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ABSTRACT
Binary mechanics (BM) used a pair of relativistic Dirac equations of opposite handedness to guide 
quantization of space and time into binary bit loci in a cubic lattice restricted to zero or one states. The 
exact time development of this BM state vector is determined by the four bit operations -- 
unconditional, scalar, vector and strong -- applied sequentially, one each in a quantized time unit.  
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INTRODUCTION 

In the theory of binary mechanics to be presented, elementary particles are compositions of smaller 
entities, called binary units or bits. Fundamental physical constants, such as particle quantum 
numbers and masses, coupling constants, Planck's constant and the velocity of light, are seen in 
binary mechanics to result from a smaller set of more primary physical constants for energy, length 
and time. All known forces of nature including gravitation are unified by simple binary operations. In 
short, our universe is binary. 

There are no continuous variables in binary mechanics. Zero and one are the only permissible bit 
states at any space-time location which may have only integer coordinate values. Thus, binary 
mechanics may be viewed as completing a historical trend culminating in the quantization of space 
and time. 



The development of binary mechanics was guided by the representation of the relativistic Dirac 
equation by James Hughes (personal communication, 1993), who associated electron spinor 
components with neighboring, but distinct spatial loci in a cubic lattice. Quantum electrodynamic and 
chromodynamic dimensions beyond the four space-time dimensions are represented in binary 
mechanics as events occurring at neighboring spatial locations. For example, spinor and color 
components correspond to different bit locations. 

Natural phenomena result from bit interactions over BM distance unit d. The basic equations of binary 
mechanics express the exact time-development of bit states in one binary unit of time, designated as 
a tick. Thus, in both principle and practice, using computer simulation technology, exact results may 
be obtained. The ability to completely and exactly catalog composition and life cycle of elementary 
particles (see "The central baryon bit cycle" and "Baryogensis") and their interactions is an example of 
the utility of binary mechanics. Conduct of the next generations of high energy particle physics 
experiments using simulation based on binary mechanics, before completion of multi-billion dollar 
apparatus, illustrates the possible economic utility of the theory. 

This paper presents the postulates and equations of binary mechanics, the binary mechanical 
representation of elementary particles, such as leptons, quarks, baryons, photons and gluons, and the 
correspondence principles relating binary mechanics to quantum mechanical wave functions and 
operators and to classical mechanics, both in their relativistic forms. 

THE THEORY OF BINARY MECHANICS 

Binary mechanics will be presented in a representation which is convenient for expression of 
correspondence principles with quantum mechanical notions. The initial goal will be clarity of 
presentation of the basic postulates and equations of binary mechanics. 

The Spot Unit 

The two positive real components of the value of the complex wave function for one spatial dimension 
at an infinitesimal point in quantum mechanics correspond to a pair of bits residing at a location of 
finite dimension. The phrase spot unit will designate the spatial volume occupied by this bit pair in 
one dimension. The two bits in a spot unit, L and M, named the lite and the mite respectively, are 
restricted to the values or states of zero or one (Eq. 1). 

L, M = 0, 1 (1)

At this point, the reader may generally associate mites with "matter" and lites with "radiation," or more 
precisely, as constituents of spin one half and spin one particles respectively. The spot unit may be 
associated both with the location of the mite and lite and the mechanisms executing binary 
mechanical time development of bit states (Fig. 1A). 

Figs. 1A and 1B
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Legend: see "Physical interpretation of binary mechanical space". 

[Notation: lower case is often used for alphabetical subscripts. Eg., Si] 

A spatial frame, Si, i = 1, 2, 3, is chosen with position in S expressed by integer coordinates, Si, as in 
a cubic lattice. Spot unit bits, L and M, are oriented parallel to an axis of Si at each coordinate location 
{S1, S2,S3} called a spot (Fig. 1B). That is, a spot is a three-dimensional assembly of three spot units. 

The bit state, B, consists of these six bits -- the L and M bits in each of three spot units at a spot (Eq. 
2).

