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Abstract

This article describes an algorithm which is supposed by the author to be capable of solving any
instance of a 3-SAT CNF in maximal O(n'?), whereby n is the variable index range within the 3-SAT
CNF to solve. The presented algorithm imitates the proceeding of an exponential, fail-safe solver.
This exponential solver stores internal data in m-SAT clauses, with 3 < m < n. The polynomial
solver works similarly, but uses 3-SAT clauses only to save the same data. The paper explains how,
and proves why this can be achieved. On the supposition the algorithm is correct, the P-NP-Problem
would be solved with the result that the complexity classes NP and P are equal.

1 Introduction

Problems denoted as ‘NP-complete’ are those algorithms which need an amount of computing time or
space which grows exponentially with the problem size n. If it should be accomplished to solve in general at
least one of those problems in polynomial time and space, all NP-complete problems out of the complexity
class NP could from then on be solvable much more efficiently. Finding the answer to the open question
if such a faster computation is possible at all is called the P versus NP problem.[6]

The present article describes an algorithm which is supposed by its author to solve the NP-complete
problem ‘exact-3-SAT’ in polynomial time and space. This persuasion comes from the fact that the
implementation of the algorithm correctly solved absolutely every 3-SAT CNF which was given as input.
Those 3-SAT CNFs had a size n of up to 26, in the course of around 6 months at least one million of
them have been processed with always correct output. Of course one must be skeptical, many attempts
to build a polynomial 3-SAT solver failed in the early stages or the related algorithm did later turn out
to be incorrect. The author of this paper does nevertheless believe the presented algorithm is relevant to
the scientific community, because it did never fail and because it is extremely simple and can therefore
easily be further examined by any interested reader. In case it should be really correct, the P-NP problem
would be solved with the result P = NP.

2 Definitions

The following definitions will be used to describe and analyze the polynomial algorithm. Their purpose
will become accessible in the course of the document.

Some definitions are presented for the 3-SAT case only. The reader should be able to transfer them to
2-SAT easily, by just downsizing the figure shown in the definition (by leaving one literal off, for instance).
The 2-SAT variants are occasionally used in some document passages.



2.1 3-SAT CNF

Given is a formula in conjunctive normal form:

Y
CNF = /\(Eilxil V €;0T59 V 6i3xi3)
i=1

This 3-SAT CNF, in this document often just called ‘CNF’, consists of 4 many conjugated clauses.
Within each clause, 1, Z;0, T3 | i1, 12,43 € {1, ...,n} are disjunctive Boolean variables. There are always
exactly three variables in each clause. Each variable has assigned an epsilon: €;1,€;5,€;3 € {0,1}. If
this €, | @ € {1,2,3} has the value 0, then the value of z;, is negated when evaluating the CNF. If
€iq | @ € {1,2,3} has the value 1, no negation is done. Each epsilon and its related variable form a
‘literal’, The variable indices are chosen out of a set of natural numbers {1,...,n}. The variable indices
are pair-wise distinct: iy # 41,43 # 41,43 # i2. n will be used as description of the problem size in the
upcoming analysis of the solver’s complexity.

The task of the presented polynomial solver is to find out if there is an assignment of either true or
false to each literal so that a given CNF as a whole evaluates to true. Then we say this assignment,
synonymously called solution or, in literature, ‘model’[6], satisfies the CNF. If the CNF evaluates to true,
we say the CNF is ‘solvable’. If it is not possible to satisfy the CNF, we say the CNF is ‘unsatisfiable’, or
synonymously ‘UNSAT’. The solvability must be determined by the solver in polynomial time and space.
The solver only says if there is a solution or not, it does not output an assignment. This is still sufficient
to solve the P versus NP problem.[]

Examples

We suppose it is given:

CNF = (0z;; V Oz V O0xi3) A (1aiq V 1aiy V 0xi5) A (0x4q V 1aie V 1243).

This formula is solved, among others, by the solution x;; = true and x;9 = false and x;3 = true
because when we insert these Boolean values, we get:

CNF = (—trueV —false V —true) A (true V false V —true) A (—true V false V true).

When evaluating this formula with the common rules of Boolean logic, we get CNF = true.

A simple example of an unsatisfiable formula is:

CNF =
(Oxil V OZ‘Z‘Q vV Ol‘i?’) A (0.%'11 V 0.137;2 vV 1.1313) A (Oxil V 1331'2 vV Oxig) A (01’11 vV 11'7;2 vV 1@'13) A
(1171'1 vV OJ?Z'Q vV O$i3) A (11’21 V OCCZ‘Q V leB) A (1131'1 V 11'1'2 vV O.Tig) AN (11’11 V lmig V 19313)

This formula can never evaluate to true, no matter how the value of each of the Boolean variables
Ti1, Tig, Ti3 is chosen. The reader can verify this by just trying out all 8 possible solutions. The
presented CNF is an easy example for an unsatisfiable 3-SAT clause, practically important CNFs
typically are more opaque.

2.2 Notation Convention

Within this document, a fixed notation convention for clauses is used:

e The index of any variable in a clause is noted in lowercase letters. For example, i1, io and i3 are
the indices of variables in the clause (€;;241 V €;0%5 V €;3x;3). The variable index as a whole, i.e.
letter (here: i) plus the numeration (1, 2, 3), contains a natural number, which is out of the range
{1,...,n}. This means for the example: i; € {1,...,n}, ix € {1,...,n} and i3 € {1,...,n}.

e The related clause name is identified by a lowercase letter as well. This letter does always match
the letter of the index of the variables. For example, i = (€;12;1 V €;0%i0 V €;3T;3).



I decided to use lowercase letters for clause names as well because the source code of the exact-3-
SAT solving algorithm (which is later presented) uses lowercase letters. This is done for consistency,
because in the source code, all clause names are variables which contain array indices, and these
variables are empirically not capitalized by most programmers.

2.3 DPossible Clauses

The set PC of possible clauses is defined as:
PC = {(€i17i1 V €iaTia V €i3%3) }

with €1, €;0, €;3 € {0,1},41, 12,13 € {1,...,n},i2 # i1,i3 # 1,13 # i2. All possible choices of these epsilon
and ¢ values appear once in the set PC.

PCNum = |PC| = (2* x (})), because there are 2° = 8 epsilon combinations and () possibilities to
choose 3 distinct variable indices out of {1,...,n}.

Example

For n = 3, the set of possible clauses is:
PC = {

(01‘1 V 0372 V 0.’133)7
(OIZ?l V 0zg V 1563),
(0:51 Vilzg V 0%3),
(0!171 vV ].1}2 V 1£C3)7
(1$1 V 0xg V 0.’)3‘3),
(11‘1 vV Ol‘g vV 13?3),
(11?1 V 11‘2 V 0563),
(1I1 \Y 11‘2 \ 11‘3)
}

2.4 Active Solutions

An active solutions is defined as a string of n many characters (abbreviated ‘chars’), whereby each char
can be chosen out of {0,1,-}:
u={0,1,-}"

Examples

u = 0000, u = 0001, u = 000-, u = 00----, 4 = 10--10, and so on.

2.5 In Conflict

Two clauses j, k € PC are said to be ‘in conflict’ if they have at least one variable index in common and
the epsilons concerned are not equal:

(G#k) e 3he{1,2,30ie{1,2,3}] (6, =0Aex; =1)V (e, = 1A ex; = 0)) A (i = ki)

Similar is defined for a clause j € PC and an active solution w:

(j#u) & 3ie{l,2,3}] ((eji =0 Awuy, 21)\/(63‘1- =1Awuy =0)))



We define ‘not in conflict’ as (j = k) & —(j Z k) resp. (j =u) & —(j £ u).

Furthermore it is defined for a clause ¢ € PC and an active solution u: “The active solution u contains
79

c’, “c appears in the active solution «”, “c is in the active solution u” or “c from the active solution u”
= c=u (i.e. ¢is not in conflict with w).

Examples

e j=(0x1 VO0xyV0zx3) and k = (0z V 123 V 0x5) are in conflict, because x3 has an epsilon value €3
of 0 in j and an epsilon value €,5 of 1 in k. So it applies: j # k.

j = (0xzy V1xo VO0zx3) and k = (0z2 V 1lzg V Oxs) are in conflict, because there are even two conflicts
between both clauses’ €, and €,3. So it applies: j # k.

Jj = (0z1 V0xy VO0xs) and k = (0x2 V 0x3 V 0x5) are not in conflict. So it applies: j = k.

j = (0xy VO0xs V0x3) and k = (0x4 V Oxs V Oxg) are also not in conflict. So it applies: j = k.

j = (0z1 V 0xy V 0zx3) and uw = 0100 are in conflict, because the char number 2 in w differs from the
epsilon value of x5 in j. So it applies: j # u.

Jj = (0z1 V 0z V 0x3) and u = 0000 are not in conflict. So it applies: j = w.

2.6 Clause Line Notation

Definition 2.6.1 The clause line notation of a clause shall be a string consisting of n chars, whereby
each char can be chosen out of {0,1,-}. For x-SAT, any clause line contains exactly x many 0 or/and 1
chars and exactly (n — x) many “’ chars. x is here any natural number, in this document mostly 2 or 3.

A classical, mathematical clause known from general literature can be converted into a clause line as
follows: The clause line is initially a string {-}". Then regard the three literals of the mathematic clause
one after another. If a literal is negated, place ‘0’ at the 1ocat101ﬂ within the clause line indicated by the
literal index (the initial ‘-’ chars are overridden). If the literal of the mathematical clause is not negated,
act equally but place a ‘1’.

Examples for n =5
(Il V I3 \ —\x5) 1-1-0
(332 vV X4 V —\$5) = -1-00

The reverse direction, clause line notation to mathematical disjunction notation, works accordingly: The
position of a 0 or 1 char in the clause line is the variable index in the disjunction, only if the char in the
clause line is a 0, the variable in the disjunction is negated.

Clauses are, within this document, partially noted in clause line notation. I decided to do this to get a
more characteristic visualization which is easier to understand than similar-looking, indexed ‘x’-variables.

Remark: It can easily be determined if two clauses j, k in clause line notation are in conflict. They are in
conflict if j has a 0 at some position where k has a 1, or vice versa.

Examples

j = 000---is in conflict with k = 111---
j = --000- is in conflict with k = 101---
j = 000---is in conflict with & = --100-
j = 010---is in conflict with k = 00--0-

1The z-th location within a clause in clause line notation is always defined as the a-th char from left.



But:
7 = 000--- is not in conflict with £ = --000-

j = --100- is not in conflict with & = 1-1-0-
j =111---is not in conflict with £ = ---000
j = 111---is not in conflict with k = 111---

When there is an (active) solution given in clause line notation, then this notation can be transformed
to mathematical notation by replacing each 0 at position p by x, = false and each 1 at position p by
Tp = true.

