, then let's examine the
theoretical reasons why this might make sense.

If in fact this numerical coincidence is not jastoincidence but has real physical
meaning, then this would mean that the empiricadlinig energy; B, of the alpha ipredictedto

be (3.7) for,;B, less2,/mm, , that is:

m, +4,/m,m, +4m, m, +4,/m,m, +4m
;BOPredicted :2EE2mu + md - ! (2 )gd J+2EE2md +mu - (2 )gd : _2Vmumd y (41)
7 )? T )?

=0.03037922155u

where we have calculated using and m, from (3.1) and (3.3). In contrast, as we see from
Table 2, the empirica§ B, = 0.03037658499u! The difference:

4 Bopregueq—2Bo = 0030379212155 u-0.030376586489 u = 0.0000026 5656 U (4.2)

is extremely small, with these two values, as ngistlabove, differing from one another by less
than 3 parts in 1 million! So, let us regard J4d.be a correct prediction of the alpha binding
energy, at least to first, dominant order. Nowsldiscuss the theoretical reasons why this
makes sense.

In [1], a key hypothesis was to identify the makthe down quark with the deuteron
binding energy, see (3.1) here in which we agaiereed that identification. Beyond the
numerical concurrence, a theoretical explanationis, is that in some fashion the nucleons are
resonant cavitiesand so the energies that they will tend to reldas retain) during fusion will
be very closely tied to the masses / wavelengthiseo€ontents of these cavities. But, of course,
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these “cavities” contain up quarks and down quaaks, their masses are given in (3.1) and (3.3)
together with,/mym, in (3.4), and so these will specify preferred thanics” to determine the
precise energies which are released for nucleairignor retained for quark confinement.

We also see thabmponentsf the outer product&, ., =4 [[[ Fe s Fpcpd*x and
Ev aoco =+ [[[ Fuss Frepd in (3.9) and (3.10), timef277): which is naturally supplied by

Gaussian integration, take on one of three non-aies:m,, m,, {m,m, , see (3.11). So, in
trying to make a theoretical fit to empirical bindidata, and in an effort to not stray from the
discipline imposed by the outer produéig; ., = %”‘ F.s (Fopd®x, werequirethat empirical

binding energies be calculatedly from the outer productg ,; ., = %” F.s [(F,d°x for the

proton and neutron, usiranly some combination of a) tleemponentsf this outer product and
b) index contraction®f this outer product, see again the discussi@eation 2. So the
ingredients that we shall use to do this numefittatg, will be restricted to a) thiatent,
availablenuclide binding energies as calculated from (Y}he three energias,, m,,

Jmm, and quantized multiples thereof, c) any of the§ming with a(2rr)% coefficient or

divisor, as suitable, and d) the rest mass of fderen m,. This fitting involves essentially

poring over the numerical nuclear binding data, seeing if it can be arrived at closely using
only the foregoing ingredients. In the case of théa§4.1) meets all of these criteria. In fact,
rewritten using (2.6) through (2.9) and (3.11),fwme that (4.1) can be expresseatirelyin

terms of the outer tensor produgl; ., = %J'” Fas (Fepd®x, as:
;BOPredicted =2 EQ(ZH)% Er asen ~ Ep /—\ABB)+ 2 [((2”)% Exassa ~ Ep /—\ABB)_ (27T)g (EP1122 +Ey 1122)

ZZEEZrTL_|_rnd_rr1d+4,/mumd +4nLj+2EE2md+nL_rrL+4,/mumd +4de_2 ,—med

(2x) (2n):

This totally theoretical expression yields the alfiinding energy to 2.26 parts per million.

(4.3)

In this light, (4.3) tells us that the alpha binglienergy is actually the 11 2Bmponent
of a (3x3)x(3x3) outer produdt ;. , in linear combination with invariant traces Bf, -

This is reminiscent, for example, of the Maxweliger— 471 ** = F*F", —%U”VF”ﬂFaﬁ,
which has some components with both a componanttste and a trace term just like (4.3) (e.g.

—45m° =F%F% -1F”F_, —we analogize=*F° to E,,,,, and F¥F,; to
(277)% E asea — Eangs IN (4.3)), and which has other components thatatanclude the trace term
(e.9.,— 4 * =F%F' -n®1F¥F,, = F%F%, wherep* filters out the trace). This latter
analogy allows us to represent (3.1) for the demes a componemtithouta trace term, thus:

2
1B

m, =0+ (277): E,, Lt (4.4)

OPredicted ~—
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So we now start to think about the individual, @fyed nuclear binding energies as
components of a (3x3)x(3x3) fourth rank Yang Mdrssorof which (4.3) and (4.4) are two
samples. Thus, as we proceed to examine manyatitfauclides, we will want to see what
patterns may be discerned as to how each nuctglafo this tensor.

Physically, the alpha particle of course cont&ms protons and two neutrons, and at the
quark level, six up quarks and six down quarkgs #een that in (4.1), the up quarks enter in a
completely symmetric fashion relative to the dowsads, i.e., that (4.1) is invariant under the

interchangem, ~ m,. The factor of 2 in front o(/m of course means that two components
of the outer product are also involved. The deuteper (4.4), uses only one member of the
m,, \/m “‘component toolkit” from (3.11), i.em,, while (4.4) uses two members of this
toolkit, i.e., Zm. Further, while each componentrof, m,, Min the (3.11) toolkit is
associated with several different components obtiter product, we have as a preliminary
matter hypothesized an associaﬁm =E +E so that the neutron pair and the
proton pair each contribum to (4.3), and (4.3) thereby remains absolutetgragtric

underp -~ n andu -~ d interchange. The choice of tli&,,, elements appears to be

somewhat arbitrary given (3.11), and should besimd once we study other nuclides not yet
considered and seek to understand the more geremglMills tensor structure of which the
individual nuclide energies are components.