Bi = Li, Mi = 0, 1; i = 1, 2, 3 (2)

The bit state may include any number of spots and is a binary mechanical analog to the quantum 
mechanical state vector. A 1-state bit provides the fundamental energy unit.  

Spot unit parity, P, for a spatial dimension i in S is Si modulo 2 (Eq. 3).

P(Si) = Si modulo 2 = 0, 1; i = 1, 2, 3 (3)

Reference frame S is further chosen to define spot parity, XYZ, in S as

X = P(S1); Y = P(S2); Z = P(S3) (4)
 

Mites and lites are characterized by three parities associated with each dimension i = 1,2,3 in S 
where Ii, Ji and Ki = (0,1) and are defined in the "Three Dimensional Spatial Format" section below.  

Considering one dimension first, i = 1, omitting subscript i, the substrate for electric and color 
charges is a sign function of I parity in Si associated with mites (Eq. 5). 

sign(M) = (-1)I = +1, -1 (5)
 

Mites associated with negative and positive signs are termed nits and pits respectively. From Eqs. 4 
and 5, electric and color charge properties of mites depend on spot location. That is, nits occur in odd 
I parity spot units; pits occur in even I parity spot units. 

Noting that ascending and descending values of spot coordinates, Si, are deemed to be right and left 
respectively, the substrate for handedness is lite sign and depends on K parity in Si (Eq. 6) where 
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positive and negative lite sign indicates right and left handedness respectively. 

sign(L) = (-1)K = +1, -1 (6)
 

Lite sign is considered to represent the physical order of mite and lite bits in a spot unit, shown in 
Figs. 1 and 2A to 2C. For spot units with K = 0, the lite bit is to the right of the mite bit. With K = 1, lites 
are to the left of mites. The right or left lite bit position in a spot unit is said to point in the spot unit 
direction or lite direction. 

Since M and L may not assume negative values, these mite and lite sign functions pertain to relative 
bit positions and associated physical properties. For each dimension i, four variations of spot units 
occur (Table 1, Fig. 2A to 2C): right or left, each with either nit or pit. The spatial arrangement of spot 
unit bits is listed in Table 1 in the rows labeled B(XYZ)x, B(XYZ)y and B(XYZ)z for the eight 
permutations of the three parity values XYZ, where x, y and z denote one of three spot units and B 
components are products of sign functions (Eqs. 5 and 6) with corresponding B bits (Eq. 2). 

Table 1: Spot Lattice Components in Binary Mechanics 

Spot XYZ      000    001    010    100    011    101    110    111     Parity

B(XYZ)x       + >    < +    + >    - >    < +    < -    - >    < -     Symbols 
B(XYZ)y       + >    + >    - >    < +    - >    < +    < -    < -   < = -L; > = L 
B(XYZ)z       + >    - >    < +    + >    < -    - >    < +    < -   - = -M; + = +M 

B(XYZ)x       L, M  -L, M   L, M   L,-M  -L, M  -L,-M   L,-M  -L,-M     Signed 
B(XYZ)y       L, M   L, M   L,-M  -L, M   L,-M  -L, M  -L,-M  -L,-M     pairs 
B(XYZ)z       L, M   L,-M  -L, M   L, M  -L,-M   L,-M  -L, M  -L,-M   L, M = 0, 1 

BC(XYZ)x     +L+iM  -L+iM +iL+ M  +L-iM -iL+ M  -L-iM +iL- M -iL- M      Signed 
BC(XYZ)y     +L+iM +iL+ M  +L-iM  -L+iM +iL- M -iL+ M  -L-iM -iL- M     complex 
BC(XYZ)z     +L+iM  +L-iM  -L+iM +iL+ M  -L-iM +iL- M -iL+ M -iL- M   L, M = 0, 1 

Q             +1    +1/3   +1/3   +1/3   -1/3   -1/3   -1/3    -1     ∑(sign(Mi)/3) 

Handedness    +1     -1     -1     -1     +1     +1     +1     -1     ∏(sign(Li)) 

C1H (red)      0      0      0     -1     +1      0      0      0     Spot Color 
C2H (green)    0      0     -1      0      0     +1      0      0     +1 = color 
C3H (blue)     0     -1      0      0      0      0     +1      0     -1 = anticolor 

