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Maxwell equations for electromagnetic waves propagating in dispersive media are studied as they are, without
commonplace substituting a scalar function for electromagnetic field. A method of variables separation for
the original system of equation is proposed. It is shown that in case of planar symmetry variables separate in
systems of Cartesian and cylindric coordinates and Maxwell equations reduce to one-dimensional Schrödinger
equation. Complete solutions are obtained for waves in medium with electric permittivity and magnetic
permeability given as ε = e−κz, µ = c−2e−λz.
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I. INTRODUCTION

The method of variables separation plays important
role in physics providing the main opportunity to ob-
tain complete solutions of equations of mathematical
physics1. Separation of Maxwell equations is much
more complicated procedure than that of scalar equa-
tions found in standard texts on mathematical physics.
So far this procedure was used only in vacuum2–5. In
this work we apply the method of separation of Maxwell
equations in a dispersive medium, proposed in our work6

and obtain complete set of pure states of electromagnetic
waves in a matter possessing planar symmetry.

Maxwell equations in a uniform medium reduce to
scalar d’Alembert equation in Cartesian coordinates and
can be solved by the same methods as any scalar
equation7–9. In other coordinate systems and even in
Cartesian coordinates, but in non-uniform media with
electric permittivity ε and magnetic permeability µ be-
ing arbitrary functions on the space, it is not so, because
these functions enter the equations like a kind of poten-
tial on which the wave refracts an reflects as in analogous
phenomena studied in quantum mechanics10. Since these
functions play more complicated role than potential in
quantum mechanics, details of these phenomena cannot
be studied properly in the same approach. Therefore, de-
scription of waves propagation in non-uniform media, re-
quires solutions of Maxwell equations obtained by solving
the entire system as it stands, without replacing vector
electromagnetic field by a scalar one. Such a substitution
does not help even in the simplest case when the medium
possesses planar symmetry so that ε and µ are specified
as single-variable functions in Cartesian coordinates.

At the same time, methods for solving Maxwell equa-
tions as they stand, have been elaborated in general
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relativity3 where electromagnetic waves propagate under
similar conditions. These methods may well be applied
to the problem of electromagnetic waves propagation in
media specified by their dielectric factors ε and µ as func-
tions on the space. Obtaining complete solutions would
change contents of classical electrodynamics and make it
similar to all the rest linear theories, for example, quan-
tum mechanics, in which solution of any problem has
the form of orthogonal expansion over functional space
endowed with basis of particular solutions called “pure
states” or “orthogonal modes”. This can be done, at
least, in the simplest case of medium possessing planar
symmetry specified by certain functions ε(z) and µ(z).

II. COMPLEX POTENTIAL

In this work we consider Maxwell equations repre-
sented in terms of exterior differential forms as follows:

d∆ = 0 dB = 0 (1)

dH = ∂∆
∂t

dE = −∂B

∂t
,

with constraints

∆ = ε∗E, B = µ∗H, (2)

where E and H are 1-forms, ∆ and B are 2-forms, as-
terisk in the equations above is related to the 1-forms
and stands for the 3-dimensional asterisk conjugation be-
cause in our approach, time is not included as the fourth
dimension. It is convenient to represent the quartet of
two strengths and two inductions as components of sin-
gle 2-form on the space-time

Ψ = dt ∧ (E + ıH) + (B − ı∆). (3)

In this representation the four source-free Maxwell equa-
tions (1) take the form of single equation

dΨ = 0. (4)
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Indeed, if the field satisfies the source-free Maxwell equa-
tions, the exterior derivative of this 2-form is zero:

dΨ = dt∧
(

∂B

∂t
− dE

)
− ı dt∧

(
∂∆
∂t

+ dH

)
+d(B− ı∆),

where exterior derivatives in the right-hand side are taken
only in spatial directions. In vacuum this form is known
to be self-dual (in sense of four-dimensional space-time),
whereas in a non-uniform dielectric this condition vio-
lates with electric permittivity and magnetic permeabil-
ity. This representation and the form of equations will
be used below when constructing analytical solutions of
the Maxwell equations in an exponential half-space.