P1122 N 11227

One other physical observation is also particyladteworthy: Below in Figure 1, we
have included the well-known “per-nucleon” bindigigiph to facilitate discussion. One of the
great mysteries of nuclear physics, is how, exatilyaccount for the great “chasm” between the
°H, ®*H and®He nuclides, and the alpha nuclitiée for which we have now predicted the binding
energy to within a fraction of a percent. Coniras{4.1) for*He with (4.4) for’H, we see that
for the latter deuteron, we “start at the bottonithw'B, =0 for 'H, and then “add®B, =0+ m,
worth of energy to bind the proton and the neutomether intdH. But for the alpha, we “start
at the top,” with the total latent binding enerf = 0.03747321508u, and then subtract off

2,/m,m, , to obtain the empirical resu}B8, =0.03747321508u - 2,/m ,m, . But as we learned

in section 12 of [1], any time we dmtuse some of the latent energy for nuclear bindimay,
unused energy remains behind to confine the queéBkswhat we learn is that for the alpha

particle, a total of2,/m,m, =0.007094004uis held in reserveo confine the quarks, while the
balance iseleasedo bind the nucleons to one another.

Now to the point: for some nuclides, (e.g. the deart) the question is: how much energy
is releasedrom quark confinement to bind the nucleons? Ths “bottom to top” approach.
For other nuclides (e.g., the alpha), the questiohow much energy ieservedout of the
theoretical maximum available, to confine the gsarkhis is a “top to bottom” approach. For
“top to bottom” nuclides, there is an invariantcegan the tensors. For “bottom to top” nuclides
there is not. Using the Maxwell tensor analogy gliscussed, one might suppose that
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somewhere there is a Kronecker delta and / ord*®co which filters out the trace from some
“off-diagonal” terms and leaves the trace intactdther “on-diagonal” terms. In this way, the
“bottom to top” nuclides are “off-diagonal” elemsenand the “top to bottom” nuclides are “on
diagonal.” In either case, however, the “resonafmenuclear binding is established by the

components of th&,, .., , which arem,, m,, \/mm, in some combination and / or integer

multiple. And, as regards Figure 1 below, the oh&sading up t8He, is explained on the basis
that each ofH, *H and®He are “bottom to top” “off-diagonal” nuclides, Wai*He, which
happens to fill the 1s shells, is the first “topbtattom” “on-diagonal” nuclide.

Average binding energy per nucleon (MeV)

0 | 1 1 I | l | 1 1 | |
0 20 40 60 8 100 120 140 160 180 200 220 240

Mumber of nucleons in nucleus, A

Figure 1

Let us now peek ahead at some higher energy msclichmely;Li and ;Be with Z=3
and Z=4, because they deepen the lessons learoed fav the alpha. Using a nuclear shell
model similar to what is used for electron struetwl the nucleons in tHéle alpha are in 1s
shells. The two protons are spin up and down eaithls, and as are the two neutrons. As
soon as we add one more nucleon, by exclusion, ugt jump up to the 2s shell, which admits
four more nucleons and so can reach upBe before we must make a first incursion into the 2p

shell. The four additional nuclides we shall wistbriefly examine are shown in Table 6 below:
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B, sNuclide on 1H ,He 5Li .Be

................ A
................. A”Z A.__3
1 0000606600360 ngoza&smi—'l T
2 . per pez 0.009165585412| 0,030376586499) ... ps o
3 | ................. A5 T S An-S_—" ...... &0343470—1T ........ 0040365106
4

Table 6: Empirical Binding Energies (§B,) of Selected 1s and 2s Nuclides (AMU)

We note immediately from the above — which has besited by others before — that the
binding energy?B, = 00606547521 of ®Be is almost twice as large as that of the alptgbe
to just under one part in ten thousand AMU. Spexiy:

2B, —.B, = 2[0.030376586@9u—0.0606547521 = 0.00009842u . (4.5)

This is part of the explanation as to why ¥Be is unstable and invariably decays almost
immediately into two alpha particles 4e. ( It is°Be which is the stable Be isotope.) But what

is of particular interest here, is to subtracttb#f alpha;B, =0.03037658689u from each of

the Li and Be isotopes shown in the above, and eoenfinem side by side with the non-zero
binding energies from H and He. The result of éxercise is shown in Table 7 below.

B sNuclide H ,He By-Bo(alpha)  ;Nuclide sLi .Be

1 .0.002386170100_0,008285607834 3 0003970507 _ (.009988515°
2 A=z 0009105585412 0030376586499 4 ke /04,1/75?668 ______ 0.030278165
; N - . e -

Table 7: Comparison of Alpha-subtracted 2s Binding=nergies, with 1s Binding Energies
(AMU)

Equation (4.5) is represented above by the fattiBa—;B,1;B,. The chart on the left

is a “1s square” and the chart on the right issasQuare.” But they are both “s-squares.” What
is of interest is that the remaining three nucliskethe Li, Be “square” are not dissimilar either
from the pattern shown for the other three nuclidebe H, He “square.” This means that three
of the four nuclides in the 2s square start “atitbtom” “off-diagonal” just as in 1s, and the
fourth, ®Be starts “on diagonal” “at the top.” But, in tAe square, the “bottom” is

,B, =0.03037658699u from the alpha particle. So the complete 1s diwtw the 2s shell

provides a “platform,” a non-zero minimum energy éaamining binding in the 2s square. And
it appears that the nuclides with full shells dre ‘tdiagonal” tensor components.