T3(XYZ)/4      0      0    +1/2   -1/2   +1/2   -1/2     0      0      (X-Y)/4 
T8(XYZ)/4√3    0     +1   -1/2√3 -1/2√3 +1/2√3 +1/2√3   -1      0    (X+Y-2Z)/4√3 

Particles     e+R   /dbL   /dgL   /drL    drR    dgR    dbR    e-L     One Spot 
            lepton  quark  quark  quark  quark  quark  quark lepton    d = down
             pos.   /blue /green  /red    red   green  blue   elec.    / = anti

Lites X     photon  gluon  gluon photon photon  gluon  gluon photon
               R      L      R      R      L      L      R      L      L = -1; R = +1 
                    /b>g   /g>b                 g>/b   b>/g

Lites Y     photon  gluon photon  gluon  gluon photon  gluon photon
               R      R      R      L      R      L      L      L
                    /b>r          /r>b   r>/b          b>/r

Lites Z     photon photon  gluon  gluon  gluon  gluon photon photon
               R      R      L      R      L      R      L      L
                           /g>r   /r>g   r>/g   g>/r 

Legend: X, Y and Z are spatial dimensions in spot lattice S. 

Unconditional Bit Motion 



The unconditional bit operation of the time-development equations of binary mechanics represents a 
bit shift in the spot unit directions (Fig. 2A) and may be expressed as 

L(t=1) = M(t=0) = 0, 1 (7) 

M(t=1) = Lx(t=0) = 0, 1 (8)

where t is the time tick and Lx is the adjacent lite in the preceding spot unit, with reference to lite 
direction, pointing to the M and L spot unit, allowing omission of position subscripts. In computer 
terminology, lite Lx is analogical to the "carry bit" from the bit shift in the preceding spot unit. 

Fig. 2A: Mites and lites shift in lite direction 

 Si coordinate  1     2     3     4     5     6     7     8
   I Parity     1     0     1     0     1     0     1     0
                -  >  +  >  -  >  +  >  -  >  +  >  -  >  +  > 
J=1; K=0; t=0   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 Scalar Φ = 0
                <  -  <  +  <  -  <  +  <  -  <  +  <  -  <  + 
J=0; K=1; t=0   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 Vector A = 0
                -  >  +  >  -  >  +  >  -  >  +  >  -  >  +  > 
J=0; K=0; t=0   1  0  1  0  0  1  0  1  0  0  1  1  1  1  0  0 Sample data
                -  >  +  >  -  >  +  >  -  >  +  >  -  >  +  > 
J=0; K=0; t=1   0  1  0  1  0  0  1  0  1  0  0  1  1  1  1  0 Shift right

In one tick, mites produce lites within spot units and lites produce mites in the next spot units in the lite 
direction. In Eqs. 7 and 8, the lite and mite states at t = 1 do not depend on their t = 0 states. It may be 
said that in one tick, mites "radiate" lites and lites "materialize" as mites. These are general effects, 
since lites in Eq. 7 are constituents of photons or gluons (see Photons and Gluons). 

At this level of fineness, the radiation-absorption coupling constants equal one, and hence, are not 
explicitly written in Eqs. 7 and 8. That is, the strength of different conventional forces, as expressed in 
values such as the alpha coupling constant is a function of the proportions of selected bit operations in 
a space volume per unit time, since each bit motion is exactly one unit of distance in one unit of time 
regardless of the potential (or bit operation) involved. 

Electromagnetic Force 

To add electromagnetic scalar and vector potential bit operations to the lite and mite Eqs. 7 and 8, it 
is convenient to define a spot cube as the eight spots (Table 1) in the cube with solid diagonal from 
spot XYZ = 000 to spot XYZ = 111 (Fig. 1C). 

Fig. 1C



Each face of the spot cube includes countercurrent pairs of parallel spot units pointing in opposite 
directions. Each of these spot units also are adjacent to concurrent spot units pointing in the same 
direction in adjacent spot cubes (Fig. 1C). Concurrent spot units within a spot cube are not adjacent 
and therefore are not thought to interact per the scalar potential. Bits in concurrent and countercurrent 
spot unit pairs have inverse J and K parities respectively. 