In general, dielectrics have ε and µ which are not given
by one and the same function in the space, so that the
asterisk operation changes the form of Ψ completely and
as the result, its conjugate ∗Ψ does not coincide with Ψ
in form. Therefore in general, it is convenient to assume
that the 1-form of potential is complex-valued, so that
the four-dimensional asterisk operation is not used at all.
The dielectric factors appear when applying the three-
dimensional asterisk operation to its real and imaginary
parts separately for electric and magnetic components.
In this approach Maxwell equations are equivalent to the
equations

∆ = ε∗E, B = µ∗H (5)

where expressions for strengths and inductions are taken
from exterior derivative of the complex-valued 1-form of
the potential:

A = φ dt + fi dxi, φ = φ1 + ıφ2, fi = f1i + ıf2i (6)

E = dφ1 +
∂f1i

∂t
dxi, B = df1i ∧ dxi,

H = dφ2 +
∂f2i

∂t
dxi, ∆ = df2i ∧ dxi.

Combination of this representation and the equations
(5) is equivalent to the Maxwell equations, therefore in-
stead of Maxwell equations we solve this combination.
Note that in this case complex potentials produce only
real-valued strengths and inductions, so, it essentially
differs from complex vector potentials commonly used
when solving Maxwell equations in Cartesian coordi-
nates. Now, taking the constraints (2) into account pro-
vides complete plane wave solutions of Maxwell equations
in the medium. The goal of this work is to show that
Maxwell equations in a medium with ε and µ given as
functions of single Cartesian coordinate, reduce to ordi-
nary differential equation and obtain complete solution
in particular case exponential half-space (z ≥ 0) with
these functions specified explicitly as ε(z) = e−κz and
µ(z) = c−2e−λz. Though we try to consider more or less
realistic situation, in which these functions are, at least,
bounded, our solutions have mainly illustrative character
to demonstrate possibility of describing the phenomenon
of electromagnetic wave propagation in terms of pure
states and orthogonal expansions in the half-space z ≥ 0.

III. COMPLEX POTENTIALS AND THE FIELD IN
CARTESIAN COORDINATES

The electromagnetic potential can be taken in the form

A = f dx + g dy + h dz (7)

whose coefficients f , g and h depend on four coordi-
nates. Here we do not include the time component φ dt
because number of equations of the system (5) is six,
consequently, we need only six unknowns. The 1-form
A will be represented as A = A1 + ıA2 where A1 and
A2 are real-valued 1-forms specified by their components
f1, g1, h1 and f2, g2, h2 correspondingly. To see what
components of strengths and inductions the field has, we
find out exterior derivative of the 1-form (7) (temporarily
using the fourth-dimensional exterior differentiation):

dA = ∂f
∂t

dt ∧ dx + ∂g
∂t

dt ∧ dy +

+ ∂h
∂t

dt ∧ dz +
(

∂g
∂x

− ∂f
∂y

)
dx ∧ dy +

+
(

∂h
∂y

− ∂g
∂z

)
dy ∧ dz +

(
∂f
∂z

− ∂h
∂x

)
dz ∧ dx.

Now, as the 1-form A is complex, we have two strengths
and two inductions

E = ∂f1
∂t

dx + ∂g1
∂t

dy + ∂h1
∂t

dz (8)

B =
(

∂g1
∂x

− ∂f1
∂y

)
dx ∧ dy +

+
(

∂h1
∂y

− ∂g1
∂z

)
dy ∧ dz +

(
∂f1
∂z

− ∂h1
∂x

)
dz ∧ dx

H = ∂f2
∂t

dx + ∂g2
∂t

dy + ∂h2
∂t

dz

∆ =
(

∂f2
∂y

− ∂g2
∂x

)
dx ∧ dy +

+
(

∂g2
∂z

− ∂h2
∂y

)
dy ∧ dz +

(
∂h2
∂x

− ∂f2
∂z

)
dz ∧ dx.