Finally, before turning t8He in the next section, let us comment briefly @pegimental
errors and the precision of the foregoing. Thelpteon of the alpha in (4.1) to be

16



3 Bopredieg = 0.030379212%5u , in contrast to the empiricdIB, = 0.03037658689u, is an

exact match, in AMU, through the fifth decimal pgabut is stillnot within experimental errors.
Specifically, the alpha mass listed in [4] and showTable 1 is 4.001506179125(62) u, which
is accurate teendecimal places in AMU. Similarly, the proton mds807276466812(90) u and

the neutron mass 1.00866491600(43) u used to esdciB, = 0.03037658689u are accurate
to ten and nine decimal places respectively. Sorthtch betweefiB,

>B, beyond five decimals to under 3 parts per mili@still not within the experimental errors,

which are known to at least nine decimal placesSNU. Consequently, (4.1) must be regarded
as a very close, but stdpproximaterelationship for the observed alpha binding energy
Additionally, because (4.1) is based on (3.1), whrethe mass of the up quark is identified with
the deuteron binding energy, =iB, = B,(H) = 0.002388170D0u , the question must be

considered whether this identification (3.1), whitgy close, is also still approximate.

prediced @Nd the empirical

Specifically, it ispossibleto make (4.1) for alpha into @axactrelationship, within
experimental errors, if we reduce the up quark rbgssxactlye=0.000000351251415 u (in the
seventh decimal place), such that:

m, = 0002387818819 u 0 2B, = B,( H) = 0.002388170D0u . (4.6)

That is, we can make (4.1) for the alpha inteaactrelationship if we make (3.1) for the up
guark into arapproximaterelationship, or vice versa, but not both. Sowdwmwe do? A

further clue is provided by (4.5), whereby #rapirical /B,/,B, 02 is a close, but still

approximate relationship. This seems to suggesina adds more nucleons to a system and
makes empirical predictions such as (4.1) basati@np and down quark masses, that higher
order corrections (at the sixth decimal place inlAldr alpha and the fifth decimal place in
AMU for ?B,) will still be needed. So because two body systeath as the deuteron can

generally be modeled nearly-exactly, and becautsiteron will suffer less from “larg&=Z+N
corrections” than any other nuclide, it makes sefs®ent evidence to the contrary to regard
(3.1) identifying the up quark mass with the deorelninding energy to be axactrelationship,
and to regard (4.1) for the alpha to beagproximaterelationship that still requires some
correctione in the sixth decimal place. Similarly, as we depeother relationships which, in

light of experimental errors, are also close bilitagpproximate, we shall take the view that these
relationships too, will require higher order cotreegs based on factors such as the complexities
of a multi-body system, growing nuclide size, anel fact that the nuclear interaction drops off
rapidly as between nucleons not immediately adjateane another in a nucleus. Thus, for the
moment, we leave (3.1) intact as an exact relatipns

In section 9, however, we shall show why (3.1)dtually not an exact relationship but is
only approximate to about 8 parts pem millionAMU. But this will be due not to the closeness
of the alpha particle predicted versus observedgegse but due to our being able to develop a
theoretical expression for the differenkli(n) — M (p) between the observed masses of the free

neutron and the free protonhetter than one part per millioAMU.
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5. Prediction of the Helion Nuclide Binding Energyto 4 parts in 100,000

Now, we turn to the’He nucleus, sometimes referred to as the heliorcoirrast with

the alpha and the deuteron already examined whehgeger-spin bosons, this nucleon is a
half-integer spin fermion. Knowing that our ingieuts for constructing binding energy

predictions arem,, m,, /m,m, , knowing as pointed out after (4.4) that we waltdrt at the
bottom” for this nuclide, and knowing already thia “components” in the (3.11) toolbox we
have used so far am, for 2B, and2,/m,m, for ;B,, it turns out after some exercises strictly
with this toolbox of energies, that we can makaidyf close prediction by setting:

BO(EHe)DredictedzngO Predicted DZ”L + and = 000832332076'*] . (51)
The empirical energy from Table 2, in comparissn;B, = 0.0082856@824u, so that:

3B preaied—2B, = 000832334206 u - 0.00828560284 u = 0.00003779252u . (5.2)

While not quite as close as (4.2) for the alphaigar this is still a very close match to just end
4 parts in 100,000 AMU. But does this make sendgit of the outer products (3.9), (3.10)?

If we wish to write (5.1) in the manner of (4.3)da(4.4) in terms of the components of an
outer producte .., , then referring to (3.9), we find that:

2Byprescea™ (277)" Epgann = 2, +fmym, =/m, [ym, +2/m, ). (5.3)

So the expressio@m, +,/m,m, in (5.1) in fact has a very natural formulatiohigh utilizes the

trace,/m, +2,/m, (AA index summation) of one of the matrices irBj3times aﬁtaken

from the third (or possibly second) diagonal congrarof the other matrix in (3.9). The use in
(5.3) of E, from (3.9) rather than o, from (3.10), draws from the fact that we needtthee

to be,/m, +2,/m, , and noty/m, +2,/m, as would otherwise occur if we used (2.7). Seher
the empirical data clearly causes us to choose onargs fromE, rather than fronk, .