Example

u = 0011 satisfies a clause or CNF —
x1 = false,x9 = false, x3 = true, x4 = true satisfies the clause or CNF.

2.7 200()

Definition 2.7.1 200(n-SAT clause c) shall be defined as the set of all 2-SAT clauses which are not in
conflict with c.

Examples

200(000) = {00-,0-0,-00}

200(010) = {01-,0-0,-10}
200(0000) = {00--,0-0-,0--0,-00~,-0-0,--00}
200(0101) = {01--,0-0-,0--1,-10-,-1-1,--01}

2.8 Clause Path

The clause path is a visualization of the set of possible clauses.
One gets the clause path by just writing all possible clauses one below the other.

Examples



This is the clause path for 2-SAT, n=4.

The same for 3-SAT, n=4 is:

000-
001-
010-
011-
100-
101-
110-
111-
00-0
00-1
01-0
01-1
10-0
10-1
11-0
11-1
0-00
0-01
0-10
0-11
1-00
1-01
1-10
1-11
-000
-001
-010
-011
-100
-101
-110
-111

A block within any clause path shall be any subset of 4 (for 2-SAT clause paths) or 8 (for 3-SAT clause
paths) possible clauses which have all their 0/1 chars at the same positions.

Examples

00-- block 1
01-- block 1
10-- block 1
11-- block 1



0-0- block 2
0-1- block 2
1-0- block 2
1-1- block 2
0--0 block 3
0--1 block 3
1--0 block 3
1--1 block 3
-00- block 4
-01- block 4
-10- block 4
-11- block 4
-0-0 block 5
-0-1 block 5
-1-0 block 5
-1-1 block 5
--00 block 6
--01 block 6
--10 block 6
--11 block 6

The same for 3-SAT, n=4:

000- block
001- block
010- block
011- block
100- block
101- block
110- block
111- block

00-0 block
00-1 block
01-0 block
01-1 block
10-0 block
10-1 block
11-0 block
11-1 block
0-00 block
0-01 block
0-10 block
0-11 block
1-00 block
1-01 block
1-10 block
1-11 block
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-000 block
-001 block
-010 block
-011 block
-100 block
-101 block
-110 block
-111 block

The SAT solving algorithms presented in this paper do all work for any block order.



This means it is valid to shuffle whole blocks, but the clauses in each block must stay in one and the same
block.

Example

00-- block 1
01-- block 1
10-- block 1
11-- block 1
0--0 block 2
0--1 block 2
1--0 block 2
1--1 block 2
0-0- block 3
0-1- block 3
1-0- block 3
1-1- block 3
-00- block 4
-01- block 4
-10- block 4
-11- block 4
--00 block 5
--01 block 5
--10 block 5
--11 block 5
-0-0 block 6
-0-1 block 6
-1-0 block 6
-1-1 block 6

is valid, but

1--0 block
1--1 block

00—- block 1
01-- block 1
0-0- block 2
0-1- block 2
0--0 block 3
0-—-1 block 3
10-- block 1
11-- block 1
1-0- block 2
1-1- block 2

3

3

is not valid.

Shuffling clauses within a block would not confuse the presented solvers, but does not make sense because
then the clause path is more ‘chaotic’ and thus harder to understand (for the human examiner). Although
there is this theoretical support for different block orders, this shuffling is not of use for the polynomial
algorithm and will not be further examined in this document. It is just mentioned here for the sake of
completeness.



2.9 Clause Path Column

The ‘z-th clause path column’ shall be similarly defined like a matrix column: It just denotes the set of
chars in the z-th column (i.e. all chars at the z-th position from left) of the clause path.

Example

NN

1234 ¢ index of the clause path column (1: first column, 2: second column etc.)

3 Derivation of the Polynomial Algorithm

An exponential solver will be introduced. This exponential solver is easy to understand and easy to
verify. It will be shown that the exponential solver detects the solvability of any 2- or 3-SAT CNF
reliably. Subsequently, it will be pointed out that the idea of the exponential solver (extending/removing
active solutions) can be implemented similarly in polynomial time and space as well.

Although this document’s title announces a 3-SAT solver, many examples show a 2-SAT clause path, a
2-SAT CNF or 2-SAT clauses. This is done for simplicity, 2-SAT examples are mostly easier to understand
and need much less document space. It should be easily achievable for the reader to transfer the 2-SAT
examples to 3-SAT ones. When the 3-SAT case of an explanation or example is not obvious, it is declared
directly.



3.1 Exponential Solver

The exponential solver works as follows:

e Add one initial active solution u;,;; with no 0/1 chars (for the succeeding example u;p;s = —==-).
e Walk the clause path, clause by clause (top-down).
e For each current clause i:

— If clause ¢ does not appear in the CNF:

* Loop through the active solutions.
x If 4 is not in conflict with the current active solution u, then ‘extend’ w:
- Create a copy of u,

- add all 0/1 chars of i to u. If u does already consist of n many 0/1 chars, keep it
untouched (u still counts as extended in this case).

e If i is the last clause in the current block: Delete all active solutions which were already existing
when walking arrived at the end of the prior block. This means, only keep extended active solutions.

e If at the end of the last block there’s an active solution left, then the CNF is solvable, else it is
unsatisfiable.

Example (2-SAT, n=4 for reasons of space and for convenience; 3-SAT and any n analogous):

Clause path:

10



Clause path with clauses marked which appear in the example CNF:

CNF:

00--
01--
1-0-
1--1
-0-1
-1-1

Clause path:

00-- <- CNF clause
01-- <- CNF clause
10--
11--
0-0-
0-1-
1-0- <- CNF clause
1-1-
0--0
0--1
1--0
1--1 <- CNF clause
_00_
_01_
_10_
_11_
-0-0
-0-1 <- CNF clause
-1-0
-1-1 <- CNF clause
--00
--01
--10
--11

Clause path with active solutions at end of each block:

00-- <- CNF clause
01-- <- CNF clause

11-- 10--,11—-

0-0-

0-1-

1-0- <- CNF clause
1-1- 101-,111-

0--0

0-—-1

1--0

1--1 1010,1110 <- CNF clause
_00_

_01_

_10_

-11- 1010,1110

11



-0-1 <- CNF clause
-1-0 <- CNF clause
-1-1 1010 <- CNF clause

--11 1010

The exponential solver found out that the CNF has a solution, because the active solution 1010 remains.

We must invert the active solution and get the final solution (‘model’) for the CNF. We get the inverse
solution by just toggling all 0 to 1 and all 1 to O:
1010 — 0101.

The reason for the inversion is that any remaining active solution does exactly not satisfy the CNF. This
will be explained in the proof of an upcoming claim (see (3.1.1]).

We verify 0101:
Each clause from the CNF and each inverted solution must have at least one 0/1 char in common, at the
same position.

This applies to 0101:

The 0/1 chars marked by underlining appear in the inverted solution 0101, at the same positions.

Claim 3.1.1 Given the proceeding of the exponential solver as just introduced. If at least one active
solution rests at the end of clause path walking, then the CNF is solvable. FElse, it is unsatisfiable.

Proof:

1) In case the CNF is solvable, it has some solution (i.e. some ‘model’). Then all those possible clauses
will not appear in the CNF which are satisfied by the inverse solution.

Example

Assumed the solution (‘model’) of the CNF is 0000 then the following clauses do not appear in the
CNF:

They do not appear in the CNF because none of them would be satisfied by the solution 0000.

12



That none of the six clauses is satisfied by the solution is seeable when transforming them back into
mathematical notation:

The clause

11--

is in mathematical notation:
(I’l \ $2).

The solution

0000

is in mathematical notation:

x1 = false,xo = false,x3 = false,x4 = false.

When inserting the solution into the clause:
(false V false) = false.

So the solution does not satisfy the clause
11--.

In clause line notation, one sees that a solution satisfies a clause if the solution and the clause both
have a 0 char at the same position, or if they have a 1 char at the same position. If the solution
is completely (at all 0/1 chars) in conflict with the clause, then the solution does not satisfy the
clause. Again, this applies to the clause line notation.

So we know that when the CNF is solvable, all those clauses C' = {c1,ca,...} from the clause path do
not appear in the CNF which are not in conflict with the inverse solution. This means that the clauses
from C' are not in conflict pair-wise, because they are all also not in conflict with the inverse solution.
This means in return that in each block of the clause path, there is one clause (out of C) which is not in
conflict with at least one clause (also out of C) from each other block, and those clauses do all not appear
in the CNF. Therefore, the exponential solver will add all clauses from C' to an active solution. At the
end of the clause path walking, this active solution is exactly the inverse solution. The exponential solver
will output ‘solvable’; because there’s an active solution left at the end of the clause path walking. This
is the result we want.

2) In case the CNF is unsatisfiable:

Proof by contradiction: When the CNF is unsatisfiable, then there must be for each thinkable inverse
solution at least one clause in the CNF which is not in conflict with that inverse solution. Else the CNF
is solvable, as priorly explained in 1).

This means the exponential solver cannot keep any active solution active until the end of the clause path.

The reason therefore is that the inverse of any active solution can be seen as a solution (‘model’) for the
CNF which is extended with each newly crossed clause path block. When the exponential solver arrives
(in the clause path) at this clause which appears in the CNF and which is not in conflict with an active
solution, then this active solution will be removed. This will happen for all thinkable active solutions,
because for each of those active solutions there is a non-conflicting clause in the CNF. This has been
pointed out at the beginning of this proof part 2). So no active solution will have remained at the end of
the solving process and thus the exponential solver will output ‘UNSAT’.

3.2 Polynomial Solver

We cannot save the active solutions in memory, for the following reason: Active solutions are m-SAT
clauses. In practice (in tests done by me), very large m appeared, in extreme cases the 0/1 char count in
some active solutions were close or equal to the variable index range n of the CNF to solve. In this case,
the exponential solver might store exponentially many active solutions.

Therefore, the idea of the polynomial solver is to check if there ‘would be’ an active solution existing (in
an imagined parallel run of the exponential solver) which contains (i.e. is not in conflict with) the current
clause ¢, whereby i is the currently regarded clause in the clause path.

13



The polynomial algorithm works as follows:

e There is a 1-d, Boolean array “bool Active[PCNum];” with one true/false value for each possible
clause.

— Active[c] tells if clause ¢ would still be in at least one active solution.

— We say a clause c¢ is ‘active’ if and only if it applies: Active[c] = true.
e Initially, all array values are set to true.
e Walk the clause path, clause by clause (top-down).
e For each current clause i:

— If ¢ appears in the CNF:
* Set Active[i] := false.
— Else regard each combination of three blocks from the clause path:

x If in at least one combination of three blocks there’s not in each of the three blocks one
clause which is CNF-absent, active and is not in conflict with ¢, then set Active[i] := false.

