Polynomial Exact-3-SAT Solving Algorithm

Louis Coder

louis@Iouis-coder.com

December 2012

Abstract

In this document | want to introduce and explainagorithm that determines the solvability state
(solvable or unsatisfiable) of any exact-3-SAT falanin polynomial time. It is for sure that the

algorithm has polynomial runtime, even in the warase, as the runtime is artificially limited. The

question is only if the algorithm does always ottixe correct result. | suppose it does, due tooafp

of correctness that will be shown in this documemty the evidence that an implementation of the
algorithm solved millions of test formulae withoahy error. Furthermore this document provides a
download link to a (Windows) demo solver programttyou can try out. If the algorithm should really

be correct, it would solve the P-NP problem by pmguihat P = NP [1].

1. Introduction

The P-NP-problem is a still unsolved problem welbkn by computer scientists. The problem asks if
it is possible to solve those problems in polyndrimae that are currently associated to the coniplex
class ‘NP‘. One of those problems that lies in N@xact-3-SAT.

Exact-3-SAT is a variant of the such-called satlsfity problem. The task is to determine if there’
solution for a formula given as conjunctive norfimam with exactly 3 different literals per clausg.[

Example:
Exact - 3— SAT - CNF = (x, 0%, 0x,) O{x, 0x, 0x;)0{x, 0x, 0x,)

The AND-terms are called clauses, the OR-termsimvithclause are called literals [3]. A solution
would be e.g. a table that assigns either trualsefto every literal.

One possible solution for the just shown CNF wdagd

X, = true
X, = true
X, = true

...because when we insert this into the CNF we get:
Exact —3- SAT - CNF =(trueC true true) C (trueC false[false) C (falseC truel true)

As in every clause there’s at least once true(N€ itself becomes true. It might be that the CMdR ¢
never become true, no matter how you choose theesaif the literals. My algorithm shall determine
the solvability state of any given CNF, that meamgtherit is possible at all to get the whole CNF
true.

Note that in the following, ‘algorithm’ means thelynomial algorithm this document concerns about.
Furthermore the expressions ‘clause’ and ‘AND-tewill be used synonymously within this document.

2. Algorithm

The following algorithm to solve the satisfiabiliproblem was developed by myself. | do not know if
there are already similar algorithms existing. d aiot (knowingly) extend or change any existing
algorithm that is described in literature. | justote down unsatisfiable CNFs on a sheet of papér an
tried to invent rules how you can determine the €N#olvability states. If an algorithm worked on
paper, | implemented it as a program and did afdests. After 2 years proceeding like this, Irfdu
the following algorithm, of which I think it is coect. The references to literature have mainly been
sought at a time the algorithm was already finished

2.1 Main Idea

The most important idea of the algorithm is to ke tlause overlaying’, as | call it. You can ‘olasf
two source clauses to the ‘overlaid clause’ ifdbarce clauses contain exactly one literal oncateedg
and once not negated . This literal does not appahe overlaid clause any more, all other literale
just copied to the overlaid clause.

Example:
(x1 Ox, Dx3)overlaid_over(x1 X, Dx_4)= (x1 O X, Dx_4)

It might be that this ‘clause overlaying’ is alrgddhown as ‘resolution’ [4]. As | am not absolutsiyre
that these two concepts are really equivalent,elpken speaking about ‘overlaying’ (it was my own
invention to use this expression).

To get the solvability state you just overlay alspible pairs of clauses of the given CNF. An aidrl
clause can participate in an overlaying operatgaira

One important detail is the following: you try tetgverlaid clauses with as few literals as possiBb,
for instance, add an overlaid clause with 3 litéoalhe CNF only if there was none creatable withr 2
1 literal(s).

Furthermore, do not add an overlaid clause if & 8ib set of any existing AND-term. For instart®,
not add

(Z 0x, Dx3)

if there's

(ZDXZ)

existing in the CNF. A clause S is a sub set daase L if S contains at least all literals of le@ation
states in S, i.e. if literals are negated or natsthmatch the ones in L, of course).

You do the overlaying until one of the following#e cases happens:

* The empty clause with no literals appears => thé& @\unsatisfiable, there is no solution existing
* You cannot create new overlaid clauses any mortheXNF is solvable, it exists some solution

* You exceeded a special limit of clauses (will bplaied later) => the CNF is solvable

2.2 Example Usage

In the following example, | demonstrate how we fmat that the given CNF is unsatisfiable. To keep
the example short and easy to understand, | ugxast-2-SAT formula, with 2 instead of 3 literafs i
the initial CNF’'s AND-terms. The proceeding witHiterals would be equivalent, except that it would
take more AND-terms to create.