6. Prediction of the Triton Nuclide Binding Energyto 3 parts in One Million, and the
Proton — Neutron Mass Difference to 7 Parts in TeMiillion

Now we turn to thH triton nuclide, which as shown in Table 2, hasraling energy
’B, =000910558542u . As with the alpha and the helion, we use thegies from
components of the outer produdig,, of section 2, see again, (3.11). However, follayvi
careful consideration of all possible combinatighsye is no readily apparent combination of
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m,, My, ym,m, together withm, and factors 0(271)% which yield a close match to well under
1 percent, to the observed binding ene}gy = 0.00910558542u .

But all is not lost, and much more is found: Wisadying nuclear data, there are two
interrelated ways to formulate that data. Fistpilook at binding energies as we have done so
far. Second, is to lookrauclear weight lossconversely known as “mass excess.” This
formulation, mass excess, is very helpful whenhginuclear fusion and fission processes,
and as we shall now see, it is this approach thalbles us to match up the empirical binding data

for the triton to them,, m,, /mm, , m, and factors of277)° that we have already successfully

employed for the deuteron, alpha, and helion. &smendous bonus, we will be able to derive
astrictly theoreticalexpression for thebserved, empiricaifference:

M (n) - M (p)=2M —IM =000138844988 u (6.1)

between the free, unbound neutron misKs)=1008664916800u and the free, unbound proton
massM(p)=1007276466R2u, see Table 1.

To begin with, let us consider a hypothetical dasprocess to fuse &1 nucleus (proton)
with a 2H nucleus (deuteron) to produc€ld nucleus (triton), plus whatever by-products
emerge from the fusion. Because the ingtitsand ’H each have a charge of +1, and the
output®H also has a charge of +1, a positron will be ne¢dearry off the additional electric

charge, and this will need to be balanced withwnme. Of course, there will be some fusion
energy released. So in short, the fusion reagti®mow wish to study is:
{H+H - H +€e" +v +Energy (6.2)

The question: how much energy is released?

As we can see, this process includg8’adecay. If we neglect the neutrino mass, i.e., if
we takem, [J Q and sincem, =m,, we can reformulate (6.2) using the nuclide massé&sble
1, as theempirical relationship:

Energy=M +2M —3M —m,_ =0.00478036215u (6.3)
If we then return to our “toolbox” (3.11), we séat2m, = 0.00477638200u . The difference:
Energy-2m, =0.00478038625u—0.004776340Q0u = —-0.00000408015u, (6.4)
is four parts per million! So, we now regashergyl]2m, to be very close relationship to the

empirical data for the reaction (6.2). For thetdean, alpha and helion, our toolbox matched up
to abinding energy But for the triton, in contrast, our toolbox teéad matched up tofasion-
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releaseenergy. A new player in this mix, which has netdiofore become directly involved in
predicting binding energies, is the electron reassnpwhich appears in (6.3). So, based on (6.4),

we setEnergy=2m,, and then rewrite (6.3), usif! =M p¢(, 3s:

fM PredictedzllM +fM - 2mu - me = M (p)+iM - 2mu - me " (65)
Now let’'s reduce. To translate between Table 1Tadule 2, we of course used:

2B, =ZEM + NEZM -2M (6.6)

which relates observed binding energy in general, to nuclear mabtin general. So let us
now use (6.6) specifically faiB, with Z=1 andN=2, and combine this with (6.5) using

oM =M(n), to write:

B, =10M + 20M =M =2M (n)—3M +2m, +m, (6.7)

Predicted

Then, to take care of the remaining deuteron nilsn the above, we use (6.6) a second time,
now for 2B, with Z=1 andN=1, to write:

1Boprecicie=iM +oM —1M =M (p) + M (n)—iM (6.8)

Predicted” 1

We then combine (6.8) rewritten in terms2M , with (6.7) to obtain:

B =M (n)-M(p)+;B

OPredicted —

+2m, +m, (6.9)

OPredicted

Now all that is left is{B,, . ;..
found in (4.4), namely; By, .,.eq = My @nd which we take to be amactrelationship, see the
discussion at the end of section 4. So final stltisin of 2B = m,into (6.9) yields:

But this is just the deuteron binding energy tha have already

OPredicted

fBOPredicted = M (n) - M (p) + 3mu + me (6'10)
So now, we do have a prediction for the tritordioig energy, and it does include the
electron rest mass, but it also includesdifference(6.1) between the free (unbound) neutron

and proton masses. It would be highly desirabierfany reasons beyond simply the present
exercise, to express this relationship as wellk aompletely theoretical basis.

To do this, we repeat the analysis just condudtatinow, we fuse twgH nuclei
(protons) into a singléH nucleus (deuteron). Analogously to (6.2), we thue:

{H+H - ?H +e" +v +Energy, (6.11)
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and we again ask, how much energy? This fusias,also noted, is the first step of the process
by which the sun and stars produce their energyjsathe simplest of all fusions, and so is
interesting from a wide variety of viewpoints.

As in (6.3), we first reformulate (6.11) using tigclide masses in Table 1, as the
empirical:

Energy=;M +/M =M -m, = 2M(p)-:M -m, =0.00045114003u, (6.12)

As a point of reference, this is equivalent to 0225 MeV, which will be familiar to anybody to
who has studied hydrogen fusion. As before, we peer the “toolbox” in (3.11), including

(272) divisors, to discover tha2,/m,m, /(2z): =0.00045042092u . Once again, we see a
very close match, specifically:

Energy-2,/m m,/(2x)¢ =000045114103u-000045042492u = 0.00000076911u.  (6.13)

Here, the match is foist over 7 parts in ten millioThis is a mere 0.000667798 MeV, which is
a scant 0.1306848742% of the electron mass, asdhié closest match yet! So we take this to
be a significant relationship as well, and use thisewrite (6.12) as:

3
2

2,/mm,/(2x)" = 2M(p)-iM -m,, (6.14)
Now we need to reduce this expression. First,gi8l), namely!B, = m, , we write (6.8) as:

IM =M (p)+M(n)-m,. (6.15)

Then we combine (6.15) with (6.14) and rearrangd,aso use (1.4), to write:

J 3m, +2 -3
[M(N) = M(D)]p-egioreg = M, =M, = 2 (m";?" =m, - i (m") an ™ 0.00138916099u .(6.16)
2r)? 2 )?