- The clauses from the three blocks are named j, k, (.
- J,k, 1 must all not be in conflict with 4, and also not in conflict pair-wise.

e Repeat the complete walking procedure until no Active[] value has been changed any more.

e If in the last block there’s at least one Active]] = true left, then the CNF is solvable, else it is
unsatisfiable.

To clarify the linguistic description, regard the source code of the polynomial solver:

bool Active[POSSIBLE_CLAUSE_NUMBER_MAX] ;

for (int i = 0; i < PossibleClauseNumber; i ++)
Active[i] = true;

bool ChangesExisting = true;
while (ChangesExisting)
{
const int BlockSize = 8; // The count of clauses in one block: 8 for 3-SAT (4 for 2-SAT)

ChangesExisting = false;

for (int i = 0; i < PossibleClauseNumber; i ++)

{
if (Activelil)
{
if (ExistsInCNF(i))
{
Active[i] = false;
ChangesExisting = true;
goto Next_i;
}

bool Found_j = false;

14



for (int j = 0; j < PossibleClauseNumber; j ++)

{
if ((j % BlockSize) == 0) // first clause in block?
{
Found_j = false;
}

if (Active[j] && 'ExistsInCNF(j) && // ! means ‘not’ (i.e. negation)
'IsInConflict(i, j))

{
bool Found_k = false;

for (int k = 0; k < PossibleClauseNumber; k ++)

{
if ((k % BlockSize) == 0)
{
Found_k = false;
}

if (Activelk] && 'ExistsInCNF(k) &&
1IsInConflict(i, k) &&
IIsInConflict(j, k))

{
bool Found_1 = false;
for (int 1 = 0; 1 < PossibleClauseNumber; 1 ++)
{
if ((1 % BlockSize) == 0)
{
Found_1 = false;
}
if (Active[l] && 'ExistsInCNF(1l) &&
1IsInConflict(i, 1) &&
'IsInConflict(j, 1) &&
1IsInConflict(k, 1))
{
Found_1 = true;
}
if ((1 % BlockSize) == BlockSize - 1)
{
if (!Found_1)
{
goto Dont_Set_Found_k_true;
}
}
¥
Found_k = true;
}

Dont_Set_Found_k_true:;
if ((k % BlockSize) == BlockSize - 1)

{
if (!Found_k)
{
goto Dont_Set_Found_j_true;
}

15



Found_j = true;
}
Dont_Set_Found_j_true:;
if ((j % BlockSize) == BlockSize - 1) // last clause in block?

{
if (!Found_j)
{
Active[i] = false;
ChangesExisting = true;
goto Next_i;
b
b
b
Next_i:;
+
3
b

bool SAT = false; // SAT contains the solving result: true for CNF is solvable,
// false for CNF is UNSAT

for (int i = PossibleClauseNumber - BlockSize; i < PossibleClauseNumber; i ++)
{
if (Activel[il)
{
SAT = true;
break;

Why does this code detect the solvability of any 3-SAT CNF? This question is to be answered in the
following chapters step-by-step.

As already explained, the polynomial solver must determine for each clause c if that clause would appear
in an active solution. This information is stored in the array Active]].

Example

Clause path with active solutions at end of each block:

00-- <- CNF clause
01-—- <- CNF clause

11-- 10--,11--

1-0- <- CNF clause
1-1- 101-,111-

0--1

1--0
1--1 1010,1110 <- CNF clause

16



-11- 1010,1110

-0-1 <- CNF clause
-1-0 <- CNF clause
-1-1 1010 <- CNF clause

--11 1010

We perform the clause path walking as introduced in When we have arrived at the end of the last
block, we know that the exponential solver would have the active solution 1010 left. This has already
been explained. Then we know that the following clauses ¢ do still appear in an active solution, because
they are not in conflict with that active solution:

Therefore, the polynomial solver must contain the following active clauses, i.e. clauses with a related
Active[] value of true:

Active[10--] = true;
Active[1-1-] = true;
Active[1--0] = true;
Active[-01-] = true;
Active[-0-0] = true;
Active[--10] = true;

All other Active]] values must be false:

Active[00--] = false;
Active[01--] = false;
Active[11--] = false;
Active[0-0-] = false;
Active[0-1-] = false;
Active[1-0-] = false;
Active[0--0] = false;
Active[0--1] = false;
Active[1--1] = false;
Active[-00-] = false;
Active[-10-] = false;
Active[-11-] = false;
Active[-0-1] = false;
Active[-1-0] = false;
Active[-1-1] = false;
Active[--00] = false;
Active[--01] = false;
Active[--11] = false;
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So the polynomial solver shall work similar to the exponential solver, the difference is that the exponential
solver saves active solutions as m-SAT clauses, with 3 < m < n. The polynomial solver, in contrast, shall
save this information in form of exact-3-SAT clauses, of which there are polynomially many.

The only important question left is:

How does the polynomial solver know which possible clauses
would appear in an active solution?

From the exponential solver’s algorithm definition we can deduce: An active solution u is only kept active
(i.e. is not removed) if in each block there’s a CNF-absent clause which is not in conflict with u. When
extending this demand to the whole clause path, it can be inferred: An active solution u is only kept
active if there is in each block of the clause path at least one CNF-absent clause which is not in conflict
with at least one CNF-absent clause from each other block.

Example

Given the basic assumptions of the previous example.

Then the active solution u = 1010 is only kept active by the exponential solver because there are
the CNF-absent clauses

10-- in block 1,
1-1- in block 2,
1--0 in block 3,
-01- in block 4,
-0-0 in block 5 and
--10 in block 6.

These six clauses are all not in conflict with © = 1010.

Therefore: To determine if any clause ¢ would be in an active solution, the polynomial solver just needs
to check if there is in each block of the clause path at least one clause j which is not in conflict with 4,
which does not appear in the CNF and whose Active[j] value is still true. This is the main action the
polynomial solver performs, as one can recognize by regarding its source code carefully .

Example

Active[i = 10--] is kept true by the polynomial solver because there are the CNF-absent clauses

10-- in block 1,
1-1- in block 2,
1--0 in block 3,
-01- in block 4,
-0-0 in block 5 and
--10 in block 6.

These six clauses are all not in conflict with ¢ = 10—-.

This conforms the previously given example with the active solution v = 1010.

By checking all blocks for non-conflicting, active clauses, and not only the ones before i, the polynomial
solver does some kind of foreseeing if the exponential solver would keep an active solution active at all. So
the polynomial solver can decide for an 4 in some block b; already if the exponential solver would remove
all active solutions containing 4 in a future block by which lies after (i.e. in the clause path visualization

below) b;. For example, the polynomial solver would not keep Active[i = 10--] = true, with i from
the first block, if there wasn’t any Active[1--0] = true or Active[l--1] = true in the third block. This
foreseeing does quicker set Active[i] to false, what reduces the count of Active[] = true, which in turn

makes the solving process more straightforward (and easier to understand for the examiner).

By now, not all details of how and why the polynomial solver works might be clear. Succeeding chapters
and especially the proof of correctness will give a deeper insight.
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3.3 0/1 Inconsistency
3.3.1 Problem Description

Different from the source code, the just given explanation mentioned only two clauses ¢ and j. It was
suggested that the polynomial solver sees ¢ as in an active solution if there is in each block one clause
j which is not in conflict with ¢, which does not appear in the CNF and whose Active[j] value is true.
This implies that the polynomial solver would work with 2 loops, 7 and j. But this was a preliminary
simplification only, to deduce the polynomial algorithm step-by-step.

I did very comprehensive tests and noticed that the polynomial solver did not work properly with less
than summarized 4 loops, when 3-SAT CNFs were solved. The polynomial solver did with less than 4
loops either return wrong results in what concerns the final satisfiable/UNSAT decision, or it did not
correctly set all Active[] values. When using 4, 7,1 loops only (without the k loop), it happened, especially
for larger CNFs with n > 12, that too many Active]] values remained true. This has been found out
with the help of an exponential auxiliary procedure which determines the Active[] values fail-safe (this
procedure is named Debug_Verify Active(), more on this in the upcoming topic .

When using 4, 7, k,l loops, i.e. 4 loops, absolutely all Active[] values had the right value at end of the
polynomial solving process, for all tests done (over 1,000,000), and even for large CNFs (around some
thousand CNF's with 12 < n < 15 solved).

When 2-CNF's were solved, the polynomial solver did always work also with 4, j,[ loops, i.e. 3 loops.

The fault the polynomial solver does when using too few loops is the following: The polynomial solver
accepts, to keep Active[i] = true, in one block only j’s which are in conflict with j’s from other blocks.
This means some j’s have a 0 char at some location where other j’s have a 1 char.

This problem is to be called ‘0/1 inconsistency’.

Example

Exponential solver Polynomial solver

b 4
00-- <- CNF clause
01-- <- CNF clause
10—- 10-- = jo
11-- 10——-,11—-
0-0-
0-1-
1-0- <- CNF clause
1-1- 101-,111-
0--0
0-—-1
1--0
1--1 1010,1110 <- CNF clause
_00_
_01_
_10_
-11- 1010,1110 -11- = 75,
-0-0
-0-1
-1-0
-1-1 1010,1110
--00
--01
--10
--11 1010,1110 --10 =4
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In this example, the polynomial solver would, if only seeking for one suitable j in one block after another,
accept two j’s (j; and j3) in two blocks (#4 and #1) to keep Active[i = --10] = true. The problem is
that j; = -11- appears in the active solution 1110 and j, = 10-- appears in an other active solution
1010. Fatal is here that j; has a 1 char at second position where j, has a 0 char.

3.3.2 Preliminary Supposition: No 0/1 Inconsistency With Enough Loops

The 0/1 inconsistency just shown in the prior example:

10-- = j
-11- = |
--10 =i

can be detected reliably when using 3 loops.

As soon as the polynomial solver consists of 3 loops and checks at the same time if the related three
clauses are in conflict, it does not accept the sample j = 10-- and [ = -11- any more to keep Active[i =
--10] = true, because j conflicts with {. This is the behavior we want to have, because conflicting clauses
shall not be the reason for keeping Active[] values true.

The advantages and proficiencies of a sufficient count of loops are thematized in the following chapters.

3.3.3 Why 0/1 Inconsistency Does Not Occur

The following passages explain why the polynomial solver does not fall for 0/1 inconsistency, and which
mechanisms of the polynomial solver avoid this pitfall.

3.3.3.1 No 0/1 Inconsistency at Positions of i’s 0/1 Chars

Trivial case:

All j,k,1 clauses accepted to keep Active[i] = true have the same property: the 0/1 chars in j, k,[ at
positions where ¢ has a 0 or 1 char cannot be in conflict. This is explicitly ensured by the polynomial solver,
done by the source code lines “if (!'IsInConflict(i, j) ...”. This means that all those Active[i] are
kept true for which it applies: for each of the three 0/1 chars of i, there must be in each block at least
one CNF-absent, active and non-conflicting clause which has that same 0/1 char.