Substituting the components into the equations (5) yields
explicit form of the equations. In this point we should
make the following remark. On one hand, electric and
magnetic strengths have different dimensions, on the
other hand, they are real and imaginary parts of the time
derivative of the co-vector potential. Therefore, we either
have to admit that its real and imaginary part have dif-
ferent dimensions or to annul the difference putting speed
of light equal to unity. Hereafter we do so, thus, put c = 1
and remove this coefficient from the Maxwell equations.
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IV. INCLUSION OF CONSTRAINTS

Substituting the strengths and inductions (8) into the
equations (2) yields the following system:

ε
∂f1

∂t
=

∂g2

∂z
− ∂h2

∂y
, µ

∂f2

∂t
=

∂h1

∂y
− ∂g1

∂z

ε
∂g1

∂t
=

∂h2

∂x
− ∂f2

∂z
, µ

∂g2

∂t
=

∂f1

∂z
− ∂h1

∂x

ε
∂h1

∂t
=

∂f2

∂y
− ∂g2

∂x
, µ

∂h2

∂t
=

∂g1

∂x
− ∂f1

∂y
.

In this work we consider the simplest case of dispersive
medium in which ε and µ depend on one of Cartesian co-
ordinates, say, z, therefore, it suffices to obtain solutions
which do not depend on another Cartesian coordinate,
say, y. Then we can ignore derivatives on this variable
that simplifies the system. Indeed, the system decays into
two independent subsystems, one for the functions f1, g2

and h1 and another for three other unknowns, which de-
scribe two different polarizations. As such, it suffices to
restrict the scope with one of them. So, hereafter only
functions f1, g2 and h1 are non-zero, they do not depend
on y and we omit the subscripts. The system becomes

ε
∂f

∂t
=

∂g

∂z
, ε

∂h

∂t
= −∂g

∂x

µ
∂g

∂t
=

∂f

∂z
− ∂h

∂x
.

To solve this system assume that the strengths draw a
wave which propagates in the x-direction as a plane wave.
It is easy to find out what components of the potential
are proportional to sine and what to cosine of arguments
like ωt− px. The result is

f = F (z) cos(ωt− px), (9)
g = G(z) sin(ωt− px),
h = H(z) sin(ωt− px).

The system simplifies and yields ordinary differential
equations

H =
Gp

ωε
, G′ = −ωεF, G =

ωεF ′

ω2εµ− p2 . (10)

Here two first equations can be used as definitions of
the functions F and H and the third one reduces to an
ordinary differential equation. Now we introduce again
the subscripts “1” and “2” which denote two different
polarizations, thus, the subscript “1” corresponds to po-
larization specified by f1, g2 and h1 and the subscript
“2” – to f2, g1 and h2:

ε
d

dz

(
1
ε

dG1

dz

)
+ ω2(εµ− sin2 α)G1 = 0 (11)

µ
d

dz

(
1
µ

dG2

dz

)
+ ω2(εµ− sin2 α)G2 = 0,

where we have introduced incident angle α:

p = ω sin α. (12)
In case of interface of a uniform medium and exponential
half-space α is exactly the incident angle indeed, there-
fore we called it so.

V. COMPLEX POTENTIALS AND THE FIELD IN
COORDINATES OF ROUND CYLINDER

Propagation of electromagnetic wave in exponential
half-space can also be described in coordinates of round
cylinder {t, z, ρ, ϕ}, but in this case we include the time
component of the electromagnetic potential:

A = φ dt + f dz + g dρ + hρ dϕ. (13)

Its exterior derivative has the form

dA =
(

∂f
∂t

− ∂φ
∂z

)
dt ∧ dz +

(
∂g
∂t
− ∂φ

∂ρ

)
dt ∧ dρ +

+
(

∂h
∂t
− 1

ρ
∂φ
∂ϕ

)
ρ dt ∧ dϕ +

(
∂g
∂z

− ∂f
∂ρ

)
dz ∧ dρ +

+

[(
∂
∂ρ

+ 1
ρ

)
h− 1

ρ
∂g
∂ϕ

]
ρ dρ ∧ dϕ +

(
1
ρ

∂f
∂ϕ

− ∂h
∂z

)
ρ dϕ ∧ dz.

