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Abstract: -   We convert, within polynomial-time and sequential processing, an NP-Complete Problem into a real-
variable problem of minimizing a sum of Rational Linear Functions constrained by an Asymptotic-Linear-Program. 
The coefficients and constants in the real-variable problem are 0, 1, -1, K, or -K, where K is the time parameter 
that tends to positive infinity. The number of variables, constraints, and rational linear functions in the objective, 
of the real-variable problem is bounded by a polynomial function of the size of the NP-Complete Problem. The NP-
Complete Problem has a feasible solution, if-and-only-if, the real-variable problem has a feasible optimal objective 
equal to zero. We thus show the strong NP-hardness of this real-variable optimization problem.
 
 
1.     Introduction
 
An Asymptotic-Linear-Program (ALP) is a linear program over real variables, whose coefficients and constants in the 
objective and constraints, are rational polynomial functions of K, the time parameter. It has been proved [1] that as K tends to 
positive infinity, the ALP demonstrates a steady-state behaviour in its feasibility (or infeasibility) and in its optimal basis of 
variables (if feasible).
     It has been shown [2] that optimizing a single rational polynomial function of real variables, is NP-hard. It has also been 
shown [3] that optimizing a single rational linear function of binary variables, can be accomplished within polynomial-time.
     Consider the problem of optimizing a sum of rational linear functions of real variables, over an ALP. We shall denote 
this problem as Orational_linear_functions_ALP. Denote Prational_linear_functions_ALP as the problem of deciding whether or not the optimal 
objective value of Orational_linear_functions_ALP is equal to a target integer.
     In our paper [4], we showed the NP-Completeness of the problem Plinear_eq_binary_1 of deciding the feasibility of a set of 
linear equations over binary variables, with coefficients and constants that are 0, 1, or -1. Consider an instance of problem 
Plinear_eq_binary_1 having M linear equations, over a binary variable vector < b1, b2, … bN >, i.e. each variable bi is allowed to be 
either 0 or 1, for all integers i in [1,N]:

a1,1 b1 + a1,2 b2 + … + a1,N bN = c1
a2,1 b1 + a2,2 b2 + … + a2,N bN = c2
…
aM,1 b1 + aM,2 b2 + … + aM,N bN = cM

     where each of ai,j and ci is given to be 0, 1, or -1, for all integers j in [1,N], and all integers i in [1,M].
In the subsequent sections of this paper, we will show how to convert an instance of Plinear_eq_binary_1 into 
Prational_linear_functions_ALP.
 
 
2.     Modelling Binary Variables using Rational Linear Equations over real variables
 
Definitions:   Let x be a real variable such that 0 < x < 1. Let <x1, x2, ... xN> be a vector of real variables, such that 0 < 
xi < 1 for all integers i in [1,N]. Let K tend to positive infinity.
 
Theorem-1:   It is strongly NP-Hard to decide feasibility of Rational Linear Inequalities over real variables
Proof:   Consider the Rational Equation (x + ((1-x)/2)) = (1/(2-x)), which when simplified yields ((x(1-x)) / (2(2-x))) 
= 0. Because 0 < x < 1, and because x=2 is the only point of discontinuity of the Rational Linear Function, we can use 
this to express a binary variable. So the following set of Rational Linear Inequalities has a real solution, if and only if, 
Plinear_eq_binary_1 has a binary vector solution:

a1,1 b1 + a1,2 b2 + … + a1,N bN = c1 ;
a2,1 x1 + a2,2 x2 + … + a2,N xN = c2 ;
…
aM,1 x1 + aM,2 x2 + … + aM,N xN = cM ;



0 < x1 < 1 ; (x1 + ((1-x1 )/2)) = (1/(2-x1 )) ;
0 < x2 < 1 ; (x2 + ((1-x2 )/2)) = (1/(2-x2 )) ;
... ...
0 < xN < 1 ; (xN + ((1-xN )/2)) = (1/(2-xN )) ;

Using the technique mentioned in paper [4], we can express (within polynomial-time) all these Rational Linear Inequalities 
with coefficients 0, 1, or -1. Thus, it is strongly NP-hard to decide the feasibility of a set of Rational Linear Inequalities, over 
real variables.
Hence Proved
 