This visualized for one concrete example 7:

?7a??7a7?a?? block
77b?7b77b7?7 block
??c??c??7c?? block
?77d?7d77d?? block

W N -

--0--0--0-- i

?7e77e77e?? block (PossibleClauseNumber / 8) - 1
?7f?7£77f7?7 block (PossibleClauseNumber / 8)

To keep Active[i] = true, each a,b, ¢, d, e, f must be either ‘0’ (because i has a 0 char there) or ‘.
The chars (0/1/-) indicated by the placeholders '?’ are not regarded in this consideration.

20



3.3.3.2 No 0/1 Inconsistency Within Each Set i,j,k,l

The only question left is if there can be conflicts at positions apart from the positions of i’s 0/1 chars.
Here the following two cases must be distinguished:

1) Within the clauses i, j, k, [ regarded all together at a time by the polynomial solver, there cannot be a
conflict at all. The definition of the polynomial solver does not allow those j, k, [ to keep Active[i] = true

which are in conflict pair-wise.

Example

The following set j, k, [ is not accepted by the polynomial solver, the underlinings mark the conflicts:

0-0------0- = j  <- not accepted to keep Activeli] = true
————— 0---10 = k  <- not accepted to keep Activel[i] = true
-1----——-0-1 = | <- not accepted to keep Active[i] = true
--0--0--0-- = i

The following set j, k, [ indeed is accepted:

0-0------0- = j <- accepted to keep Active[i] = true
————— 0---01 = k  <- accepted to keep Active[i] = true
-1--————-0-1 = [ <- accepted to keep Activel[i] = true
--0--0--0-- = i

3.3.3.3 No 0/1 Inconsistency at All

2) But can it be that the polynomial solver does accept two sets ji, k1,{1 and ja, ka, l2, whereby the clauses
within the same set are not in conflict, but they are among the two sets?

Example

0-0---—-—-0- = j; <- the clauses of this set...

————— 0---01 = k; <- the clauses of this set...

-1-——-0-1 = [4 <- the clauses of this set...

--00--—-——- 1- = jo <- ...are partially in conflict with clauses of this set
————— 0---10 = ko <- ...are partially in conflict with clauses of this set
-——-1---0-0 = Iy <- ...are partially in conflict with clauses of this set
--0--0--0-- = ¢

This is a very important question to resolve. While the previously shown problems are solved by the
polynomial solver in trivial ways, it is not obvious how conflicts among accepted sets of j, k, [ are avoided.

Fortunately, there’s a solution and that solution is even not hard to understand: The key is to recognize
that the polynomial solver applies the actions to detect the ‘trivial case’ recursively. ‘Recursively’ because
each j, k and [ will once be treated like ¢ as well. The fact that the ¢ loop iterates through exactly the
same possible clauses as j, k,! do implements this (evident from the polynomial solver’s source code).
This means the polynomial solver will set Active[i] := false for every i € PC which does not have non-
conflicting j, k,l as described in ‘trivial case’. The seek for those i is done until no Active[] changes can
be done any more. The polynomial solver’s ‘while (ChangesExisting)’ loop ensures this. Therefore, the
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polynomial solver will reach a state where there are only clauses active which have ‘the same 0/1 chars
in each clause path column’.

Definition 3.3.1 The state ‘the same 0/1 chars in each clause path column’ shall be defined as follows:

For each possible choice of two block b; and b, it applies:
by contains at least one active clause c¢; and by contains at least one active clause co for which it applies:

Definition 1) Each char of ¢; is either *-’; or equal to the char of ¢y at the same position, or the char of ¢y at the
same position is ‘- .

Definition 2) More compact, this just means ¢; is not in conflict with cs.

In this state, the foundation for 0/1 inconsistency, which is that there are exclusively conflicting clauses
among two blocks, is not given. Therefore 0/1 inconsistency cannot occur any more when the polynomial
solving process has progressed.

Example

The following clause path visualization shows an example situation where there are ‘the same 0/1
chars in each clause path column’. There are only clauses shown with an Active[] value of true,
because only such clauses are important, in the sense that they have influence on the further process
flow of the polynomial solver:

00—- block 1
01-- block 1
0-0- block 2
0--0 block 3
0--1 block 3
-00- block 4
-10- block 4
-0-0 block 5
-0-1 block 5
-1-0 block 5
-1-1 block 5
--00 block 6
--01 block 6

Counter example:
In block 6,

--10

cannot stay active, because there’s no active clause with a 1 char at third position in block 4 and
also not in block 2.

In the shown example, all clauses are active which appear in at least one of the active solutions
0000, 0001, 0100, 0101.

Please notice that it is not requested that all active clauses are not in conflict pair-wise, but it is merely
requested that there are non-conflicting clauses among any choice of two blocks. Therefore it is possible
that the clauses from more than one active solution are active. I currently suppose also in this case the
state ‘the same 0/1 chars in each clause path column’ is correctly established. At least the polynomial
solver never ran into any problem during testing.

I verified that there is always the state ‘the same 0/1 chars in each clause path column’ at the end of
the polynomial solving process. This verification was carried out with a variant of the polynomial solver
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implementation, which is also located in the Zip file (see upcoming chapter ‘Solver Implementation’, [7]).
This variant checks if there are really ‘the same 0/1 chars in each clause path column’ after the polynomial
solving process has finished. There was never any counter-example found in all tests I did (around 100,000
CNF's solved and checked).

3.3.4 Why Are Multiple Loops Required?

Why must the polynomial solver consist of three loops i, j,1 (for solving 2-SAT CNFs), respectively four
loops i, j, k, 1 (for solving 3-SAT CNFs)? The following considerations should give an in-depth look.

Below, i chars are placeholders for the 0/1 chars of the clause i, on whose Active[i] value is to be decided.
x, y and z are placeholders for further 0/1 chars. All clauses are given in clause line notation. The
presented clauses are only examples. z,y, z,7 can be placed elsewhere as long as those locations follow
the pattern of the example.

2-SAT
Assumed

j1 = x—-1i isin an active solution and
jo = y-i- isin an active solution, but we don’t know if x = y, then we can not for sure conclude that
) --ii would be in one and the same active solution, because j; could be in conflict with jo.

For this reason, the polynomial solver needs for solving 2-SAT CNFs to regard i, j,l at the same time.
Because then it is ensured that Active[i] stays only true if x = y, as i, j, ] must be not in conflict pair-wise
to keep Active[i] = true. This is implemented explicitly by the source code of the polynomial solver.

Example

Although there’s the state ‘the same 0/1 chars in each clause path column’ established, there could
appear the following situation:

01-
10- <-
11-
0-0 <-
0-1
1-1
-00 <-
-01
-10
-11

The listed clauses are all assumed to be CNF-absent and active.

Then the clause -00 would be kept unjustifiably active with ¢, j loops only, because there’s j; = 10-
and jo, = 0-0. ‘The same 0/1 chars in each clause path column’ doesn’t avoid this, because in the
first clause path column, there are in all blocks the same 0/1 chars (in the first and second block 0
and 1, the third block does not contain any 0/1 chars in its first column and thus isn’t regarded).
As soon as the polynomial solver checks three clauses at once for being in conflict, it does instantly
detect that there are no CNF-absent and active j and [ which are not in conflict pair-wise and both
not in conflict with 3.

I found this situation when testing a solver implementation with 4, j loops only. So it is for sure this
situation does appear, if implementing too few loops.
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3-SAT
The scheme can be extended to 3-SAT:
Assumed

j1 = xx---i is in an active solution and

j2 = yy--i- is in an active solution and

I = zz-i-- 1isin an active solution, but we don’t know if x = y = 2, then we can not conclude that

i = ---iii would be in one and the same active solution, because j1, jo and/or ! could be in conflict.

For this reason, the polynomial solver needs for solving 3-SAT CNFs to regard i, j, k,[ at the same time.
Because then it is ensured that Active[i] stays only true if = y and y = z and = = z, as i, j, k, [ must
be not in conflict pair-wise to keep Active[i] = true. This is implemented explicitly by the source code of
the polynomial solver.

Why there is more than one mechanism against 0/1 inconsistency

Why does the polynomial solver need both, enough loops and the state ‘the same 0/1 chars in each clause
path column’ to function correctly? Why doesn’t the latter state alone suffice?

I suppose the reason is the following:

‘The same 0/1 chars in each clause path column’ verifies that active clauses are not in conflict pair-wise.
This is important for ensuring that there are non-conflicting clauses among all clause path blocks, as

explained in [3:3:3.3]

Multiple loops 4, j, (k, )l verify that their clauses are not in conflict pair-wise and beyond that are not in
conflict with both (2-SAT) resp. with the three (3-SAT) 0/1 chars of 4. This is an additional demand
which is not ensured natively by the state ‘the same 0/1 chars in each clause path column’, as pointed out
in the previous example. I suppose four loops i, j, k, [ are finally enough, because then all of i’s up to three
0/1 chars can be checked for being in conflict with j, k,l. I furthermore suppose the two shown examples
(one for 2-SAT and one for 3-SAT, ‘Assumed ...") are the worst cases which require the maximum loop
count (three loops for 2-SAT, four loops for 3-SAT).

3.3.5 Cases of 0/1 Inconsistency - Problem Descriptions

Some examples of 0/1 inconsistency are shown in the following, together with an explanation what the
problem is. Later on in this document, it will be shown how the polynomial solver handles the problems.

It is assumed that the shown clauses do not appear in the CNF, and therefore have an Active[] value of
true. Only clauses from crucial clause path blocks are shown. The clauses from non-shown blocks shall
all have an Active[] value of true. The shown clauses are assumed to be the only clauses with an Active]|
value of true in their respective blocks, there are not any non-shown clauses which could head the solver
behavior off.

3.3.5.1 2-SAT

Case 1
0-1- = j
1--1 = |

--11 = g
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Problem: j and ! cannot be in one and the same active solution, because they are in conflict.
Therefore no active solution would rest at the end of the exponential solving process. The polynomial

solver must reliably detect this and set Active[i] := false.
Case 2

01--

10--

0-1- = j

-0-1 = 1

—11 =g

Problem: j and ! would not be in one and the same active solution. The exponential solver would
only contain the active solutions 01-- and 10--, which could each be extended either by j or by [,
but not both, as it would actually be required for keeping those active solutions active. Therefore
no active solution would rest at the end of the exponential solving process. The polynomial solver

must reliably detect this and set Active[i = --11] := false.
Case 3

01--

10--

0-1- =71

1-1- = Jj2

-0-1 = ll

-1-1 = Iy

11 =g

Problem: Here j; and /s would be in the same active solution, but not j; and /1. Equally, jo and [y
would be in the same active solution, but not jo and Is.