So, as φ1, f1, g1 and h1 specify the real-valued part of the
potential and φ2, f2, g2 h2 do its imaginary part, then
due to the equation (3) strengths and inductions of the
field are
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E =
(

∂f1

∂t
− ∂φ1

∂z

)
dz +

(
∂g1

∂t
− ∂φ1

∂ρ

)
dρ +

(
∂h1

∂t
− 1

ρ

∂φ1

∂ϕ

)
ρ dϕ (14)

B =
(

∂g1

∂z
− ∂f1

∂ρ

)
dz ∧ dρ +

[(
∂

∂ρ
+

1
ρ

)
h1 − 1

ρ

∂g1

∂ϕ

]
ρ dρ ∧ dϕ +

(
1
ρ

∂f1

∂ϕ
− ∂h1

∂z

)
ρ dϕ ∧ dz

H =
(

∂f2

∂t
− ∂φ2

∂z

)
dz +

(
∂g2

∂t
− ∂φ2

∂ρ

)
dρ +

(
∂h2

∂t
− 1

ρ

∂φ2

∂ϕ

)
ρ dϕ

∆ =
(

∂f2

∂ρ
− ∂g2

∂z

)
dz ∧ dρ +

[
1
ρ

∂g2

∂ϕ
−

(
∂

∂ρ
+

1
ρ

)
h2

]
ρ dρ ∧ dϕ +

(
∂h2

∂z
− 1

ρ

∂f2

∂ϕ

)
ρ dϕ ∧ dz.

Now the expressions (14) will be substituted into the
equations (5) that yields their explicit form:

ε

(
∂f1
∂t

− ∂φ1
∂z

)
= 1

ρ
∂g2
∂ϕ

−
(

∂
∂ρ

+ 1
ρ

)
h2, µ

(
∂f2

∂t
− ∂φ2

∂z

)
=

(
∂

∂ρ
+

1
ρ

)
h1 − 1

ρ

∂g1

∂ϕ
, (15)

ε

(
∂g1
∂t

− ∂φ1
∂ρ

)
= ∂h2

∂z
− 1

ρ
∂f2
∂ϕ

, µ

(
∂g2

∂t
− ∂φ2

∂ρ

)
=

1
ρ

∂f1

∂ϕ
− ∂h1

∂z
,

ε

(
∂h1
∂t

− 1
ρ

∂φ1
∂ϕ

)
= ∂f2

∂ρ
− ∂g2

∂z
, µ

(
∂h2

∂t
− 1

ρ

∂φ2

∂ϕ

)
=

∂g1

∂z
− ∂f1

∂ρ
.

To separate variables in these equations we assume that
the functions to be found have certain form of dependence
on the coordinates t and ϕ:

φ1 = φ1(z, ρ) sin(ωt−mϕ), φ2 = φ2(z, ρ) sin(ωt−mϕ), (16)
f1 = f1(z, ρ) cos(ωt−mϕ), f2 = f2(z, ρ) cos(ωt−mϕ),
g1 = g1(z, ρ) cos(ωt−mϕ), g2 = g2(z, ρ) cos(ωt−mϕ),
h1 = g1(z, ρ) sin(ωt−mϕ), h2 = −g2(z, ρ) sin(ωt−mϕ).