Theorem-2:   For any positive integer i, ( ((x/(K+2i-1)) + ((1-x)/(K+2i))) = 1/(K+2i-x) ) ↔ (x is either 0 or 1)
Proof:   A Boolean statement P↔Q can be proved by showing Q→P and P→Q. For x=0, the value of the Left-Hand-Side 
(LHS) in the equation, is 1/(K+2i), which is equal to the value of the Right-Hand-Side (RHS). For x=1, the value of the LHS, 
is 1/(K+2i-1), which is equal to the value of the RHS. So Q→P. Next, ((x/(K+2i-1)) + ((1-x)/(K+2i))) = 1/(K+2i-x) implies 
that ( ((x/(K+2i-1)) + ((1-x)/(K+2i))) - 1/(K+2i-x) ) = 0. Simplifying this expression yields (x(1-x)) / ((K+2i-1)(K+2i)(K+2i-
x)) = 0. As K tends to positive infinity, the denominator of the LHS of this expression is always positive, so the only way for 
this equation to be satisfied is that x(1-x) = 0, which implies that x is either 0 or 1. So P→Q. 
Hence Proved
 
Theorem-3:   Let < w1 , w2 ,… wN > and < u1 , u2 ,… uN > be two vectors of real numbers, such that wi ≠ 0 for all 
integers i in [1,N], and such that wi ≠ wj ,for all i≠j. There exists a positive real γ that is a function of real numbers < 
w1 , w2 ,… wN, > and real numbers < u1 , u2 ,… uN >, such that for all K > γ, the following statement is true:
( (K((u1 /(K+ w1 )) + (u2 /(K+ w2 )) + ... + (uN /(K+ wN ))) = 0) ↔ (u1 = u2 = … = uN = 0) )
Proof:   This is a generalization of Theorem-1 of the paper [5]. A Boolean statement P↔Q can be proved by showing Q→P 
and P→Q. As Q→P is obvious, we will focus on proving P→Q. Expressing ((u1 / (K+ w1 )) + (u2 / (K+ w2 )) + … + (uN / (K+ 
wN ))) as a single rational expression, we obtain: ( (u1 A1 + u2 A2 + … + uN AN) / ((K+ w1 )(K+ w2 )… (K+ wN ))), where, for all 
integers i in [1,N], Ai = (product of (K+ wj ), over all integers j in [1,N] and j≠i). We can write the expression (u1 A1 + u2 A2 
+ … + uN AN) as (KN-1 BN-1 + KN-2 BN-2 +… + K0 B0), where, for all integers i in [0, N-1], Bi represents the coefficient of Ki in 
the expression (u1 A1 + u2 A2 + … + uN AN). We have:
BN-1 = u1 + u2 + … + uN 
BN-2 = (w2+ w3+…+ wN )u1 + (w1+ w3+ w4+… wN )u2 + (w1+ w2+ w4+ w5+…+ wN )x3 + … + (w1+ w2+ w3+…+ w(N-1) )uN
BN-3 = (w2* w3+ w2* w4+…+ w2* wN + w3*w4 + w3* w5 + … w3* wN + … w(N-1)* wN )u1 + 
          (w1* w3 + w1* w4 … w1* wN + w3* w4 + w3* w5 + … w3* wN + … w(N-1)* wN )u2 + 
          …+ 
          (w1* w2+ w1* w3+…+ w1* w(N-1) + w2* w3+ w2* w4+…+ w2* w(N-1) + … + w(N-2)* w(N-1) )uN
…
B0   = (w2* w3*…* wN )u1 + (w1* w3* w4*…* wN )u2 + (w1* w2* w4* w5*…* wN )u3 + … + (w1* w2* w3*…* w(N-1) )uN
     Generalizing the pattern in the above coefficients, BN-1 = u1 + u2 + … + uN, and, for all integers i in [0,(N-2)], Bi = 
(Summation over all integers j in [1,N], of (uj*(summation of all combinations of product terms from Set of elements {{ w1 , 
w2 , … wN} –{ wj }}, having (N-i-1) elements in each product term))).
     Now consider the expression (KN-1 BN-1 + KN-2 BN-2 + … + K0 B0) as a univariate Polynomial in K. For a given set 
of scalars {u1, u2, … uN}, it is obvious that there exists an upper bound γ on the real root of this Polynomial, given by 
Lagrange’s Theorem [1]. Hence for all K>γ, the only possibility for ((KN-1 BN-1 + KN-2 BN-2 +… + K0 B0) = 0) to be true, is (Bi 
= 0, for all integers i in [0,N-1]). This gives us a set of N linear equations in {u1, u2, … uN}, mentioned in Lemma-1:
Lemma-1:   We aim to prove that the following N linear equations in {u1, u2, … uN} are unique:
BN-1 = u1 + u2 + … + uN = 0, and, 
for all integers i in [0,(N-2)], Bi = (Summation over all integers j in [1,N], of (uj*Comb(N-i-1) ({j}))) = 0. 
     Here (Comb(N-i-1) ({j})) denotes summation of all combinations of product terms from Set of elements {{ w1 , w2 , … wN} –{ 
wj }},having (N-i-1) elements in each product term. We denote: Set{a,b,c,d} – Set{b,d} = Set {a,c}.
Proof:   (These N linear equations are unique) ↔ (determinant of matrix Ω1, formed from coefficients of the linear equations, 
is non-zero). Ω1 is shown in the Figure 1. We know that (determinant of a matrix is 0) ↔ (determinant of its transpose is 0). 
We also know that multiplying a row or column by a real number (equivalent to multiplying the determinant by that same 
real number), and, adding two rows or columns together, do not change the result of its determinant being zero or non-zero.