So the polynomial solver should not take j; and 1, or jo and Iy as reason to keep Active[i] = true,
but instead j; and ls, or jo and [;.

Case 4
0-1---
1-0---
00---- = j
--00-- = [
———-11 =4

Problem: The same problem as described in case 2, but with some more 0/1 chars.
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3.3.5.2 3-SAT

Case 1
0--11- = j
1--1-1 = k
1---11 = |
111 = ¢

Problem: j and k cannot be in one and the same active solution, because they are in conflict. The
same applies to j and [. Therefore no active solution would rest at the end of the exponential solving

process. The polynomial solver must reliably detect this and set Active[:] := false.
Case 2

011---

100---

0--1-1 = j

-0--11 = k

--0-11 = |

111 = ¢

Problem: j and k would not be in one and the same active solution. The exponential solver would
only contain the active solutions 011--- and 100---, which could each be extended either by j or by
k, but not both, as it would actually be required for keeping those active solutions active. Therefore
no active solution would rest at the end of the exponential solving process. The polynomial solver

must reliably detect this and set Active[i = ---111] := false.
Case 3
011---
100---
0——1—1 = jl
1-—-11 = j,
-0—-11 = ky
~1--11 = ky
--0-11 = [
—-1-11 = I,
111 =

Problem: Here j; and ky would be in the same active solution, but not j; and k;. Equally, jo and
k1 would be in the same active solution, but not jo and ks.

So the polynomial solver should not take j; and kq, or jo and ko as reason to keep Active[i] = true,
but instead j; and ks, or jo and k.
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0--1--1-----
1--0--1-----

000--------- =j
--=000------ =k
------ 000--- = |
————————— 111 =

Problem: The same problem as described in case 2, but with some more 0/1 chars.

3.3.6 Cases of 0/1 Inconsistency - Solutions

The already presented examples of 0/1 inconsistency are shown again, now each with an explanation how
the polynomial solver resolves the problems.

3.3.6.1 2-SAT

Case 1
0-1- = j
1--1 = |

--11 = g

Solution: Not accepted by the polynomial solver to keep Active[i] = true
because j is in conflict with [.

Case 2

01--
10--
0-1- =
-0-1 l
--11 =1
Solution:
Step 1)

The polynomial solver sets

Active[i’ = 01--] := false and
Active[i’ = 10--] := false,

because there is for each of these two ¢’’s no combination of two CNF-absent, active and non-
conflicting clauses j” and I ] in the blocks which contain

2¢/, ie. a clause with an apostrophe, shall be an intermediate clause the polynomial solver might need to take into
consideration. It shall not be confused with the clauses i, j, k, ! used in the task description at the beginning of each case.
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x-x- and -x-x. [

Step 2)

Then the polynomial solver finds for the crucial i = --11 no CNF-absent, active and non-conflicting
clause j' or I’ = xx-- in the first clause path block. This is the case because in Step 1)

Active[i’ = 01--] := false and
Activeli’ = 10--] := false

have been set.

Therefore the polynomial solver sets Active[i = --11] := false. This is the behavior we want, because
the fail-safe exponential solver would have detected as well that there is no active solution left at
the end of the solving process.

Case 3
01--
10--
0-1— = j1
1-1- = J2
-0-1 = ll

-1-1 = Iy

Solution: I examined this case using a debug version of the polynomial solver. I found out that the
polynomial solver does not set any Active[c] := false for any clause ¢ from this case 3. In particular,
the polynomial solver keeps Active[i = --11] = true when its j and ! loops point to j; = 0-1- and
l; = -0-1.

This is not exactly the behavior we desired, actually the polynomial solver should have taken only
the combinations j; and ls, or jo and l; as reason to keep Active[i = --11] = true.

But I currently think this is no problem, because Active[i = --11] needs in this case 3 to stay true
anyway (because there’s also j; = 0-1- and Iy = -1-1, or jo = 1-1- and [y = -0-1), it does here
finally not matter if through a valid or invalid j,! combination.

Case 4
0-1---
1-0---
00---- = j
--00-- = [
———-11 =

Solution: Effectively the same as case 2, the polynomial solver will set

Active[i’ = 0-1---] := false and
Active[i’ = 1-0---] := false

because there are for both no active, non-conflicting clauses

3Throughout this document, x shall be a placeholder for a 0 or/and 1 char. The choice 0 or 1 is mostly not explicitly
defined, but should be recognizable from the context in which x is used. Often ‘all possible 0/1 combinations’ is meant.
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xx---- = j’ and

——xx--=1['.
Finally the polynomial solver does not find any Active[j’ or I’ = x-x---] = true any more, and sets
Active[i = ----11] := false.

Of course there are infinitely many cases thinkable, but most thinkable cases resembles basically one of
the shown cases 1) to 4).

3.3.6.2 3-SAT

Case 1
0--11- = j
1--1-1 = k
1-—-11 = [
——-111 = i

Solution: Not accepted by the polynomial solver to keep Active[i] = true
because j is in conflict with k£ and [.

Case 2

011---
100---

0--1-1 =
-0--11 =
--0-11 =
-—-111 =

S~ o S,

Solution:

Step 1)

The polynomial solver sets

Active[i’ = 011---] := false and
Activeli’ = 100---] := false,

because there is for each of these two ¢’’s no combination of two CNF-absent, active and non-
conflicting clauses 7' and &’ in the blocks which contain

x--x-x and -xX--xX.

Step 2)

Then the polynomial solver finds for the crucial ¢ = ---111 no CNF-absent, active and non-
conflicting clause j' or I’ or k' = xxx—-- in the first clause path block. This is the case because in
Step 1)

Active[i’ = 011---] := false and

Active[i’ = 100---] := false
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have been set.

Therefore the polynomial solver sets Active[i = ---111] := false. This is the behavior we want,
because the fail-safe exponential solver would have detected as well that there is no active solution
left at the end of the solving process.

Case 3
01-1--
10-1--
0--1-1 = j;
1---11 = jy
-0--11 = &y
-1--11 = ky
--0-11 = I
-—1-11 = I,

-—-111 = ¢

Solution: The same observations of the 2-SAT case 3 apply.

The polynomial solver keeps Active[i = ---111] = true. The polynomial solver does this because it
found, among others, j; = 0--1-1 and k; = -0--11.

This is not the optimal behavior, because the exponential solver would not contain an active solution
00xxxx.

But this seems in practice not cause any problems (regarding the solving result) because Active[i =
---111] needs to stay true anyway.

Case 4
0--1--1-----
1--0--1-----
000--------- =
---000------ =k
------ 000--- = [
————————— 111 =

Solution: Effectively the same as case 2, the polynomial solver will set

Active[i’ = 0--1--1----- ] := false and
Active[i’ = 1--0--1-—--- ] := false

because there are for both no active, non-conflicting clauses

XKX————————= =j and

———XXX—————— =k’

Finally the polynomial solver does not find any Active[j’ or I’ or k' = x--x--x-----] = true any
more, and sets Active[i = ——————--- 111] := false.
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4 Proof of Correctness

4.1 Why SAT Detection is Reliable

In case the CNF is solvable, then there’s at least one solution (‘model’) which satisfies the CNF. Then all
possible clauses do not appear in the CNF which are not in conflict with the inverse solution. This has
been shown in B.1.1l

So in each block of the clause path there’s at least one possible clause p which does not appear in the
CNF (else not one active solution could rest and the CNF would always be detected as ‘UNSAT’ by the
fail-safe exponential solver, what is a contradiction). All those p’s are not in conflict pair-wise, because
they are all not in conflict with the inverse solution. Finally, the Active[] value of each p is initially true,
because the array Active[] has been initialized entirely to true.

This means in each block there’s at least one clause p which serves as j, k or [ and keeps Active[i] = true,
with ¢ also equal to some p.

Because then also in the last block there remains at least one Active[i] = true, the polynomial solver
determines the CNF as satisfiable, as desired.

Example

Solution (‘model’):
0101

Inverse solution:
1010

Clause path:

00--
01--
10-- <- p;, not in CNF
11--
0-0-
0-1-
1-0-
1-1- <= py, not in CNF
0--0
0--1
1--0 <- p3, not in CNF
1--1
_00_
-01- <- p4, not in CNF
_10_
_11_
-0-0 <- p5, not in CNF
-0-1
-1-0
-1-1
--00
--01
--10 <- pg, not in CNF
--11
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4.2 Why UNSAT Detection is Reliable

Foreword

It follows a proof for why the polynomial solver detects any unsatisfiable (‘UNSAT’) CNF as such. The
presented version is the best approach I found so far. If some reader has an addition, or an alternative
proof, I'd welcome him /her to publish the own variant as well.

The proof begins with an example for 2-SAT, n=4. It will be shown in which cases the polynomial solver
sets Active[--00], Active[--01], Active[--10] or Active[--11] to false, and that these cases are given if the
CNF to solve is UNSAT. The presented proof can be analogously applied for 3-SAT, larger n and other
clauses than --00 etc. as well.

2-SAT, n=4

Claim 4.2.1

Active[--cd] is only kept true if
Active[-b-d] is true and -b-d is CNF-absent

Active[-b-d] is only kept true if
Active[-bc-] is true and -bc- is CNF-absent

Active[-bc-] is only kept true if
Active[a—-d] is true and a--d is CNF-absent

Active[a--d] is only kept true if
Active[a-c-] is true and a-c- is CNF-absent

Active[a-c-] is only kept true if
Active[ab--] is true and ab-- is CNF-absent
Proof:

The following rules apply to the construct shown in the claim:

c,d) ¢ and d are the both 0/1 chars of a clause from the last block. There are, for 2-SAT, the following
possible combinations:

clause in last block

= = O OO0
», O L O Q
|
|
o
=

I’'m using the placeholders ¢ and d here to generalize the proof. Like this, the proof shows in which
cases any of the 4 (for 2-SAT) clauses in the last block stays active. This is of importance because
the polynomial solver returns ‘UNSAT’ only if every clause from the last block has an associated
Active[] value of false.

a,b) ais 0 or 1.

Here, it is of great importance: a must always be the same (0 or 1) in all clauses accepted by the
polynomial solver to keep Active[] values true.

The same applies to b:
bis 0 or 1.

b can differ from a (e.g. b =1 and a = 0 or vice versa).
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Dependency)

But: Again, it is of great importance: b must always be the same (0 or 1) in all clauses accepted by
the polynomial solver to keep Active[] values true.

These requirements are ensured because the polynomial solver will always enter a state where there
are ‘the same 0/1 chars in each clause path column’.

Therefore there will finally be either all clauses with @ = 0 active, or none. Or there will finally be
either all clauses with a = 1 active, or none. The same holds true for b.