Step 0: the given CNF (‘initial CNF)
(x, Ox,)0 (Xl sz) (Xl sz) (

Step 1: overlay first and second clause

(x, Ox,) O Ox,)0(x 0%,)0 (xlﬂx_z

Jo0x)
Step 2: overlay third and fourth clause

(x1 DXZ)D(Xl DXZ)D(Xl sz) (x1 Dx_2
Step 3: overlay fifth and sixth clause

(% D) 0 0%,)0 030, 0

3. Pseudo Code

0(x,) D(Xz

X,)0(%,) 0(x,) O()

3.1 The Algorithm in Pseudo Code

The following is a Basic-like pseudo code listirfgttee demo solver you can download. It implements
the polynomial exact-3-SAT solving algorithm.

ReDo: /1 goto-target (Iabel) /1 1)
For COverl ai dd auseLiteral Count Max = 0 To CNF. MaxLiteral | ndex /11 2)
For QuterLoop = 1 To CNF. d auseNunber /1 3)

For I nnerLoop = QuterLoop + 1 To CNF. d auseNunber /1 4)

Overl ai dd ause = Overl ay(
CNF. d ause[Qut er Loop] ,

CNF. C ause[| nner Loop]) /1 5)
I f Overlaidd ause. Literal Count > Overl ai dd auselLi t eral Count Max O
Overl ai dd ause. Literal Count < 0 Then /1 6)
Next | nnerLoop
Endl f
If Overlaidd ause. Literal Count == 0 Then I17)
Return Unsatisfiable
Endl f
I f 1 sSubset Of AnyCl ausel nCNF(Over | ai dCl ause, CNF) Then
Next | nnerLoop /1 8)
Endl f
CNF. AddCl ause(Overl ai dd ause) /11 9)
I f Worki ngCNF. G auseNunber > Expect edd auseCount Max Then
Return Sol vabl e /1 10)
Endl f
Got 0 ReDo /1 11)

Next | nnerLoop
Next CQuterLoop
Next Overl ai dd auseLi t er al Count Max

Return Sol vabl e /1 12)

3.2 Explanation of the Pseudo Code

The following numbers refer to the numbers in theyzlo code.

1. we jump to this code location every time we addedwerlaid clause to the CNF.

2. Overl ai dd auselLit eral Count Max is the maximal literal count an overlaid clause can
have to be added to the working CNF. IMPORTANT:tweto add overlaid clauses that have as
few literals as possibl® reduce the number of clauses in the CNF (tbe liéerals a clause has,
the less possible clauses you can create out &é titerals).

3. The index of the first clause that will take parn ian overlaying operation.

4. The index of the second clause that will take pagn overlaying operation. As it does not matter
in which order we overlay the clauses, we can dtehind’ the index of the first clause. Note that,
in the original C++ solver code, we additionallyeusn array to not overlay pairs that have been
overlaid once before (the array is named ‘Staf}[][]

We call a procedure that does the overlaying.

6. If the overlaid clause has too many literals (se@tp2)) or the overlaying operation could not be
done as there is not exactly one conflict exisbiegveen the two clauses to overlay (the overlaying
procedure then could set the literal count to el gikample), we continue with the next clause pair.

7. If we get the empty clause, the CNF is unsatisfiabl

8. If there’'s any clause existing in the CNF thatteins the current overlaid clause, that meartseif t
overlaid clause is a sub set of any existing clatsew away the overlaid clause (i.e. ignore it).

9. The overlaid clause is added to the CNF and may pakt in another overlaying operation.

10. If the number of clauses in the CNF exceeds a apkwaiit (Expect edCl auseCount Max was
pre-calculated before) we can suppose the CNHRvalsie.

11. Every time we added an overlaid clause to the OME,jump to the beginning, which mainly
results in a reset @ver | ai dCl auseLi t er al Count Max, so that we add clauses with as few
literals as possible.

12. If we reach this code line, no new overlaid clawss created any more.

o

4. Complexity

In the following paragraphs, clause S shall beedall ,shorter clause’ than a clause L, if S has les
literals than L. A ,longer' clause is one with moliterals. An x-literal clause shall be one with x
literals. These expressions were introduced by Hhyse

Also we must define what ,complexity' shall be.dfthed the complexity as the total number of clause

(respectively AND-terms, synonymous) added to therkimg CNF until the solver successfully
determined the solvability state.

4.1 Worst-Case Complexity of the Algorithm

| say, the total number of clauses ever addededNF will, if the CNF is unsolvable, never exceed
the count of all possible clauses with 3 or lessrdis. ,Possible clauses' means all clauses tteat a
creatable at all (containing the mentioned numlbéterals).