Lateral interactions between concurrent and countercurrent spot units mediate scalar potentials 
between spot cubes and vector potentials within spot cubes respectively (see "Electromagnetic bit 
operations revised"). 

SCALAR POTENTIAL. The classical scalar potential, Φ, is the presence of a concurrent mite, MJ, 

which has the attribute of electric charge, 

Φ = MJ = 0, 1 (9) 
 

where MJ is the mite in the adjacent concurrent spot unit in the same Si dimension with respect to M. 

That is, MJ is in spot unit I1K if M is in spot unit I0K, and vice versa.  

Thus, the electric field is the mite distribution in a space volume. 

Let e equal the absolute value of the electric charge of a mite. Interaction of mite electric charge and 
the classical scalar potential, eΦ, corresponds to the product of concurrent mites, 

eΦ = MMJ = 0, 1 (10)
 

where J designates the mite in the concurrent spot unit. This mite-state product defines the force of the 
scalar potential in binary mechanics. The sign of the charges of M and MJ are always the same and 

thus can be disregarded in using the absolute value required to obtain zero or one values, since the 

http://binarymechanics.blogspot.com/2011/03/em-bit-operations-revised.html


physical result is always dispersion of like-signed charges.  

In the scalar potential tick, this concurrent mite product (Eq. 10) at t = 0 results in mite motion to lite 
loci in the spot units if they were in the zero state (empty), as shown in Fig. 2B. 

Fig. 2B: Scalar potential accelerates mites 

 Si coordinate  1     2     3     4     5     6     7     8
   I Parity     1     0     1     0     1     0     1     0
                <  -  <  +  <  -  <  +  <  -  <  +  <  -  <  + 
J=0; K=1; t=0   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 Vector A = 0
                -  >  +  >  -  >  +  >  -  >  +  >  -  >  +  > 
J=1; K=0; t=0   1  0  1  1  1  0  1  0  1  0  1  0  1  0  1  0 Scalar Φ = 1
                -  >  +  >  -  >  +  >  -  >  +  >  -  >  +  > 
J=0; K=0; t=0   1  0  1  0  0  1  0  1  0  0  1  1  1  1  0  0 Sample data
                -  >  +  >  -  >  +  >  -  >  +  >  -  >  +  > 
J=1; K=0; t=1   0  1  1  1  1  0  1  0  1  0  0  1  0  1  1  0 Mites move
                -  >  +  >  -  >  +  >  -  >  +  >  -  >  +  > 
J=0; K=0; t=1   0  1  0  1  0  1  0  1  0  0  1  1  1  1  0  0 Mites move

The scalar potential Φ is revealed to consist of three spatial components, which is a new result of 
binary mechanics. For example, in the electron spot (Table 3), mites circulate rapidly among the three 
spatial dimensions which may explain why directionality of the scalar potential has not yet been 
observed experimentally. 

VECTOR POTENTIAL. In the classical treatment, the vector potential is viewed as the direction of a 
magnetic field. In binary mechanical countercurrent spot units, the vector potential component A is 

A = LK = 0, 1 (13)
 

omitting the dimensional subscript i for A and L, where K designates the lite bit in the adjacent 
countercurrent spot unit. 

Hence, the magnetic field is the lite distribution in a space volume. These lites may exert force on an 
adjacent countercurrent mite (q) 

qA = MLK (14) 
 

Vector potential A results in mite motion to lite loci, if empty, as shown in Fig. 2C. 