The polynomial solver supports also the case in which there are multiple clauses per block active,
some with ¢ = 0 and some with a = 1. But then there must be such clauses in all blocks. The
example related to definition shows such a set of active clauses whereby there is more than
one clause per block active.

The stated dependencies, like:

Active[--cd] is only kept true if
Active[-b-d] is true and -b-d is CNF-absent

are caused by the following rules implemented by the polynomial solver:

Generally, to keep any Active[i] true, there must be CNF-absent, active clauses j, (k, )l found which
are not in conflict with 7. In each block, there must be at least one such additional clause found.
This means, inter alia in the block prior to the one containing i, there must be CNF-absent, active
and non-conflicting clause.

Therefore we know that the polynomial solver needs to find at least one Active[-b-d] = true with
-b-d from block 5 to keep Active[i = --cd] = true, with --cd from block 6.

The reader might have rightly noticed that only a subset of the dependencies demanded by the
implementation of the polynomial solver is regarded. Nevertheless, these dependencies examined in
this proof are sufficient to prove the reliable determination of the CNF’s unsatisfiability.

Example of the dependencies with concrete clauses

Active[--00] is only kept true if
Active[-0-0] is true and -0-0 is CNF-absent
Active[-0-0] is only kept true if
Active[-00-] is true and -00- is CNF-absent
Active[-00-] is only kept true if

[--00]
[-0-0]
[-0-0]
[-00-]
[-00-]
Active[1--0] is true and 1--0 is CNF-absent
[1--0]
[1-0-]
[1-0-]
[10--]

Active[1--0] is only kept true if
Active[1- is true and 1-0- is CNF-absent
Active[1-0-] is only kept true if
Active[10--] is true and 10-- is CNF-absent

In this example, a = 1,0 =0,c=0,d = 0.

Negative example

Because the polynomial solver will reach the state ‘the same 0/1 chars in each clause path column’,
the following situation is not possible (the reader can assume that the shown list of active clauses
is entire, i.e. there are no more active clauses):

ive[--00]
Active[-0-0] is true and -0-0 is CNF-absent
Active[-0-0] is only kept true if
Active[-00-] is true and -00- is CNF-absent
Actlve[ 00-] is only kept true if
[1--0]
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Active[1--
Active[1-0-
Active[1-0-
Active[11--

0] is only kept true if
is true and 1-0- is CNF-absent

]

]

] is only kept true if

] is true and 11-- is CNF-absent

For instance, here the assignment Active[11--] = true cannot appear near the end of the polynomial
solving process because there’s only Active[-00-] = true in an other block, and these two clauses
11-- and -00- are in conflict. Therefore, Active[i = 11--] would not be kept true by the polynomial
solver because the solver doesn’t find any active, non-conflicting j or [ in the block containing -00-.
The same applies to the two clauses 11-- and -0-0. Both cannot stay active, as they are in conflict
and the only clauses in their respective block. As a result, all Active|[] values will be set to false by
the polynomial solver in some kind of domino-effect, until no active clauses rest any more.

From all of the presented findings, we can conclude that the polynomial solver keeps
Active[ --cd | only true if

all clauses from 200(00cd) are active and CNF-absent, or if
all clauses from 200(01cd) are active and CNF-absent, or if
all clauses from 200(10cd) are active and CNF-absent, or if
all clauses from 200(11cd) are active and CNF-absent.

This means that Active[--cd] is only kept true if there are all clauses from at least one (inverse) solution
CNF-absent. The basic assumption in this UNSAT proof is that this is not the case, for each solution
(and therewith also for each inverse solution) there’s at least one clause in the CNF which is not in conflict
with that solution. Therefore, Active[--cd] will not stay true, for all four 0/1 combinations of ¢,d. As a
result, no clause will rest in the last block which has an associated Active[] value of true. And this means
in return that the polynomial solver will return ‘UNSAT’, as desired.

3-SAT

I assume that 3-SAT does not cause any additional problems, there are just 3 letters (out of a, b, ¢, d etc.)
in each clause. In contrast to the logical resolution, there’s no force to make sure clauses have enough
0/1 chars to take up information (like the resolvent of the logical resolution, which might have more than
three 0/1 chars, especially when solving pigeon hole problems). The polynomial solver does only check
if clauses are in conflict, if they are marked active, and if they appear in the CNF. These checks work
independently from the count of 0/1 chars.

Larger n

The shown scheme can easily be extended to any n. Then clause dependencies can be requested as in the
2-SAT, n=4 case. Each Active[i], with ¢ from block b;, is only kept true if there is at least one CNF-absent,
active and non-conflicting clause in the block prior to b;.

Example

Active[------ OOO] is only kept true if

Active[----- -00] is true and ----- £-00 is CNF-absent
Active[----- -00] is only kept true if

Active[-——-- fO 0] is true and ——--- £0-0 is CNF-absent
Active[----- £0-0] is only kept true if

Active[----- £00-] is true and ----- £00- is CNF-absent
Active[----- £00-] is only kept true if
Active[----e--00] is true and ----e--00 is CNF-absent
and so on.
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The only thing that must be ensured here is that the char represented by f, e, and the remaining
placeholder chars not shown here, are the same (0 or 1) in all those clauses. This is ensured by
the state ‘the same 0/1 chars in each clause path column’, which the polynomial solver will always
reach.

5 Further Details and Remarks

The following sections are principally a collection of deliberations and observations I made when writing
this document and the related software. I decided to add the collection here as an addition. It might be
helpful for some reader or another.

5.1 Formula Revealing Clauses i, j, k,| Point To

This entire chapter is built up around a clause listing which is to be called ‘the formula’. It shows which
clauses i, j, (k, )l must be CNF-absent and active to keep Active[--00] = true. The overall goal is to give
the reader a deeper understanding of what is going on in the polynomial solver.

Formula for 2-SAT, n=4

--00
00--
00--
&
0-0-
&
0--0
&
_OO_
&
-0-0
&
--00
|
01--
01--
&
0-0-
&
0--0
&
- 10_
&
-1-0
&
--00
|
10--
10--
&
1-0-
&
1--0
&
_OO_
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0-0-

0--0

1-0-

1--0

_10_

00--

01--

0-0-

0--0

_OO_

_10_

-0-0

-1-0
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1-0-

1--0

_OO_

_10_

-0-0

-1-0

_OO_

0--0

1--0

_OO_

-0-0

37



-0-0
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11--
&

0-0-

I

1-0-
&

0--0

I

1--0
&

_OO_

I

- 10_
&

-0-0

I

-1-0
&

--00

Origin of the formula

This formula has been created by the ‘formula printer app’, which is within the downloadable Zip file and
can be tried out by the reader. The formula printer app is a specially converted polynomial solver, which
bases on the code of the original polynomial solver, but prints the formula as some kind of debug-output
while being run. The formula is created according to the following rules:

o Columns:

— The left column shows the clause the i loop points to.
— The center column shows the clause the j loop points to.

— The right column shows the clause the [ loop points to.

For each i, there must be at least one j CNF-absent per block.
— The AND-links come from the request that there must be a CNF-absent clause found in each
block.

— The OR-links come from the fact that often more than one of the 4 (2-SAT) resp. 8 (3-SAT)
clauses in each block can be chosen as j to keep Active[i] = true.

For each j, there must be at least one | CNF-absent per block.

— The same rules concerning the AND- and OR-links apply as just explained in the prior bullet
point.

1, j,1 must not be in conflict pair-wise.

Only those j and [ can keep Active[i] = true which are both active themselves.

Interpretation of the formula

The formula shows which combinations of clauses must not appear in the SAT CNF to keep Active[--00]
= true. & means AND, | means OR. When an & is less indented than an |, then this means the further
indented | has more priority. I refrained from using braces, because they made the formula much harder
to read.
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The formula is interpreted as follows: When a clause does not appear in the SAT CNF, then the further
indented clauses should be checked for SAT CNF-absence at next. This means when —-00 does not appear
in the SAT CNF, then one needs to check next if 00-- does not appear in the SAT CNF. If this is the
case, then you would check next if 0-0- does not appear in the SAT CNF, and so on. If 00-- does
appear in the SAT CNF, then the alternative 01-- is suitable in the same way. This seek for CNF-absent
clauses might be repeated with 10-- and then 11--. If it is the case that the right-most clauses of at
least one branch are reached and enough of them (regarding & and |) are also not in the SAT CNF, then
Active[--00] stays true. Otherwise, the polynomial solver would set Active[--00] := false.

Insights achieved from the formula

From the following part of the formula:

00--
0-0-
&
0--0
&
_OO_
&
-0-0
&
--00
I
01--
0-0-
&
0--0
&
- 10_
&
-1-0
&
--00
I
10--
1-0-
&
1--0
&
_OO_
&
-0-0
&
--00
I
11--
1-0-
&
1--0
&
- 10_
&
-1-0
&
--00
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it can be derived that Active[--00] is only then kept true if there are all of the following clauses active
and not in the CNF:

all clauses from 200(0000) o
all clauses from 200(0100) or
all clauses from 200(1000) or
all clauses from 200(1100).

=

1
1

This means all clauses from at least one active solution must be CNF-absent to keep Active[--00] = true.
So far, there’s no potential error source visible.

But: One can identify the following problem in an other part of the formula:

&
0--0
00--
I
01--
&
0-0-
&
0--0
&
-00- <- in the clause path: block 4, clause 1
I
-10- <- in the clause path: block 4, clause 3
&
-0-0 <- in the clause path: block 5, clause 1
I
-1-0 <- in the clause path: block 5, clause 3
&
--00
I
1--0

The only problem that’s obvious here (and I am convinced this is the only problem which could prevent
the correct function of the polynomial solver) is that the polynomial solver does not explicitly check if
one CNF-absent, active clause from block 4 is in conflict with any CNF-absent, active clause from block
5.

From the formula it is apparent that the polynomial solver would accept once -00- as [, and then -1-0
as another [, if both clauses are CNF-absent and active. This is not desired, because these two I’s are in
conflict and thus that choice is invalid, as explained in [3.3]

Because of this, one could think that the polynomial solver could ‘jumble up’ clauses which are 1) in conflict
and 2) would therefore appear in different active solutions when being processed by the exponential solver.
The result would be that the polynomial solver would accept additional, invalid combinations of CNF-
absent clauses, so that too few clauses are set Active[] := false and as a result, the polynomial solver could
return ‘satisfiable’ instead of ‘UNSAT".

Why does the polynomial solver obviously not do this? Because if it did, it would not have solved over a
million CNFs correctly and with always correct final Active|] values.