Thisisan extremely important relationship, as it relates the difference (6.1) between the
neutron and proton mass solely to the up, down(aptionally) electron masses. This is useful
in a wide array of circumstances, including alhfierof beta decay and the relationships between
nuclear isobars (along the diagonal lines of kkesich are shown in the Tables here) wHigh
definitionconvert one into the other via a beta decay whiahanges a neutron with a proton.
Comparing (6.16) with (6.1), we see that:

[M(n)_ M(p)]Predicted_ [M (n) - M ( p)]observed

. 6.17
=0.00138916609u-0.00138844988 u=0.00000076911u ( )

21



This is the exact same degree of accuracy, tmpest7 parts in ten milliomPAMU, which we
saw in (6.13). So this is yet another relationshgiched very closely by empirical data.

Because of this, now taking (6.16) as a givertiggighip, we use this in (6.10) to write:

3

A/mm
BO(3H )PredictedszOPredicted = 4mu - 2 (2/1 )d = 000910226308U : (618)
7T )2

As a result, we finally have a theoretical exprasdor the binding energy of the triton, totally in
terms of the up and down quark masses. The erapiradue’B, = 0.00910558412u is shown
in Table 2, and doing the comparison, we have:

3Bopeueq= By = 000910225688 u - 000910558542u = —0.00000332104u. (6.19)

We see that this result is accurate to just oveetiparts in one million!

As to the theoretical expression for (6.18) usingyponents of an outer produ€t,; g,
asin (4.3), (4.4) and (5.3), one way to write 8.ik:

11mﬂmd

3
fBOPredicted: (277-)2 (EP 2222 + EP 2233 + EP 3322 + EP3333)_ EP1122 - EP1133 = 4”11 -2 (27‘[)§ ' (620)

N

As earlier noted, there will be some ambiguity insthéensor component assignments until we
have developed a wider swathe of binding energiesrizbthe “1s square,” and begun to discern
the wider patterns. But we have now reached ourafa#ducing precise theoretical
expressions for all of the 1s binding energies, saslg function of elementary fermion masses.
In the process, we have also deduced a like-expreksidime neutron-proton mass difference!

7. Excess Mass Predictions

Let us now aggregate some of the results so far. dfigdl, let us go back to (6.5), and
use (6.15) and the neutron-proton mass difference (6.16)tta€6.5) as:

A/mm
fMPredicted: M (p) +2M(n)_4rnu +2 2 . (71)

(2n)’

Specifically, we have refashioned (6.5) to include praon mass and two neutron masses,
because thigH triton nuclide in fact contains one proton and tveatnons. Thus, the additional

terms—4m, +2,/m m, /(271)% represent a theoretical value of the mass excessessqul as a

mass loss (negative number). We see this is equaégnitude and opposite in sign to binding
energy (6.20).
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Let us do a similar thing for the helium nuclé&irst we use (6.6) to write:
3B, = 20M +,M —3M =2M (p) + M (n)—>M (7.2)
We then placeM on the left side and use (5.1) to write:
M =2M(p) +M (n) -2m, - /mm, . (7.3)
Here, —2m, —m is helion mass loss, also equal and oppositettiig energy (5.1).
Next, we again use (6.6) to write:
4B, = 2IIM +2[3M =M = 2[M (p) + 2M (n)—;M (7.4)

Combining this with (4.1) then yields:

M = 2M (p) + 2M (n) ~ 6m, —6m, + - ”“(““ ;mmm" r2Jmm, (7.5)
2r)?

The mass loss for the alpha — much larger than foottier nuclides we have examined —is
given by the lengthier terms aft@M (p) + 2M (n). Again, this is equal and opposite to the
alpha binding energy in (4.11), with terms consoidan (7.5) above.

Finally, from (3.1), via (6.6), it is easy to deducetfo deuteron, that:
M =M (p)+M(n)-m,, (7.6)
with a mass loss represented simply-by, , again, equal and opposite the binding energy (3.1).

8. A Theoretical Review of the Solar Fusion Cyclegnd a Possible Approach to Catalyzing
Fusion Energy Release

As a practical exercise, let us now use all of thegoireg results to examine the solar
fusion cycle. The first step in this cycle is (6.1fb),the fusion of two protons into a deuteron.
It was from (6.11) that we determined that an enerdy2{@s released in this fusion, which
energy, in light of (6.14), now becomes:

3

Jm,m
Energ)(llH +Ho2H+e" +v+ Energ>): 2 ( ”) % =000045114103u. (8.1)
2 )?
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This equates to the well-known 0.420235 MeV ascdhetwlier. The positron annihilates with an
electrone” +e” - y+y to produce an addition@m, worth of energy as well.

The second step in the solar fusion cycle is thetren:
*H+/H - JHe+ Energy (8.2)

wherein the deuterons produced in (8.1) fuse withgms to produce helions. We write this
reaction in terms of the masses as:

Energy="M +;M —3M (8.3)

The proton mass idM , and these other two masses have already beed, fiegpectively, in
(7.6) and (7.3). Thus, (8.3) may be reduced to:

EnergﬁH +H - JHe+ Energ)): m, +,/m,m, =000593517186u, (8.4)

which equates to 5.528577 MeV, also a well-knowmber in the study of solar fusion.