Figure 1:   The square matrix Ω1 of dimension N
 
Denoting Column i in the matrix as Ci, we apply column operations Ci_next = Ci – Ci+1 on Ω1, for all integers i in [1,N-1]. This 
eliminates one dimension, and we get the next square matrix Ω2 of dimension N-1, shown in Figure 2.

Figure 2:   The square matrix Ω2 of dimension (N-1)
 
In Ω2, divide Column Ci by (wi+1 - wi ) for all integers i in [1,N-2], then again apply Ci_next = Ci – Ci+1 for all integers i in [1,N-
2], to eliminate another dimension to get square matrix Ω3 in Figure 3.

Figure 3:   The square matrix Ω3 of dimension (N-2)
 
For Ωj where 2 ≤ j ≤ (N-1), we now attempt to complete the Induction proof that dividing Column Ci by (wi+j-1 - wi ) for all 
integers i in [1,N-j], and subsequently applying operations Ci_next = Ci – Ci+1 for all integers i in [1,N-j], gives square matrix 
Ωj+1 of dimension (N-j) where the kth element of Column Ci , is equal to ((wi+j - wi )* Comb(k-2) ({wi ,wi+1 ,...,wi+j })).
     Consider any column vector Ci in Ωj where (1 ≤ i ≤ (N-j)). Assume that the first element in Ci is (wi+j-1 - wi ), and the kth 
element where (2 ≤ k ≤ (N-j+1)) in Ci is ((wi+j-1 - wi )*Comb(k-1) ({wi ,wi+1 ,...,wi+j-1 })). Further assume that the first element in 
Ci+1 is (wi+j - wi+1 ), and the kth element (2 ≤ k ≤ (N-j+1)) in Ci+1 is ((wi+j - wi+1 )*Comb(k-1) ({wi+1 ,wi+2 ,...,wi+j })). In Ωj , after 
dividing Ci by (wi+j-1 - wi ) for all integers i in [1,(N-j+1)], the value of the kth element in (Ci – Ci+1) becomes:

= ((Comb(k-1) ({wi ,wi+1 ,...,wi+j-1 })) – (Comb(k-1) ({wi+1 ,wi+2 ,...,wi+j })))
= (wi+j *Comb(k-2) ({wi ,wi+1 ,...,wi+j }) – wi *Comb(k-2) ({wi ,wi+1 ,...,wi+j }))
= ((wi+j - wi )* Comb(k-2) ({wi ,wi+1 ,...,wi+j })), which is equal to the kth element of Column Ci in Ωj+1

This completes the Induction Proof. The loss of dimension (between Ωj and Ωj+1) is obvious after applying Ci_next = (Ci – Ci+1), 
for all integers i in [1,N-j], since the first row of Ωj always has 1, after the division of Column Ci of Ωj by (wi+j-1 - wi ).
     We proceed to iteratively obtain square matrices of smaller dimensions, until ΩN-1 of dimension 2 in Figure 4.