Now, we replace the functions h1 and h2 of two variables
with the functions g1 and g2 correspondingly and have

six unknowns in six equations. The equations for the
functions of two variables have the form

− ε

(
ωf1 + ∂φ1

∂z

)
=

(
∂
∂ρ

+ 1 + m
ρ

)
g2, −µ

(
ωf2 +

∂φ2

∂z

)
=

(
∂

∂ρ
+

1−m

ρ

)
g1,

− ε

(
ωg1 + ∂φ1

∂ρ

)
= −∂g2

∂z
− mf2

ρ , −µ

(
ωg2 − mφ2

ρ

)
=

∂g1

∂z
− ∂f1

∂ρ
,

ε

(
ωg1 + mφ1

ρ

)
= ∂f2

∂ρ
− ∂g2

∂z
, −µ

(
ωg2 +

∂φ2

∂ρ

)
=

mf1

ρ
− ∂g1

∂z
.

Taking sums and differences of the equations on the sec-
ond and third lines transforms the system as follows:
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ε

(
ωf1 + ∂φ1

∂z

)
= −

(
∂
∂ρ

+ 1 + m
ρ

)
g2, µ

(
ωf2 +

∂φ2

∂z

)
= −

(
∂

∂ρ
+

1−m

ρ

)
g1,

ε

[
2ωg1 +

(
∂
∂ρ

+ m
ρ

)
φ1

]
=

(
∂
∂ρ

+ m
ρ

)
f2, µ

[
2ωg2 +

(
∂

∂ρ
− m

ρ

)
φ2

]
=

(
∂

∂ρ
− m

ρ

)
f1,

ε

(
∂
∂ρ

− m
ρ

)
φ1 = 2∂g2

∂z
−

(
∂
∂ρ

− m
ρ

)
f2, µ

(
∂

∂ρ
+

m

ρ

)
φ2 = 2

∂g1

∂z
−

(
∂

∂ρ
+

m

ρ

)
f1.

It is seen that if ε and µ depend only on z, the functions to
be found depend on the coordinate ρ as Bessel functions:

φ1 = Φ1(z)Jm(lρ), (17)
f1 = F1(z)Jm(lρ),
g1 = G1(z)Jm−1(lρ)
φ2 = Φ2(z)Jm(lρ),
f2 = F2(z)Jm(lρ),
g2 = G2(z)Jm+1(lρ)

where we have used the identities
(

d
dz

+ ν
z

)
Jν(z) = Jν−1(z) (18)

(
d

dz
− ν

z

)
Jν(z) = −Jν+1(z)

(the second solutions Yl(lρ) is also to be used. In general,
modified Bessel functions Im(lρ) and Km(lρ) also can be
used under some boundary conditions with account that
their recurrent relations have different form

(
d

dz
+ ν

z

)
Iν(z) = Iν−1(z) (19)

(
d

dz
− ν

z

)
Iν(z) = Iν+1(z).

Now it remains to solve ordinary differential equations:

ε(ωF1 + Φ′1) = −lG2, µ(ωF2 + Φ′2) = lG1

ε(2ωG1 + lΦ1) = lF2, µ(2ωG2 − lΦ2) = −lF1

− lεΦ1 = 2G′2 + lF2, lµΦ2 = 2G′1 − lf1.

The equations of the second line simply express the func-
tions f1 and f2 via others, therefore it remains to solve
the system of four equations for four unknowns. Substi-
tuting these two functions leads to the following system:

ε

[
Φ′1 − ωµ

(
2ω
l

G2 − Φ2

)]
= −lG2,

µ

[
Φ′2 + ωε

(
2ω
l

G1 + Φ1

)]
= lG1,

− lεΦ1 = 2G′2 + ε(ωG1 + lΦ1),
lµΦ2 = 2G′1 + µ(2ωG2 − lΦ2)

and equations of the second line can be used as definitions
of the functions φ1 and φ2, so that we obtain a system
of two equations for two unknowns. In fact, the two last
equations are independent because each of them contains

only one function to be found, which coincides with the
equations (11):

ε

(
G′2
ε

)′
+ (εµω2 − l2)G2 = 0, (20)