Fig. 2C: Vector potential accelerates mites 

 Si coordinate  1     2     3     4     5     6     7     8
   I Parity     1     0     1     0     1     0     1     0
                -  >  +  >  -  >  +  >  -  >  +  >  -  >  +  > 
J=1; K=0; t=0   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 Scalar Φ = 0
                <  -  <  +  <  -  <  +  <  -  <  +  <  -  <  + 
J=0; K=1; t=0   1  0  1  0  1  0  0  1  1  0  1  1  0  1  1  0 Vector A = 1
                -  >  +  >  -  >  +  >  -  >  +  >  -  >  +  > 
J=0; K=0; t=0   1  0  1  0  0  1  1  1  0  0  0  1  1  1  0  0 Sample data
                <  -  <  +  <  -  <  +  <  -  <  +  <  -  <  + 
J=0; K=1; t=1   1  0  1  0  1  0  1  0  1  0  1  1  1  0  1  0 Mites move
                -  >  +  >  -  >  +  >  -  >  +  >  -  >  +  > 
J=0; K=0; t=1   0  1  0  1  0  1  1  1  0  0  0  1  1  1  0  0 Mites move

Table 2: Some Binary Mechanical Expressions 

Quantity            Logical (True = 1)      Algebraic



Mite                M                       M

Lite                L                       L

Scalar Potential Φ  MJ                      MJ 

Vector Potential A  LK                      LK 

Strong Potential F  Bs and not Bd           Bs(1 - Bd) 

                    where s and d are source and destination bits.

Color Charge Ci     Ii xor In and           P(Ii + In)(1 - P(In + Ip)) 

                    not In xor Ip 

Neutrino vM         not M                   1 - M 

Neutrino vL         not L                   1 - L 

Gravitational Force 

At present gravity is not considered to be fundamental force implemented by postulating an additional 
bit operation, but rather joins the electroweak and neutral weak forces as consequences of the 
primary forces (Table 4 below). Other reports (e.g., "Gravity looses primary force status" and "Gravity 
increased by surface temperature") argue with supporting data that gravity is a consequence of the 
four fundamental bit operations -- unconditional, scalar, vector and strong.  

Energy Conservation 

Annihilation and creation operations at the single bit level have not yet been defined. That is, each 1-
state bit may be viewed as one unit of energy, which is conserved. 

Three Dimensional Spatial Format 

Spatial dimensions i = 1, 2, 3 are considered to be a cyclic ordered set. To generalize Eqs. 1 to 14 for 
each of three spatial dimensions, rotation matrix, R, a third root of unity, is used (Eqs. 19).

    | 0 1 0 |       | 0 0 1 |       | 1 0 0 |
R = | 0 0 1 |; R2 = | 1 0 0 |; R3 = | 0 1 0 | (19) 
    | 1 0 0 |       | 0 1 0 |       | 0 0 1 |

Premultiplication of spot parity values XYZ (Eqs. 4) in S defines

|I2|     |I1|           |I3|      |I1| 

|J2| = R |J1|, for i=2; |J3| = R
2 |J1|, for i=3 (20) 

|K2|     |K1|           |K3|      |K1| 

where I2J2K2 and I3J3K3 apply to spot units parallel to dimensions i = 2 and 3 respectively. 
 

For example, mite and lite signs are obtained by substitution of I2 and K2 in Eqs. 5 and 6 for i = 2 and 

of I3 and K3 for i = 3. These results are listed in Table 1 in the rows labeled B(XYZ)y and B(XYZ)z for i 

= 2 and 3 respectively. J1, J2 and J3 parities are used to identify location in S of concurrent mites with 

reference to any spot unit. In this text, XYZ = I1J1K1.  

Indeed, Eqs. 1 to 18 apply for all three spatial dimensions when the IiJiKi parities applicable to spot 

unit alignment in S are used (Eqs. 4 and 20). This statement is equivalent to the stipulation that a 
rotation applied to reference frame S must also be applied to reference parities I1J1K1 (XYZ in Eqs. 4) 

http://binarymechanics.blogspot.com/2011/04/gravity-looses-primary-force-status.html
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to maintain invariance of physical phenomena. 

Thus far, bit transitions in one spatial dimension, including lateral interactions between parallel spot 
units in adjacent spots, have been described. Interactions between pairs of the three spot units within 
a single spot will now be presented. 