The final step in this cycle fuses helions togetbgsroduce alpha particles plus protons,
which themselves are available to repeat the csteling at (8.1), according to:

SHe+3He- JHe+;H +;H + Energy (8.5)

The mass equivalent of this relationship is aood:

Energy=:M +>M —;M =M —/'M (8.6)

Here we again make use ¥l =M p (, tbgether with (7.3) and (7.5) to write:
Energx(jHe+§He—> JHe+H+H + Energ3)

= 2m, +6m, —4/mym, — +m(3ﬂ;16\/m =0013732528MBu’ 8.7)

This equates t62.791768 MeV also a well-known number from solar fusion stsdie

Now, as is well known (see, e.g. [6]), the reac(®4d) must occur twice to produce the
two JHe which are input to (8.7), and the reaction (8nljst occur twice to produce the two

*H which are in turn the input to (8.4). So pulligs all together from (8.1), (8.4), (8.7) and
e'+e - y+y,we may express the entire solar fusion cycle as:
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Energ4lH +2e” . 2He+y (1279MeV) + 2 (552MeV) + 2/ (42MeV) +4y(e) + 2v)

e om -, - TUISIU g g o 232 o ) @9

(2} (2

=4m, +6m, +4m, —2,/mm, _1om, +108:r;1 VIV _ 56733389MeV

Above, in the top line, we show in detail each ggeelease from largest to smallest, followed
by the electron and neutrino emissions. In thedieitine, we have segregated in separate
parenthesis, each contribution that is shown indpdine, including the neutrino mass presumed
to be virtually zero. In the bottom line, we haansolidated terms.

The above shows at least two things. First, dked energy of approximatel6.73 MeV
known to be released during solar fusion is exgeesntirely in terms of a theoretical
combination of the up, down and electron massds, nathing else added! Consequently, this is
anentirely theoreticakalculation of the known solar fusion energy reteaxpressed totally as
a function of elementary fermion massad it portends the ability to do the same ftweot
types of fusion as well, as the analysis of thiggras extended to larger nuclides Z>2, N>2.

Secondly, because the results throughout thisrfsgsen to validate modeling nucleons
as resonant cavities with energies released dnegtdased on the masses of their quark
contents, this tells us how to catalyze “resonasioin” in a more practical manner, because (8.8)
tells us the precise resonances that go into rielg#se total26.73 MeV of energy in the above.

In particular, if one wished as a technologicalterato facilitate fusion by creating an artificial
“sun in a box,” one would be inclined to amassrgdastore of hydrogen, and subject that
hydrogen store to gamma radiati@inor near the specified discrete energies thateappn (8.8)
S0 as to facilitate resonant cavity vibrationsrat@ar the energies required for fusion to occur.
Specifically, one would bath the hydrogen with anbination of gamma radiation at the

following energies / frequencies, some without, aaohe with, the Gaussie(ﬁn)% divisor (we
convert to wavelengths viege =1/(197MeV)):

6m, =2944MeV = 669F

m, = 222MeV = 8856F

2m, (harmoni¢ = 445MeV = 44.28F

4m,(harmonig = 890MeV = 2214F . (8.9)

m,m, = 330MeV =5962F
2,/m,m, (harmonig = 661MeV = 2981F
4,/m,m, (harmoni¢ =1322MeV =1491F
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10m,/(2z): = 312MeV = 6323F
10m,/(2z): = 141MeV =139.4F

2/m,m,/(27): = 0.42MeV = 46953F

)
3 8.10
4 /mm,/(2x): (6.10)

12/m,m,/

16,/mm,/

In the above, we have explicitly shown each basiguency / energy which appears in the
middle and bottom lines of (8.8) as well as harrostihat play a role in those equations. Also,
one should consider frequencies based on the etestass and its wavelength.

(harmoni¢ = 84MeV =234.7F '
:(harmonig = 252MeV = 7826F
(harmoni¢ = 336MeV =58.6%F

2

—_~ o~

)
)%

2

So, what do we learn? If the nucleons are treasa@sonant cavities and the energies at
which they fuse depend on the masses of their itoest quarks as is made very evident by
(8.8), and given the particular energies and harosshown above which appear to play roles in
solar fusion, the idea for harmonic fusion is tbjeat a hydrogen store to high-frequency
gamma radiation proximate at least one of the ®aqies (8.10), with the view that these
harmonic oscillations will catalyze fusion by pgseaeducing the amount of heat that is
required. In present-day approaches, fusion r@astre triggered using heat generated from a
fission reaction, and one goal would be to reducgiminate this need for such high heat and
especially the need for any fissile trigger. Tisatve at least wish to posit the possibility that
providing the proper harmonics in (8.9) and (8.tb0& hydrogen store can catalyze fusion better
than known methods are able to do, with less hadideally little or no fission trigger required.

Of course, these energies in (8.9) and (8.10) ang high, and aside from the need to
produce this radiation via known methods such asnbt limited to, Compton backscattering
and any other methods which are known at presemiagrbecome known in the future for
producing gamma radiation, it would also be neagssaprovide substantial shielding against
the health effects of such radiation. The higleesrgy componentm, =2944MeV = G69F ,
is extremely high and would be very difficult toeld (and to produce), but this resonance arises
from (8.8) which is for the finafHe+;He- ;He+/H +;H + Energgortion of the solar fusion
cycle. If one were to forego this portion of tlusibn cycle and focus only on fusing protons into
deuterons according tH+H - H +e" +v+ Energy (8.1), then the only resonance needed

is 2,/m,m,/(27)? =0.42MeV = 46953F . Not only is this easiest to produce becauseriesgy

is the lowest of all the harmonics in (8.9) and.(§, but it is the easiest to shield and the least
harmful to humans.