Figure 4:   The square matrix ΩN-1 of dimension 2
 
The final operation of dividing Column Ci by (wN+i-2 - wi ) for all integers i in [1,2] and applying the column operation C1_next 
= C1 – C2, yields the single element (wN - w1 ). From all the divisions of the columns of the matrices performed so far, the 
value of the determinant Ω1 is non-zero, if and only if, the following product of (N(N-1)/2) terms is non-zero:

(w2 - w1 )(w3 - w1 ) ... (wN - w1 ) (w3 - w2 )(w4 - w2 ) ... (wN - w2 ) (w4 - w3 )(w5 - w3 ) ... (wN - w3 ) ... (wN - wN-1 )
That is possible, if and only if, wi ≠ wj  for all i≠j which is given to be true. Hence proved Lemma-1.
     Thus, the only solution that satisfies the set of homogenous linear equations in Lemma-1, is ui = 0 for all integers i in 
[1,N].
Hence Proved
 
Theorem-4:   Let < w1 , w2 ,… wN > and < u1 , u2 ,… uN > be two vectors of real numbers, such that wi ≠ 0 for all 
integers i in [1,N], and such that wi ≠ wj ,for all i≠j. There is a one-to-one mapping between every < u1 , u2 ,… uN > and 
((u1 /(K+w1 )) + (u2 /(K+w2 )) + ... + (uN /(K+wN )))
Proof:   Assume that there exists a non-trivial real vector <∆1, ∆2, ... ∆N> such that ((u1 /(K+w1 )) + (u2 /(K+w2 )) + ... + (uN 
/(K+wN ))) = (((u1 + ∆1 )/(K+w1 )) + ((u2 + ∆2 ) /(K+w2 )) + ... + ((uN + ∆N ) /(K+wN ))). This would imply that ((∆1 /(K+w1)) 
+ (∆2 /(K+w2 )) + ... + (∆N /(K+wN ))) = 0, which would contradict Theorem-3. This implies that every real vector <u1, u2, ... 
uN> corresponds uniquely to ((u1 /(K+w1 )) + (u2 /(K+w2 )) + ... + (uN /(K+wN ))) and vice-versa.
Hence Proved
 
Theorem-5:   For each integer i in [1,N], denote yi = ((xi /(K+2i-1)) + (( 1-xi )/(K+2i))), and denote zi = 1/( K+2i-xi ). 
Then, ( y1 + y2 + ... + yN = z1 + z2 + ... + zN ) ↔ (<x1, x2, ... xN> is a binary vector)
Proof:   A Boolean statement P↔Q can be proved by showing Q→P and P→Q. For xi = 0, the value of yi = 1/(K+2i), which 
is equal to the value of zi . For xi = 1, the value of yi = 1/(K+2i-1), which is equal to the value of zi . So for each element of 
<x1, x2, ... xN> being either 0 or 1, ( y1 + y2 + ... + yN = z1 + z2 + ... + zN ). So Q→P. Next, from Theorem-2 of this paper, for 
any integer i in [1,N], (yi = zi )→(xi is either 0 or 1). We now focus on proving that ( y1 + y2 + ... + yN = z1 + z2 + ... + zN ) → 
((yi = zi ), for all integers i in [1,N]). Note now from Theorem-3, that it is not possible for ( y1 + y2 + ... + yN - z1 - z2 - ... - zN 
= 0) unless xi takes on a value, such that the denominator of one of the terms of yi is equal to the denominator of zi . It is not 
possible for the balancing of yi to be done by any other zj (j ≠ i) because 0 < xi < 1, for all integers i in [1,N]. That is either 
(K+2i-1) = (K+2i-xi ) or (K+2i) = (K+2i-xi ). That is either xi = 1 or xi = 0, and in both these cases, we have (yi = zi ) as seen 
in Theorem-2. So ( y1 + y2 + ... + yN = z1 + z2 + ... + zN ) → ((yi = zi ), for all integers i in [1,N]) → (xi is either 0 or 1, for all 
integers i in [1,N]). So P→Q.
Hence Proved
 