Strong Potential 

The strong force results from interactions between pairs of spatial dimensions at a spot locus (see 
"Strong operation disabled by inertia"). For a notation expressing the cyclic order of spatial 
dimensions i, let

n = 1 + (i modulo 3); p = 1 + (n modulo 3); n, p, i = 1, 2, 3 (23)

so that n and p specify the next and the previous dimensions respectively for any dimension i in the 
cyclic ordered set. 

The strong potential F is a bit gradient within a spot from a source (s) bit in dimension i to a vacant 
destination (d) bit loci site in dimension n or p: Bs(1 - Bd) (Table 2). Bit transitions from dimension i-to-

p or from i-to-n depend on the presence of the strong potential F between the pairs of dimensions in 
their cyclic order within a tick interval and the absence of inertia in the source spot unit, 

Fip = Bi(1 - Bp)(1 - Bi*) = 0, 1 (24)
 

Fin = Bi(1 - Bn)(1 - Bi*) = 0, 1 (25) 

where Bp is the bit in the previous dimension p and Bn is the bit in the next dimension n (Table 2). The 

first factor, Bi, assures the result equals one only when the source bit in the gradient is one. The 

second factor asserts that the destination bit must be zero, else there is no strong potential gradient. 
Finally, the third factor, where * denotes the other bit in the source spot unit, assures the the strong 
force can be one only in the absensce of a binary mechanical quantity called inertia which is the 
product of mite and lite bits in a spot unit. In short, if the source spot unit has inertia, the strong force 
and defining bit operation is disabled. 

Strong interactions Fip and Fin represent intraspot bit gradients between dimensions within a tick 

interval conditioned by inertia. For example, strong force Fip equals one only if Bi = 1, Bp = 0 and Bi* = 

0 (Eq. 24). In effect, Fip implements a simple interdimensional bit transition, which is the mechanism of 

the strong force. 

The i-to-p direction of bit motion (Eq. 24), x-to-z, z-to-y and y-to-x in space S, occurs in right-handed 
spots (Table 1). The i-to-n motion (Eq. 25), x-to-y, y-to-z and z-to-x, occurs in left-handed spots such as 
the electron. Together, this cyclic order of the dimensions in strong bit operations creates chirality 
associated with spot handedness and spin sign. 

In sum, each force -- scalar, vector and strong, is the product of a potential and another factor, namely 
a mite for scalar and vector potentials and absent inertia (1 - Bi*) for strong potentials. As described 

below, 1 - Bi* may be viewed as a neutrino bit.  

Bit State Time Development 

Eqs. 24 and 25 complete the present time development representation of binary mechanics, which 
may be summarized in bit function

B[T=1] = f(s(u(v(B[T=0])))) (26) 

http://binarymechanics.blogspot.com/2011/03/strong-operation-disabled-by-inertia.html


where B is the bit distribution (Eq. 2) at initial and final states (Tick 0 and 1), and f, v, s and u are the 
strong, vector, scalar and unconditional bit operations respectively, assuming each operation requires 
one sub-tick to implement. These sub-ticks may be viewed as the fundamental time unit. That is, 
sequential application of the four bit operations completes one operator cycle, which defines the Tick 
unit used in simulation software and in the following text (Tick with capital T). In contrast, the v and s 
operations are apparently simultaneous in Maxwell's equations and the Lorentz Force. At present, the 
correct order to apply the v, s and u bit operations is unsettled (see "Bit operations order"). 

More results of selected applications will now be presented, to further elaborate and justify the basics 
of binary mechanics. The fundamental justification would be, of course, that the equations provide 
exact results for all physical phenomena. 

Scattering 

The strong potential "scatters" bits. In subsequent Ticks, the scatter direction is the lite direction of the 
destination spot unit in the dimension to which the bit scatters (Fig. 3A). 

Fig. 3A

Scattering will not occur and bits will move in one direction in a channel along a dimension as long as 
the strong potential F is zero or inertia equals one. 

On the other hand, if the strong force equals one and unconditional bit motion is applied, bits will cycle 
through a series of spot units within or among spots as a result of intraspot bit transitions defining 
strong interactions (Fig. 3A). These sequences can result in bit cycling where a bit returns to its 
original loci, an important factor in the binding of bits into elementary particles, which occurs when 
such a particle is considered to be at rest. 