I strongly assume the answer is again: The polynomial solver will not stop until it reached a state where
there are ‘the same 0/1 chars in each clause path column’. This has been explained extensively in previous
chapters.
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So if it applies for example:

&
0--0
00--
I
01--
&
0-0-
&
0--0
&
-00- <- block 4, clause 1 <- assumed given: Active[] = true
I
-10- <- block 4, clause 3 <- assumed given: Active[] = false
&
-0-0 <- block 5, clause 1 <- therefore: might be active
I
-1-0 <- block 5, clause 3 <- therefore: cannot be active
&
--00
I
1--0

Then -1-0, clause 3 in block 5, can impossibly be active, because in block 4, there is no active clause
which has a 1 char at second position, there’s only -00-. Therefore -1-0 cannot contribute to keeping
Active[i = --00] = true, because it is sooner or later set inactive by the polynomial solver.

Generally, because the polynomial solver reaches the state ‘the same 0/1 chars in each clause path column’,
it is guaranteed that there are no combinations of CNF-absent clauses accepted to keep any Active[i] =
true if there are unacceptable conflicts among these clauses.

3-SAT

The formula looks similar when being set up for the examination of 3-SAT clauses. There are only two
differences:

1) The formula contains 3-SAT instead of 2-SAT clauses.
2) The formula has 4 instead of 3 columns: One column for every i, j, k, [.

The formula for 3-SAT, n=4 looks as follows:

-000
000-
00-0
000-
&
00-0
&
0-00
&
-000
&
0-00
000-
&
00-0
&
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100-

00-0

-000

10-0

1-00

-000

00-0

0-00

0-00

-000

000-

00-0

0-00

-000

100-

10-0

1-00

-000

100-

10-0

1-00

-000

100-

10-0

1-00

-000

000-

00-0

0-00

-000

000-

00-0

0-00
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10-0

0-00

-000

10-0

1-00

-000

00-0

0-00

-000

000-

00-0

0-00

-000

000-

00-0

0-00

-000

000-

00-0

0-00

-000
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-000

-000

1-00

-000

00-0

0-00

000-

00-0

0-00

-000

100-

10-0

1-00

-000

100-

10-0

1-00

-000

000-

00-0

0-00

-000

100-

10-0

1-00

-000

000-
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00-0
&
0-00
&
-000
I
1-00
100-
&
10-0
&
1-00
&
-000
&
-000
000-
|
100-
&
00-0
[
10-0
&
0-00
|
1-00
&
-000

When examining the 3-SAT formula, the same conspicuousness catches the eye as in the 2-SAT case.
Again, the only problem which could confuse the polynomial solver is visible in the following formula
excerpt:

&
-000

000- <- a)
|
100-

&
00-0
[
10-0 <- b)

&
0-00
|
1-00

&
-000

The polynomial solver must not accept the combination of clauses a) and b) to keep Active[-000] =
true. This could on first sight be possible because the polynomial solver has not explicitly implemented
any mechanism to check I’s from different blocks for being in conflict. But like in the 2-SAT case, the
polynomial solver will reach the state ‘the same 0/1 chars in each clause path column’; so that Active[000-]
and Active[10-0] would both be false if they were the only CNF-absent clauses in their blocks.
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Larger n

The formulas for larger n, i.e. for SAT CNFs with larger literal index range, look basically the same.
I examined them using the formula printer app and did not discover any newly arising problems. The
reader might view the larger formulas him/herself, by running the formula printer app located in the
downloadable Zip file.

5.2 Trying to Fool the Polynomial Solver

During developing the polynomial solver, the following idea of how to fool the solver came to my mind.
I’'m sharing this idea here, because it will probably contribute to the reader’s understanding.

Simple example

Assumed there are the following clauses not in the CNF, i.e. they are CNF-absent:

00- <- not in CNF -> Active[] = true
11- <- not in CNF -> Active[] = true
-00 <- not in CNF -> Active[] = true
-11 <- not in CNF -> Activel[] = true
0-1 <- not in CNF -> Activel[] = 7
1-0 <- not in CNF -> Activel[] = 7

All clauses not listed are assumed to appear in the CNF.

The polynomial solver would in this case easily recognize that Active[0-1] and Active[1-0] cannot stay
true, because there is no combination of clauses in the blocks xx- and -xx which would create the active
solution 0x1 or 1x0. The polynomial solver easily recognizes this when its

i loop points to 0-1 or 1-0 and its
j loop points to one of the two CNF-absent clauses from block xx- and its
I loop points to one of the two CNF-absent clauses clause from block -xx.

None of these i, 7,1 combinations are conflict-free. So the polynomial solver would not find a suitable j,1
to keep Active[i = 0-1] or Active[i = 1-0] true.

Example trying to fool the polynomial solver

But what if:

Assumed there are the following clauses not in the CNF, i.e. they are CNF-absent:

0-0- <- not in CNF, Activel[] = true
0-1- <- not in CNF, Active[] = true
1-0- <- not in CNF, Active[] = true
1-1- <- not in CNF, Active[] = true

-0-0 <- not in CNF, Activel[] = true
-0-1 <- not in CNF, Active[] = true
-1-0 <- not in CNF, Activel[] = true

-1-1 <- not in CNF, Active[] = true
00-- <- not in CNF, Active[] = true
11-—- <- not in CNF, Active[] = true
-00- <- not in CNF, Activel[] = true
-11- <- not in CNF, Activel[] = true
--00 <- not in CNF, Active[] = true
--11 <- not in CNF, Active[] = true
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0--1 <- not in CNF, Activel]
1--0 <- not in CNF, Activel[]

All clauses not listed are assumed to appear in the CNF.

With three loops i,7,1, the polynomial solver can seemingly not recognize that Active[0--1] and Ac-
tive[1--0] are to be set false. It seems as if the polynomial solver would need an additional loop besides
7,1 to comprehend the chain consisting of three clauses: xx--,
make the exponential solver create the active solutions 0000 and 1111, which do not contain 0--1 and
1--0. For that reason we know the polynomial solver must not keep Active[0--1] and Active[1--0] true.

I checked this example out with the polynomial 2-SAT solver served for download in the Zip file. This
solver variant uses three loops i, 7,[ only. It has not been fooled. This means the polynomial solver did
also in this example correctly set Active[0--1] := false and Active[1--0] := false.

How did it do this?

The answer is simple: It set in intermediate steps the following Active[] values to false:

Active[i’ = 0-
Activeli’ = 1-

1-] := false and
0-] := false.

I n
NN

because there were not enough CNF-absent clauses:

00-- = j and
-01- = I,
respectively
11-- = j and
-10- = [.

So now there is the following Active][]

0-0- <- not
0-1- <- not
1-0- <- not
1-1- <- not
-0-0 <- not
-0-1 <- not

-1-0 <- not

-1-1 <- not
00-- <- not
11-- <- not
-00- <- not
-11- <- not

--00 <- not
--11 <- not
0-—-1 <- not
1--0 <- not

<- given
<- given

<- given
<- given

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

CNF,
CNF,
CNF,
CNF,
CNF,
CNF,
CNF,
CNF,
CNF,
CNF,
CNF,
CNF,
CNF,
CNF,
CNF,
CNF,

as not in CNF
as in CNF

as not in CNF
as in CNF
configuration:

Active[] = true
Active[] = false
Activel[] = false
Activel[]l = true
Active[] = true
Active[] = true
Activel[] = true
Activel[] = true
Active[] = true
Activel[]l = true
Activel[] = true
Activel[] = true
Activel[] = true
Active[] = true
Activel[] = 7
Activel[]l = 7
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Finally the polynomial solver sets Active[0--1] and Active[1--0] to false, as desired:

0-1- = 5 <= Active[] = false <- from intermediate step

-—11 = [ <- Active[] = true

0--1 =4 <- Active[] := false <- this is the first desired result!
1-0- = j  <- Active[] = false <- from intermediate step

--00 = [ <- Active[] = true

1--0 = 1¢ <- Active[] := false <- this is the second desired result!

I stated that I did the test with the 2-SAT variant of the polynomial solver, which consists of 3 loops
1,7,1 only. The reader might say, instead use the 3-SAT variant with 4 loops 4,7, k,[, then there’s no
problem. This is true for this example, but one could easily extend the mentioned chain (xx--, -xx-,
--xx) to an arbitrary count of chain links (e.g. xx----, -xx---, ——xx--, =—-xx-, ———-xx etc.). Therefore
intermediate steps are necessary in any case and the shown considerations should be kept in mind by the
examiner.

Conclusion

The insight T want the reader to gain is that one must often consider intermediate steps the polynomial
solver does to understand its working. I were convinced the polynomial solver would fail for the example,
but it did work without any problems.

5.3 How the Polynomial Solver Might Handle Large Resolvents

The reader might be familiar (to some extend) with the pigeon hole problem. A definition of the related
SAT CNFs is given in e.g. [6]. The trouble with those CNF's is that they require more storage space than
merely 3-SAT clauses when being solved with resolution solvers (for large enough problem instances). This
means, if the polynomial solver should be a resolution solver, then it could not store all its working data
in 3-SAT clauses, respectively in the Active[| values, of which there are not more than there are 3-SAT
clauses. I made the polynomial solver process the pigeon hole problem of size 4 (in common literature
often denoted as ‘PHP,’). The generally accepted theory says that therefore a resolution solver would
need a resolvent of size 4 (see [7]), which is a 4-SAT clause. The polynomial solver correctly detected it
as UNSAT. So one question is, how does the polynomial solver store data in cases where the resolution
solver would require the space of 4-SAT clauses?

This examination is done with the aid of an example.

We assume the following two clauses appear in the CNF:

000-- <- in CNF
--100 <- in CNF

The resolution solver would now create the resolvent:
00-00

This resolvent, which has four 0/1 chars, could not be saved by the polynomial solver directly, i.e. there’s
no Active[] value to set because the polynomial solver only stores Active[] values linked to 3-SAT clauses.
So, what does the polynomial solver instead do?