Certainly, a safe, reliable and effective method associated hardware for producing
energy via the fusion of protons into deuteronstiereaction (8.1), and perhaps further fusing
protons and deuterons into helions as in (8.4)ntrgducing at least one of the harmonics in
(8.9) and / or (8.10) into a hydrogen store perhag®mbination with other known methods,
while insufficient to create the “artificial sun”adeled above if one foregoes the final alpha
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production in (8.7), would nonetheless represemeél@ome, practical addition to the sources of
energy available for all forms of peaceful humadeavor.

9. Recalibration of Masses and Binding Energies &ian Exact Relationship for the
Neutron — Proton Mass Difference

At the end of section 4, we briefly commented opezimental errors, and as between the
alpha particle and the deuteron, we determinedishahs more sensible to associate the binding
energy of the deutergureciselywith the mass of the up quark, thus making theregtecally-
predicted alpha binding energy a close approxirbataot exact match to its empirically
observed value, rather than vice versa. But thdiption in (6.16) for the neutron—proton mass
difference to just over 7 parts in ten million isexy different matter. This is even more precise
by half an order of magnitude than the alpha masdgigtion, and given the fundamental and
pervasive nature of the relationship #d(n)— M(p) anywhere and everywhere that beta-decay
takes place, we now argue why (6.86puldbe taken as aexactrelationship with all other
relationships recalibrated accordingly, so that mlegvup quark mass will still be very close to
the deuteron binding energy, but will no longerzactlyequal to this energy.

First of all, as just noted, thigl(n)— M(p) mass difference is the most precisely predicted

relationship of all the relationships developedwaydo under one part per million AMU.
Second, we have seen that all the other nucledirtgrenergies we have predicted are close
approximations, but not exact, and would expedtttiia inexactitude will grow larger as we
consider larger nuclides. So, rhetorically spegkmhat should make the deuteron “special,” as
opposed to any other nuclide, that it gets to lsavéexact” relation to some combination of
elementary fermion masses while all the other deslido not? Yes, the deuteron should come
closestto the theoretical prediction (namely the up mas$s)ll the nuclides, because it is the
smallest composite nuclide. Closer than all othalidesbut still not exact After all, even the
A=2 deuteron should suffer from the effects of “BAgZ+N,” even if only to the very slightest
degree of parts per ten million. Surely it shosudfer these effects more than #el proton or
neutron.

Third, if this is so, then we gain a new footingomable to consider how the larger
nuclides differ from the theoretical ideal, becaagen for this simple#t=2 deuteron nuclide,
we will already have a precisely-known deviationathwe may perhaps be able to extrapolate
to larger nuclides for which this deviation certgibecomes enhanced. Fourth, in a basic sense,
the deuteron, which is one proton fused to onernauhas a mass which is a measure of
“neutronplus proton,” while M(n)— M(p) is a measure of “neutraninusproton.” So we are
really faced with a choice between who gets toXaetand who must be only approximate:
n+p, or n-p. Seen in this lighkl(n)— M(p) measures an energy feature of neutrons and protons
in their native, unbound states, as separate atithcti entities, and thus is a function of these
elemental nucleons in their purest form. In thetden, by contrast, we have a two-body
system which is less-pure, so if we are to choeseden one or the other, we should choose
M(n)—M(p) to be arexactrelationship, with the chips then falling whereytmay for all other
relationships, including the deuteron binding egeryow, the deuteron is relegated to the same
“approximate” status as all other compound polyhades, and only the proton and neutron as
distinct mono-nuclides get to enjoy an “exact” g$at
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Let us therefore do exactly that. Specifically, tlee reasons given above, we now
abandon our original hypothesis that the up quaaksmsexactlyequal to the deuteron binding
energy, and in its place we substitute the hypadhbat (6.16) is aexactrelationship, period.
That is, we now define, by hypothesis, thateRactrelationship which drives all the others, is:

3m, + m,m, -3

(2a)

[M(n)_ M(p)]observed: 0.00133849188u = nL - m“ = [M(n)_ M(p)]Predicted'(g'l)

Then, we modify all the other relationships accogtiy.

The simplest way make this adjustment is to mattiéyoriginal hypothesis (3.1) to read:
m,=2B, + £ = By(H) + £ = 0.002388170D0u + £, (9.2)

and to then substitute this into (9.1) wittaken as the unknown. This is most easily sotvabl
numerically, and it turns out that=-0.00000083073 u, which is just over 8 parts in ten
million u. That is, substituting = —-0.00000083073 u into (9.2), then using (1.4) to derive the
down quark mass, then substituting all of that (®d.), will make (9.1) exa¢hrough all twelve
decimal placegnoting that experimental errors are in the last places).