Mechanisms determining the form of the Yukawa potential are readily apparent. Let a number of bits 
be concentrated into a smaller volume, by, say, converging lite energy. The Yukawa potential and the 

http://mypages.cwdom.dm/keenej/HotSpot.zip
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average interbit distance will decrease, as the average binary mechanical strong potential decreases 
toward zero. As the strong potential decreases, bits will tend to disperse into a larger volume. When 
bit density decreases, the average strong potential increases toward maximum bit cycling, preventing 
further bit dispersion. In short, the Yukawa potential is a measure of bit cycling, which is an instance of 
strong potential scattering. 

As described, all scattering occurs at fixed angles of 90 degrees in S, chosen to establish spatial 
symmetry. Thus, measured scattering angles distinguish among various interactions by their relation 
to the proportions of bits scattered in particular interactions over a particular distance and time 
interval. A complete analysis of scattering data would incorporate possible alterations in observed bit 
velocities due to scalar or vector potentials. 

Electrons, Positrons and d Quarks and Antiquarks 

The eight spots in a spot cube are associated with the electron, the positron and the six d flavor 
quarks (Table 1, Fig. 3B and Elementary Particles). These assignments should not be confused with 
the entirety of the particles themselves. Also, much "heavier" particles associated with very short half-
lives can be defined to include spots in multiple spot cubes. 

Fig. 3B

Legend: The white (w) color designation was changed to green in the Standard Model. 

To obtain these results, three spot attributes are defined (Table 1): (1) spot electric charge, Q, (2) spot 
handedness and (3) spot color charge. 

1. Spot Electric Charge 

Spot electric charge, Q, is defined as the sum of mite signs at a spot, which depend on spot parities Ii 
(Eq. 5). 



Q = (1/3) ∑ sign(Mi)
= (1/3) ∑ (-1)Si 

= (1/3)((-1)I + (-1)J +(-1)K) 
= ±1, ±1/3; i = 1, 2, 3 (29) 

Table 1 lists the binary mechanical results for spot electric charges, Q (Eq. 29), with Q = +1 and -1 for 
the positron and electron spots respectively and with Q = +1/3 and -1/3 for d antiquark and d quark 
spots respectively. 

The signs of the spot electric charges and the ratios of pairs of spot electric charge values both agree 
with accepted values. Hence, each spot corresponds unambiguously with the lepton and d quark 
particle and antiparticle assignments in Table 1. 

2. Spot Handedness 

The handedness of one-spot particles corresponds to spot handedness, H, which is the product of 
spot lite signs (Eq. 30). 

H = sign(L1)sign(L2)sign(L3) = ∏ sign(Li) = +1, -1 (30) 

where H = +1 for right (R) and one-spot particles, and H = -1 for left (L) and one-spot antiparticles. 
Table 1 and Fig. 3B show results from Eq. 30 for spots XYZ in a spot cube. 

3. Spot Color Charge 

The exclusive-or logical function of pairs of spot unit parity values I, J and K, may be written as the 
parity (Eq. 3) of the sum of two parity values and used to define spot color charges. 

r or g = P(I + J);
g or b = P(J + K);
b or r = P(K + I); r, g, b = 0, 1 (31)

where r, g and b are the red, green and blue color charges respectively and I, J and K are parities of 
position Xi in S (Eqs. 4). The color charges are the exclusive-or of the parities of a sequential pair of 
spatial dimensions in the cyclic ordered set (Eqs. 31). 

Eqs. 31 may be combined to uniquely define color charges. 

r = P(I + J)(1 - P(J + K)); 
g = P(J + K)(1 - P(K + I)); 
b = P(K + I)(1 - P(I + J)); r, g, b = 0, 1 (32) 

Using spot unit parities from Eqs. 20 with subscripts from Eqs. 23, Eqs. 32 may be summarized in 
one expression (Eq. 33). 