µ

(
G′1
µ

)′
+ (εµω2 − l2)G1 = 0,

and after it is solved the functions Φ1 and Φ2 can be
found from the equalities

Φ1 = −1
l

(
G′2
ε

+ ωG1

)
, Φ2 =

1
l

(
G′1
µ

+ ωG2

)
, (21)

and F1 and F2 – from the equalities

lF1 = G′1 − ωµG2, lF2 = −(G′2 − ωεG1). (22)

These functions are to be substituted to the equations
(17) and the result – to the equations (9) for Cartesian
coordinates and (16) for cylindric coordinates. The re-
sults provide amplitudes of electromagnetic wave in the
medium as they appear in the equations (13).

The two equations (20) contain different cylindric func-
tions, modified Bessel functions which grow unlimitedly
either near the axis of under big values of ρ. Therefore
usually the solution contains only one form of cylindric
function which is Jm(lρ). When constructing wave fields
in domains where the coordinate ρ definitely does not
reach zero and infinity other cylindric functions can also
be used, but this depends on explicit formulation of the
problem. Certain problems of this sort will be considered
in one of further sections and usage of all these functions
will be demonstrated in action.

VI. EXPONENTIAL HALF-SPACE

In this section we consider propagation of wave in a
medium with ε(z) and µ(z) specified as certain functions
of z that turns the equation (11) into an ordinary differ-
ential equation with known solutions. First, we specify
ε(z) and µ(z) by ε(z) = e−κz and µ = c−2e−λz. The
equations (11) take the form

G′′1 + κG′ + ω2
(
e−(κ+λ)z − sin2 α

)
G1 = 0

G′′2 + λG′2 + ω2
(
e−(κ+λ)z − sin2 α

)
G2 = 0
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for both polarizations. Here, we introduce the parameter
α by analogy with the incident angle (23):

l = ω sin α. (23)

The meaning of this parameter can be established in the
case of uniform matter, when κ = λ = 0 the form of the
functions G1 and G2 is evident, the parameter α reveals
as the angle of focusing or divergence of the waves.

It is convenient to introduce a unit of length equal to
(κ+λ)−1 so that the equations in such a system of units
simplify as follows:

G′′1 + κG′ + ω2(e−z − sin2 α)G1 = 0 (24)
G′′2 + λG′2 + ω2(e−z − sin2 α)G2 = 0.

Solutions of these equations are found in the book11 and
have the form

G1(z) = e−κz/2 Zν(2ωez/2), (25)

ν =
√

κ2 − 4ω2 sin2 α

and
G2(z) = e−λz/2 Zν(2ωez/2),

ν =
√

λ2 − 4ω2 sin2 α,

where Zν(x) is one of two cylindric functions Jν(x) or
Yν(x). Now, functions φi can be obtained from the
equations (21) and the functions fi from the equations
(22). Subsequent substituting the results into the equa-
tions (17,16,7) and (13) provides complex potential from
which strengths and inductions can be obtained due to
the equations (8) and (14).

VII. CONCLUSION

The problem of waves propagation in an exponential
half-space is solved by the method of variables sepa-
ration applied to Maxwell equations in Cartesian and
round cylinder coordinate systems. In Cartesian coor-
dinates each solution corresponds to arbitrary frequency,
one component of wave vector (represented as ω sin α)
and one of two linear polarizations, they constitute com-
plete set. In coordinates of round cylinder each solution

also is labeled with necessary number of characteristics,
one of which is angular momentum about the axis ρ = 0.
These solutions can be used for describing electromag-
netic waves in media with dielectric factors having form
of smooth monotonic functions of single Cartesian coor-
dinate denoted z. As for the method, it allows to separate
Maxwell equations in Cartesian and round cylinder coor-
dinates and obtain complete sets of solutions for various
media specified by their dielectric factors as functions
of z. Thus, the theory of electromagnetic waves in a
medium possessing planar symmetry takes the form of
standard linear theory which describes the phenomenon
in terms of orthogonal basis in the corresponding func-
tional space.
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