What is the count of all possible clauses with &ss literals?

One could say, first the total number of clauseth \8i literals and highest possible literal index =
I ndexMax would be:

(IndexMax) * (IndexMax —1) * (IndexMax —2) *8

...as we havé ndexMax possibilities to choose the first literal indexe less for the second one and
two less for the third one. Furthermore we havessible true/false combinations:

Literal 1 Literal 2 Literal 3
false false false
false false true
false true false
false true true
true false false
true false true
true true false
true true true

But, this calculation is not true as this wouldoat®ntain vice-versa (swapped) combinations, like
(4 00X, 0%)

and

(X2 D Xl D X3)

(as the order of literals is not important, these AND-terms are seen as identical).

So here’s the correct calculation of the count dhuses with 3 literals and highest literal index =
| ndexMax:

IndexMax—-2 IndexMax-1 IndexMax

(> (2.8)

i=1 j=i+l k=j+1

For the total complexity you must add the countlafises with 2 or 1 literal(s). Finally the exactrst-
case complexity of the polynomial solver is:

IndexMax—2 IndexMax-1 IndexMax IndexMax-1 IndexMax IndexMax
(2 (280+(2 (2 4+ D2
i=1 j=i+l k=j+1 j=1 k=j+1 k=1

3
This means, our solver has a complexity(%én) .

The origin of these formulas are my own considereti They are rather easy to understand and | could
not falsify them in tests, so it is very probalfiattthe formulas are correct.

4.2 Reason for Worst-Case Complexity

The provided solver is programmed to output ‘soleabs soon as the CNF clause count exceeds the
sum of all possible clauses with 3 or less lite(alse 4.1). This seems to be logical, as in th@lini
CNF there are only clauses with exactly 3 literalsd most of them are overlaid to clauses with 2 or
less literals.

But, there’s a problem: it does happen that theeeckauses with morthan 3 literals created through
overlaying, sometimes even ones with 4, 5 or maegals. In my tests this happened for both
satisfiable and unsatisfiable CNFs.

The problem with more than 3 literals is the foliog:

* The calculated limit is the count of all clausefw@ or less literals

* If we now add a clause with 4 literals, the maxiroalculated clause count (see 4.1) could be
exceeded, as the limit does not include the colatiditional AND-terms with more than 3 literals

* The question is if we could count a CNF falselpalvable as the expected clause count is reached,
but we_wouldget the empty clause if we kept on overlaying?

| say, even if clauses with more than 3 literalgesy in an unsatisfiable CNF, the calculated limitot
exceeded.

Reason:

when a clause with more than 3 literals is addkih@uded clauses must be missing.

So if we add for example:
(X1 Lx, LI DX4)
then there must be missing:
(% 0%, 0x;)

% 0x, O X4)

X, Uxg 00X,

X, O, 0x,)

~—

XXX
m -

Ryl

/-\/—\A/-\/—\/—\?z—\/-\f\/-\/-\/—\
N
e
N e’ e

J>>< 3
,e.x e

The code line 8) in '3.1 [...] Pseudo Code’ would idvimat (6 0% 0%, 0x,) (in the following
called ‘surplus clause’) is added if there waseast one of the shorter clauses existing in the.CNF

But, what if all those shorter clauses are addehaérds, i.e. first the clause with 4 literals ahen all
shorter ones? Then we would have one AND-term nmotke CNF than calculated, namely additional
the 4-literal clause.

Even if this would happen, it is for sure that thare further AND-terms missing that were recoghize

by the limit calculated in 4.1. Because, imagire shrplus clause would have been created throwegh th
following overlaying operation:

(x, Ox, Dx%.))overlaid_over(x3 Ox, DX_S): (x, Ox, Ox, Ox,)

That means that the two source clauses would haea bxisting in the CNF and they created the
surplus clause.

But there must those clauses be missing that wané avoided the creation of the surplus one!

Soife.g.

[, Ox, 0%

would have existed in the initial CNF, the algamithivould have overlaid before (!) the surplus 4réite
clause would have been created:

(xl X, Dx5)overlaid _over (x1 ux, DX_S): (x1 sz)

So we would have gotten one of those clauses that auperset of the surplus one.

That means, as soon as one 4-literal clause igdadliere must at least one 3-literal clause beingss
Actually there are much more 3-literal clauses imgssnamely all those that would create the 2-4diter
clauses listed farer above. So we will never exdkedalculated limit.