Theorem-6:   The globally minimum value of ( y1 + y2 + ... + yN - z1 - z2 - ... - zN ) is 0. Also this global minimum is 
reached when <x1, x2, ... xN> is a binary vector
Proof:   From Theorem-5, it is obvious that ( y1 + y2 + ... + yN - z1 - z2 - ... - zN  = 0) ↔ (<x1, x2, ... xN> is a binary vector). 
We now focus on proving that the minimum value of the expression  (y1 + y2 + ... + yN - z1 - z2 - ... - zN ) is 0. For any integer 
i in [1,N], we see that ( yi - zi ) = ( (xi ( 1-xi )) / ((K+2i-1)(K+2i)( K+2i-xi )) ). As K tends to positive infinity, and as 0 < 
xi < 1, the denominator of this expression is always positive, and the numerator (xi ( 1-xi )) is always non-negative. So the 
minimum value of ( yi - zi ) is zero, which happens when xi is either 0 or 1. Thus, the global minimum of ( y1 + y2 + ... + yN - 
z1 - z2 - ... - zN ) is 0, which happens only when <x1, x2, ... xN> is a binary vector.
Hence Proved
 
Start of example illustrating Theorem-3
Consider an example with N=4, the expression: ( (u1 / (K+w1 )) + (u2 / (K+w2 )) + (u3 / (K+w3 )) + (u4 / (K+w4 )) )
= ((K+w2 )(K+w3 )(K+w4 )u1 + (K+w1 )(K+w3 )(K+w4 )u2 + (K+w1 )(K+w2 )(K+w4 )u3 + (K+w1 )(K+w2 )(K+w3 )u4 ) /      
   (K+w1 )(K+w2 )(K+w3 )(K+w4 )
= (    K3(u1 + u2 + u3 + u4) + 
         K2((w2+w3+w4 )u1 + (w1+w3+w4 )u2 + (w1+w2+w4 )u3 + (w1+w2+w3 )u4) +  
         K ((w2*w3+w2*w4+w3*w4 )u1 + (w1*w3+w1*w4+w3*w4 )u2 + (w1*w2+w1*w4+w2*w4 )u3 + (w1*w2+w1*w3+w2*w3)u4 ) +
            ((w2*w3*w4 )u1 + (w1*w3*w4 )u2 + (w1*w2*w4 )u3 + (w1*w2*w3 )u4 )       )   /  ((K+w1 )(K+w2 )(K+w3 )(K+w4 ))



 
The matrix Ω1 is shown in Figure 5.

Figure 5:   The square matrix Ω1 for our example
 
Apply C1_next = C1 – C2, C2_next = C2 – C3, to get rid of first row and last column, so the resulting matrix Ω2 is in Figure 6.

Figure 6:   The square matrix Ω2 for our example
 
In Ω2, divide Column Ci by (wi+1 - wi ) for all integers i in [1,2], then apply Ci_next = Ci – Ci+1 for all integers i in [1,2], to 
eliminate another dimension to get square matrix Ω3 in Figure 7.

Figure 7:   The square matrix Ω3 for our example
 
In Ω3, divide Column Ci by (wi+2 - wi ) for all integers i in [1,2], then apply Ci_next = Ci – Ci+1 for all integers i in [1,2], to 
eliminate another dimension to get a single element whose value is (w4 - w1 ). Thus, taking into account all the divisions 
performed so far, we have the following 4 true statements:

(Determinant of Ω1 is non-zero) ↔ 
((w2 – w1)(w3 – w1)(w4 – w1)(w3 – w2)(w4 – w2)(w4 – w3) ≠ 0) ↔ 
(wi ≠ wj for all i≠j) ↔
( (K((u1 /(K+ w1 )) + (u2 /(K+ w2 )) + (u3 /(K+ w3 )) + (u4 /(K+ w4 ))) = 0) ↔ (u1 = u2 = u3 = u4 = 0) )

End of Example illustrating Theorem-3
 
 
3.     Expressing Plinear_eq_binary_1 as Prational_linear_functions_ALP

 
3.1     Obtaining purely Linear constraints, and a sum of Rational Linear Functions for the Objective Function
We use Theorem-5 and Theorem-6 to express Plinear_eq_binary_1 as Prational_linear_functions_ALP. We aim to minimize ( y1 + y2 
+ ... + yN - z1 - z2 - ... - zN ), referred to as the objective function, over the constraints of Plinear_eq_binary_1, replacing its 
binary variable vector < b1, b2, … bN > with the real variable vector < x1, x2, … xN >. (The objective is minimized to 
zero) ↔ (One of the 2N possible binary vector solutions is allowed for < x1, x2, … xN >). Our intention is to allow the 
objective of Prational_linear_functions_ALP to have a sum of rational linear functions. We also intend to allow the constraints 
of Prational_linear_functions_ALP to have purely linear functions (and not rational linear functions). So we make appropriate 
substitutions for this, and add more linear constraints in the process. For each integer i in [1,N], make the substitution yi = ( xi 
/ pi ) + ( ( 1-xi ) / qi ), and the substitution zi = 1/ ri , where:

pi = (K+2i-1); qi = (K+2i); ri = (K+2i-xi )
     where each of pi , qi , and ri is a real variable.
Note that the objective is a summation (over all integers i in [1,N]) of the term ( (xi ( 1-xi )) / ((K+2i-1)(K+2i)( K+2i-xi )) ). 
So we introduce a multiplicative term K3 on the objective. Note that if this multiplicative term is not introduced, any tools 
that attempt to evaluate the value of the objective will always obtain a value of 0, since the value of LimitK→(positive infinity)(1/K) 



is considered to be 0. Also note that the value of (K3( y1 + y2 + ... + yN - z1 - z2 - ... - zN )), as K tends to positive infinity, can 
either be equal to 0, or be equal to a non-zero positive real with a lower bound equal to some function of the coefficients and 
constants in the linear equations of Plinear_eq_binary_1 ( i.e. it cannot tend to 0 and remain positive).
 
3.2     Orational_linear_functions_ALP and Prational_linear_functions_ALP
We write out Orational_linear_functions_ALP with the following Objective and Constraints:
Minimize the Objective:     
       K3 (      ( x1 / p1 )         + ( x2 / p2 )           + ... +  ( xN / pN ) 
               + ( ( 1-x1 ) / q1 ) + ( ( 1-x2 ) / q2 )   + ... + ( ( 1-xN ) / qN )
                -  (1/ r1 )              - (1/ r2 )                 -  ... -  (1/ rN )     )
Subject to Constraints:

a1,1 x1 + a1,2 x2 + … + a1,N xN = c1 ;
a2,1 x1 + a2,2 x2 + … + a2,N xN = c2 ;
…
aM,1 x1 + aM,2 x2 + … + aM,N xN = cM ;
0 < x1 < 1; p1 = (K+1); q1 = (K+2); r1 = (K+2 - x1 );
0 < x2 < 1; p2 = (K+3); q2 = (K+4); r2 = (K+4 - x2 );
... ... ... ...
0 < xN < 1; pN = (K+2N-1); qN = (K+2N); rN = (K+2N - xN );

Orational_linear_functions_ALP has 3N rational linear functions in its objective, (M+4N) linear constraints, and 4N real variables. 
We state Prational_linear_functions_ALP as: ((Orational_linear_functions_ALP is feasible) AND (Zero is the minimum objective of 
Orational_linear_functions_ALP)). Finally, (Prational_linear_functions_ALP is TRUE) ↔ (A feasible binary solution exists to Plinear_eq_binary_1).
 
3.3     Strong NP-hardness of Prational_linear_functions_ALP
An ALP whose coefficients and constants are rational functions of K, can be expressed with coefficients and constants that 
are linear functions of K. Example, the constraint (3K2 + 2K + 5) x < (7/K), can be replaced with simultaneous constraints 
( y0 K < 7 ; y0 = y1 + y2 + y3 ; y1 = 3K y11 ; y11 = Kx ; y2 = 2Kx ; y3 = 5x ). Also these constraints may be further expressed 
with coefficients and constants that are 0, 1, -1, K, or -K. Example, replace (y2 = 2Kx) with (y2 = Kz1 + Kz2 ; x = z1 ; x = z2 ).
     As the maximum magnitude of coefficients in Orational_linear_functions_ALP is 2N, it can be rewritten (within polynomial time) to 
have coefficients and constants are 0, 1, -1, K, or -K. This shows the strong NP-hardness of Prational_linear_functions_ALP.
 
 
4.     Conclusion
 
In this paper, we converted an NP-Complete problem (over binary variables), within polynomial-time, into a decision 
problem (over real variables) of whether or not the minimum value of a sum of Rational Linear Functions, is zero, 
constrained by an Asymptotic-Linear-Program. The size (i.e. number of constraints and variables, and rational linear 
functions in the objective) in the obtained real-variable-problem is bounded by a polynomial function of the size of the 
given NP-Complete Problem. The real-variable problem can also be efficiently expressed (within polynomial-time) with 
coefficients and constants that are 0, 1, -1, K, or -K. We thus, showed that it is strongly NP-hard to optimize the sum of 
rational linear functions of real variables, constrained by an Asymptotic-Linear-Program. 
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