000-- <- in CNF
--100 <- in CNF
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means in return:

001-- <- CNF-absent
010-- <- CNF-absent
011-- <- CNF-absent
100-- <- CNF-absent
101-- <- CNF-absent
110-- <- CNF-absent
111-- <- CNF-absent

--000 <- CNF-absent
--001 <- CNF-absent
--010 <- CNF-absent
--011 <- CNF-absent
--101 <- CNF-absent
--110 <- CNF-absent
--111 <- CNF-absent

From the just shown list of CNF-absent clauses, the fail-safe, exponential solver creates the following
active solutions:

00101
00110
00111
01000
01001
01010
01011
01101
01110
01111
10000
10001
10010
10011
10101
10110
10111
11000
11001
11010
11011
11101
11110
11111

I verified this with a test applicationE]

From the same list of CNF-absent clauses, the polynomial solver keeps the following clauses active:

Active[001--] = true
Active[010--] = true
Active[011--] = true

4Location in the Zip file: /Algorithm E ([...])/Tests/ Large resolvent’ note verification/.
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Active[100--]
Active[101--]
Active[110--]
Active[111--]
Active [00-0-]
Active [00-1-]
Active[01-0-]
Active[01-1-]
Active[10-0-]
Active[10-1-]
Active[11-0-]
Active[11-1-]
Active [00--0]
Active[00--1]
Active[01--0]
Active[01--1]
Active[10--0]
Active[10--1]
Active[11--0]
Active[11--1]
Active [0-00-]
Active[0-01-]
Active[0-10-]
Active[0-11-]
Active[1-00-]
Active[1-01-]
Active[1-10-]
Active[1-11-]
Active[0-0-0]
Active[0-0-1]
Active[0-1-0]
Active[0-1-1]
Active[1-0-0]
Active[1-0-1]
Active[1-1-0]
Active[1-1-1]
Active [0--00]
Active [0--01]
Active[0--10]
Active[0--11]
Active[1--00]
Active[1--01]
Active[1--10]
Active[1--11]
Active[-000-]
Active[-001-]
Active[-010-]
Active[-011-]
Active[-100-]
Active[-101-]
Active[-110-]
Active[-111-]
Active[-00-0]
Active[-00-1]
Active[-01-0]
Active[-01-1]
Active[-10-0]
Active[-10-1]

true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
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Active[-11-0] = true
Active[-11-1] = true
Active[-0-00] = true
Active[-0-01] = true
Active[-0-10] = true
Active[-0-11] = true
Active[-1-00] = true
Active[-1-01] = true
Active[-1-10] = true
Active[-1-11] = true
Active[--000] = true
Active[--001] = true
Active[--010] = true
Active[--011] = true
Active[--101] = true
Active[--110] = true
Active[--111] = true

Again, I verified this with the test application.

We see that the polynomial solver keeps those clauses active which are not in conflict with at least one
active solution. Hence the polynomial solver acts as requested in previous chapters (see|3.2)), there is no
error certifiable.

I suppose the active solutions of the exponential solver can be seen as some kind of resolvent (because they
grow by attaching 3-SAT clauses), and the idea of the polynomial solver is ezactly to avoid the complete
storage of those active solutions resp. resolvents.

This means: When it is ensured that the polynomial solver can store active solutions in 3-SAT clauses
(i.e. in Active]] values), then it can equally store large resolvents in 3-SAT clauses. And the motivation of
the proof of correctness is exactly to show that the polynomial solver can store active solutions in 3-SAT
clauses. So when it achieves this task reliably, it should be for sure that also pigeon hole problem CNFs
(and any other CNF which would require large resolvents) are no problem for the polynomial solver.

But although the presented ideas and findings may deepen the understanding, I do not yet completely
know in detail how the polynomial solver manages to solve the pigeon hole CNFs. Further research could
be done here.

5.4 Loop Ranges

Some questions and answers about loops appearing in the polynomial solver’s sample implementation:

e Do we need ‘full range’ loops (i, j, k, [ iterate all from 0 to PossibleClauseNumber - 1), can’t we e.g.
just check 7, k,1 < 4?7 This means can’t we just check j, k, [ which appear above ¢ in the clause path?

I implemented and tested this. Restricted loop ranges did not work, the polynomial solver partially
returned wrong results. Probably because with restricted loop ranges not the clauses of all blocks
are checked for not being in conflict with 4, what could understandably lead to errors, because it’s
an ignoring of potentially useful information.

e Why do we need the ‘while (ChangesExisting)’ loop?

This loop enables the polynomial solver to handle cases where some Active[] value is set to false and
this Active[] value change would have influenced an Active[] value setting done before. So the ‘while
(ChangesExisting)’ loop is used to support any order in which Active|] values are set to false.

In tests, the polynomial solver mostly did only two ‘while (ChangesExisting)’ loop iterations, the
initial one and another one in which no Active|[] value changes appeared any more. This means here
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the ‘while (ChangesExisting)’ loop would not have been required. But in some tests, the polynomial
solver did more than 2, namely 3 or 4, ‘while (ChangesExisting)’ loop iterations.

In further tests, I realized that the Active[] values of the clauses in the very last block of the
clause path were always set correctly also without ‘while (ChangesExisting)’ loop. This worked
in some 10,000 tests and also solving the pigeon hole problem PH P, was managed without ‘while
(ChangesExisting)’ loop. So if the operational scenario of the polynomial solver does not require to
set absolutely all Active[] values correctly, but only those in the last block, then the solving process
can possibly be sped up by removing the ‘while (ChangesExisting)’ loop. But this variant was tested
much less intensively and its correctness is not as confident as that of the main version.

6 Complexity Analysis

It follows the determination of the worst-case complexity of the polynomial solver, for the 3-SAT case.

The size of the set PC' is of great importance for determining the complexity because the polynomial
solver’s main work consists substantially of looping through the set of possible clauses. There are
PCNum = |PC| = O(n®) many possible clauses, because we can place the three indices of all possi-
ble clauses using three nested loops, each having an iteration range not larger than 1 to n. Furthermore
there are 23 = 8 possibilities for each clause to choose the three e values out of {0,1}. But because this
is a constant complexity, it will not be observed in the O notation. Regarding all possible combinations
of x many possible clauses one time has a complexity of O((n®)*). This is the case because we had to
implement 2 many nested loops, each having an iteration range of 1 to |PC/|.

The polynomial solver consists of 4 nested loops, each iterates from 0 to (excluding) PCNum. Within
the loops, additional noteworthy work is only 1) checking if a clause appears in the CNF, 2) checking if
two clauses are in conflict, 3) reading/writing array or single variable values. The results of 1) and 2) can
be pre-computed independently and with a complexity smaller than that of the 4 nested loops.

1) has a complexity of O(PCNum x CNFClauseCount x n), because for each possible clause we need to
loop through the CNF clauses and compare maximal n many 0/1/- chars (assumed the possible clauses
exist in clause line notation). There cannot be more distinct clauses in the CNF than there are possi-
ble clauses, so that checking if a clause appears in the CNF does not have a greater complexity than
O(PCNum x PCNum x n).

2) has a complexity of O(PCNum x PCNum x n), because for each pair of possible clauses we need to
loop through their n many 0/1/- chars and check if there is a conflict (0 comes upon 1 or vice versa).

3) Reading/writing variable values from/to RAM has a constant complexity O(1).

This means running the main loops 1, j, k, [ is the most comprehensive work, which has a complexity of
O((PCNum)*) = O((n®)*) = O(n'?).

The last solver part to consider is the ‘while (ChangesExisting)’ loop. This loop is iterated not more than
PCNum times, because at the latest when all Active[] values have been set to false, then the while loop
is left. There are PC' Num many Active[] values (i.e. array elements), so that the main loops 4, j, k, are
never re-started more than PCNum times.

Checking if there’s an Active[c] = true with ¢ from the last clause path block has a constant complexity
and thus needn’t to be added in.

So the total complexity is composed of running the ‘while (ChangesExisting)’ loop and the 4 main loops

i, j, k, [ within, so that we get summarized a time and space complexity not greater than O((PCNum)?) =

O((n?)*) = O(n™).
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7 Solver Implementation

7.1 Download Location and Scope

There are C++ sample implementations available of both the polynomial solver and the exponential solver.
They are each offered in versions for Windows and Linux. The demo implementations can be downloaded
packed as a Zip file from the author’s homepage www.louis-coder.com. Within the Zip, please regard
the directory tree “Algorithm E ...”. The directories “Algorithm B ...” and “Algorithm D ...” contain
material related to older algorithms I published earlier. The reader can later attend to those versions, if
desired. But this is not necessary to understand the Algorithm E presented in this paper. I recommend
to focus on Algorithm E, because it is the easiest and best-explained one.

7.2 Performed Testing and its Results

The demo implementation of the polynomial algorithm (see previous topic) correctly solved over 1,000,000
random CNFs. The solvability of each random CNF was first determined using a fail-safe, exponential,
brute force solver (which just tries out all 2" many models, not to be confused with the exponential solver
introduced in . Subsequently, the solvability of each random CNF was determined by the polynomial
solver. The results did in each of the over 1,000,000 tests match. There was not one divergence. The
CNF dimensions varied mainly from n = 4 to n = 15, with n times 2 to n times 10 many clauses. The
largest CNF checked was a pigeon hole problem CNF with n = 26E|

In case a CNF is solvable, it will be the case that Active[c] = true array elements will remain. The demo
implementation verified (using another fail-safe, exponential auxiliary algorithm) that all Active[c] values
the polynomial solver left true are really meant to be, i.e. that each ¢ from an Active[c] = true is a clause
not in conflict with the inverse of any solution (‘model’) which satisfies the CNF. Like this, billions of
Active[c] values have been verified (there are up to a few thousand of them for each CNF instance). There
was not one error. The check is done by the procedure Debug_VerifyActive(), the interested reader might
want to examine the source code for further details.

Also pigeon hole problem CNFs of size 2, 3 and 4 have been correctly determined by the polynomial solver
as UNSATE| Especially the correct solving of the pigeon hole problem CNF of size 4 is interesting, because
if the polynomial solver would be ‘some kind of’ resolution solver, it could not detect this pigeon hole
problem as UNSAT. The theory says that any resolution solver would need to store and further process
at least one 4-SAT resolvent clause for this pigeon hole problem.[7] So this limitation of (bounded-width)
resolution solvers seems not to apply to the presented polynomial algorithm. To be absolutely sure that the
polynomial solver outperforms the bounded-width resolution solver, I inputted the pigeon hole problem
CNF of size 4 into a self-programmed, bounded-width resolution solver which does not use resolvents with
more than 3 literals. That resolution solver failed (it returned ‘satisfiable’), as expected. The polynomial
solver whereas worked, it returned ‘UNSAT’.

8 Discussion

An algorithm was presented of which I assume that it determines the solvability of any 2- or 3-SAT CNF
in polynomial time and space.

The finding that my solver implementation solved all CNF's I inputted, and the fact that I found no fatal
problems or contradictions when developing the proof of correctness, make me suppose the algorithm is
correct.

5 PH Py, converted by me to pure 3-SAT. Search Zip file for ‘Pigeon_n=4_3.txt’.
6A definition of the pigeon hole problem is given in e.g. [6].
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On the other hand, results of testing are no guarantee for absolute validity. And the proof of correctness
could contain flaws, or could miss one or more important problems.

Nevertheless, I do strongly believe the paper can contribute important ideas in the field of building SAT
solvers. The established polynomial algorithm is very easy to understand, because it works according
to a very small set of rules only. Therefore it will probably not need much time until it is completely
understood and verified by the scientific community. In particular, I would appreciate if someone who
has the capabilities could test the polynomial solver on a high-performance computer, e.g. by inputting
very large pigeon hole and random CNFs.

In case the polynomial solver should be finally proven to be correct, a breakthrough would be achieved
in the related fields of mathematics and theoretical computer science.
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