Note that | successfully determined the solvabiktate of millions of CNFs with the sample
implementation (see 5.), this lets me supposeusteshown proof is correct. It is very probablet thifa
the algorithm would not be correct, there wouldéhappeared at least one error.

5. Sample Implementation

| recommend you to download and try out the sampj@dementation - a Windows console program
that allows you to solve random CNFs with the polyial solver and compare the results with those of
an exponential, fail-safe one. In the downloadaijefile there’s also the source code, which migat
compiled under Linux, too (with some little codeanles). In the zip-file there’s also this document
(v3.1) and an older version (v2.1) that explainavhto use the sample implementation (see
‘Documentation’ directory).

http://www.louis-coder.com/Polynomial_3-SAT_Solewlynomial 3-SAT_Solver.zip

6. Proofs

6.1. Overlaying leads to Empty Clause

In the following paragraphs | want to prove th&tveé can not (!) get the empty clause by overlaying
the CNF is solvable.

The CNF is unsatisfiable if there are at least t¥eaises that cannot both be satisfied by a solution

For instance,
(%)
and
(Xl)

cannot both be satisfied at the same time.

Remember: overlaying is done with pairs of clausiethese two clauses contain exactly one conflict
literal (negated in the one clause and not negatede other one) we can remove the conflict litera
and write the resting literals into the overlaidugde, which has always fewer literals than thosthef
two source clauses (as the conflict literals haaenremoved).

If we can not overlay two AND-terms, it is for sutet there is a solution existing that satisfiethtof
them.

| want to prove this by just listing such cases mghee cannot overlay and corresponding possible
solutions. The first two lines are the two sourtauses that are to be overlaid. Right after, tleeee
possible solutions shown that satisfy both soutaeses.

1.

(% Ox,)
(6 Ox,)
Solution:
X, =true
or

X, =true

Solution:

x, = false
or

X, =true

4'_

b 0x,)

(Xl sz)

Solution:

x, = falsex, = false
or

X =truellx, =true

We see, if we cannot overlay at all there are ofdyses left in the CNF that can all () be satidfand
thus the whole CNF has some solution!

Note that the listed solutions do also satisfy s@iD-terms with more than 2 literals. The solutions
for those clauses can be found similarly.

If there are clauses left with 1 literal and wergatroverlay, then these ones can be satisfied, too.
The only 1-literal clauses that cannot be overdaizt

5.

X
X

Solution:
X =true

XX

Solution:

x, = false

6.2. Sub Set Check

Is it valid to not add an overlaid clause if igisub set of any clause already existing in the TNF

Remember that we do not add e.g.

(% Ox, O0x,)
if there's already

(% Ox,)

existing.

| say this is valid because: to make the whole Gdlvable, all AND-terms must be satisfied by a
solution.

That means

(% Ox, 0x;)

and also

(% Ox,)

must be satisfied.

Imagine that

(% Ox,)
is already existing in the CNF.

| say, if this clause can be satisfied, there'sewd to add

(% Ox, Ox,)

as

(x, Ox,)=true

means the existing clause can be satisfied. Iinsert this into the longer one, we get:
((true) O x,)

...and this is always true.

So if
(% Ox,)

can not (!) be satisfied, the whole CNF is unsitigé as all (!) clauses must be satisfied.

But if
(% Ox,)

can be satisfied,

(% Ox, O0x,)
is also true in any case and we don'’t need to tiddthe CNF.

7. Acknowledgements

| thank the reader of this document for his/heeri@st and | would be even more happy if he/she dvoul
comment the algorithm, if possible. Also thanks aXiv.org for publishing my article and the
professors from University Erlangen-Nuremberg fdueating me.

8. References

[1]:

1) http://de.wikipedia.org/wiki/P-NP-Problegall Wikipedia versions from 2008-06-20)

2) lecture “Berechenbarkeit und formale Sprachen”pbofessor Wanka, winter term 2009/2010,
University Erlangen-Nuremberg

[2]:

1) http://de.wikipedia.org/wiki/3-SATall Wikipedia versions from 2008-06-20)

2) lecture “Berechenbarkeit und formale Sprachen”pbofessor Wanka, winter term 2009/2010,
University Erlangen-Nuremberg

3]:

1) http://de.wikipedia.org/wiki/Konjunktive Normalforifall Wikipedia versions from 2008-06-20)

2) lecture “Berechenbarkeit und formale Sprachen”pbofessor Wanka, winter term 2009/2010,
University Erlangen-Nuremberg

[4]: http://de.wikipedia.org/wiki/Resolution_%28Logik%28l Wikipedia versions from 2008-06-20)