As a consequence, the following critical energiegeloped earlier, become nominally
adjusted starting at the sixth decimal place in AMbd now become (contrast (3.1), (3.3), (3.4),
(3.5) and (3.6) respectively):

m, = 000238733927 u, (9.3)
m, = 0005267312526 u, (9.4)
Jmm, =000354610526u, (9.5)
B, =2m, +m, - (m, +4/mm, +4m, )/ (2z) =000820060681u (9.6)
B, =2m, +m, - (m, +4/mm, +4m, )/ (2z)! =001053199971u. (9.7)

Additionally, this will slightly alter the bindingnergies that were predicted earlier. The
new results are as follows (contrast (4.1), (5 €.18) respectively):

B, (‘He)=2B =0.03037300232u, (9.8)

OPredicted

By( HE)eineq = 000832078380 . (9.9)
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By H)pyegicieg = 000909904708 U . (9.10)
and, via (9.3) and this adjustment of masses,

Bo (*H) predicted =2 Bopregiceg = My = 000238733927 u. (9.11)

In (9.11), we continue to regard the predicted eieut binding energ, (*H ) p,.queq @S beING
equal to the mass of the up quark, but because#iss of the up quark has now changed
slightly, the observed energy (whichBg(*H)=.002388170100) will no longer beexactly

equal to the predicted energy, but rather, wendi haveB, (*H) # B, (*H) pregicies With @

difference of less than one part per one millionlAMThe precise, theoretical exactitude now
belongs to theM(n)— M(p) difference specified in (9.1). As a bontl®e up and down masses
now have a ten-digit precision in AMWith experimental errors in the "1 and 12" digits.

One other point is worth noting. With an entirddgoretical expression now developed
for the neutron—proton mass difference via (9.3 ,start to assault the full, dressed proton and
neutron masses themselves. Specifically, it wbel@xtremely desirable to be able to specify
the proton and neutron masses solely and exclysageh function of the elementary up, down,
and electron fermion masses. Fundamentally, byei¢ary algebraic principles, taking each of
the proton and neutron masses as an unknown, waechite these masses if we have can find
two independent equations, one of which contains antexpression related to themof these
masses, and the other which contains an exact®stprerelated to theifferenceof these
masses. Equation (9.1) achieves the first hatisfobjective: for the first time, we now have a
theoretical expression for tidg#ferencebetween these masses. But we still lack an intbgpe
expression related to their sum.

Every effort should now be undertaken to find arotielationship related to the sum of
these masses. In all likelihood, that relationsiipich must inherently explain the natural ratio
just shy of 1840 between the masses of the nuclaeashe electron, and / or similar ratios of
about 420 and 190 involving the up and down masgégsj)eed to emerge from an examination
of Lagrangian terms in (2.14) which we have notepgilored, and / or the perturbations which
as explained in section 11 of [1], have been seeto throughout the course of this
development. While analyzing binding energies exxkss mass and nuclear reactions as we
have done here is a very valuable exercise, therémit limitation is that all of these analyses
involve differences What is needed to obtain the “second” of therdddwo independent
equations, are sums, not differences.

10. Summary and Conclusion

Summarizing the results developed here, we now trev&llowing theoretical
predictions for the binding energies shown in Taylwith isobar lines indicated:
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Table 8: Binding Energies (B,) of 1s Nuclides (Theoretical, AMU)

Above, we have also referenced the equations ichwthiese predictions are derived. The mass
losses (excess masses) discussed in section 7 whretvery helpful to the exercise of
examining the solar fusion cycle in section 8,aanmeply the negative (positive) of the above.
Having just considered thil(n)— M(p) mass difference, it is useful to also look atdterence
between théH and®He isobarsA=3 in the above. Given th#tle is the stable nuclide and that

®H undergoesB™ decay into’H, we may calculate the difference in binding efego be:

B(°He) - B(H) = —2m, +| 1+ Jmm, =-000077826389u. (10.1)

(277)%

Similar calculations may be carried out as betwberisotopes and isotones in Table 8, and it is
helpful to contrast the above to (the negativg®f)) which represents the most element&ry
decay of a neutron into a proton.

The numerical values of these theoretical bindimgrgies in Table 8, in AMU, using the
updated (9.8) through (9.11), are predicted toh®kows:

Bpredicted ZNUCIide on 1H zHe

w N = O

Table 9: Binding Energies (B, ) of 1s Nuclides (Predicted, AMU)

These theoretical predictions should be carefutlnpared to the empirical values in
Table 2. Indeed, subtracting each entry in Table 2 frosheantry in Table 9, we find:
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Bpredicted-observed ZN uclide
N

0
1
2
3

Table 10: Predicted Minus Observed Binding Energie$; B,) of 1s Nuclides (AMU)

This shows us how much eagtedictedbinding energy (mass excess) differs fromdhserved
empiricalenergies, in AMU.

As has been reviewed, every one of these predgtgaccurate to under four parts in
100,000 AMU {He has this largest difference). Specifically: vee now used the thesis that
Baryons are Yang-Mills magnetic monopoles to prieitie binding energies of the alpt4e
nucleus to undefour parts in one millionof the*He helion nucleus to undéur parts in
100,000 and of thé'H triton nucleus to undeseven parts in one millionAnd of special import,
we have exactly related the neutron—proton massrdifce — which pervades all aspects of
nuclear physics and beta decay — to the up and doark masses, which in turn enables us to
predict the binding energy for tAl deuteron nucleus most precisely of all, to jusr® parts
in ten million This also seems to strongly validate the hymthimat the nuclides should be
viewed agesonant cavitiesvhich release or retain energy in accordance @xgiressions based
on the masses of the quarks which are containdtinnucleons.

The thesis that Baryons are Yang-Mills magneticopmles now appears to have ample,
indeed irrefutable empirical confirmation, estaldis a basis for finally “decoding” the
abundance of known data regarding nuclear masselsiading energies, and may lay the
foundation for technologically realizing the thetoral promise of nuclear fusion.
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