Ci = P(Ii + In)(1 - P(In + Ip)) = 0, 1 (33) 

where i = 1 for red, 2 for green, 3 for blue. The logical form of this definition is given in Table 2. 

Since I parity in each dimension i (Eqs. 20) defines mite sign (Eq. 5), Eq. 33 states that a non-zero 
color charge Ci occurs when mites Mi and Mn have opposite sign (Ii not equal to In) and Mn and Mp 
have the same sign (In equal to Ip). If mites Mi, Mn and Mp all have the same sign, as in the lepton 
spots, all three color charges, Ci, are zero. 

The resulting Ci values in a spot cube consist of four mutually exclusive color charge states: red, 
green, blue and none. Each of the four color charge states, including the none state, is mapped to a 



pair of particle-antiparticle spots at solid diagonal loci in the spot cube (Fig. 3B). The parity functions 
in Eq. 33, then, map or project position Xi in S to position, Ci, in a "color" subspace of S, which is 
identical to one half of a spot cube consisting of antiparticle spots. 

Table 1 and Fig. 3B show these results, which correctly assign non-zero color charges to d quarks and 
zero color charge to electrons and positrons. The product of color charge, Ci, and handedness, H, is 
displayed in Table 1, for the conventional association of anticolor charges with antiparticles. 

Substitution of Eqs. 4 in Eq. 33 emphasizes this definite relation between color charges, Ci, i = 1, 2, 3, 
for red, green and blue respectively, and spatial dimensions i in S. If i = 1, 

C1 = P(P(X1) + P(X2))(1 - P(P(X2) + P(X3))) = 0, 1 (34) 

the red color charge, C1, is clearly a function of the parities of spot position, Xi, in the three spatial 
dimensions. 

SU(3) Symmetry Matrices 

The conventional values of the two components of color charge at each spot may be obtained from 
binary mechanical variables by the dot products of mite signs i (Eq. 5) and the diagonal elements i of 
SU(3) symmetry matrices T3 or T8, 

T3(XYZ) = diag(T3)isign(MiXYZ) 
 

T8(XYZ) = diag(T8)isign(MiXYZ) (35) 

where sign(MiXYZ) are the three mite signs at a spot XYZ. Substituting the T3 and T8 diagonal values 

in Eqs. 35, 

T3(XYZ) = sign(M1XYZ) - sign(M2XYZ) 
 

T8(XYZ) = sign(M1XYZ) + sign(M2XYZ) - 2sign(M3XYZ) (36) 

Table 1 lists the resulting values of T3(XYZ) and T8(XYZ) from Eqs. 35, with conventional normalization 

by using factors of (1/4) and (1/4√3) respectively. The consistency in spot color charge results from 
Eqs. 33 and 35 supports the binary mechanical definition of color charges. 

To summarize, spot electric charge Q, color charges Ci and handedness H unambiguously associate 
each spot with a distinct particle class. Table 1 presents these results. Binary mechanics unifies 
electric and color charges, which are both based on mite signs defined by Ii parities. 

Because the strong potential can occur in any spot, it functions to bind the bit constituents of d quarks 
as well as of the electron and positron. The role of the strong force in the internal binding of these 
leptons is a new result of binary mechanics. 

Number of d Quark Spots 

Table 3 lists particles which can be defined considering only one spot cube, including quarks, leptons 
and mesons by the number of d quark spot components of each. Quarks and mesons are 
distinguished by odd and even numbers of d quark spots respectively. The sum of the products of spot 
color charge (Eq. 33), C(XYZ), and spot handedness (Eq. 30), H(XYZ), modulo 3, equals +1 or -1 for 
quarks and antiquarks respectively, and equals zero for the leptons and mesons, in agreement with 
accepted conventions. 

Table 3: Quarks, Leptons and Mesons by Number of d Quark Spots 



        Spot XYZ  000 001 010 100 011 101 110 111   Q

 ZERO-d Leptons 
           e+R     X                               +1
           e-L                                 X   -1 

 ONE-d  d Quarks 
          /drL                 X                  +1/3
          /dwL             X                      +1/3
          /dbL         X                          +1/3
           drR                     X              -1/3 
           dwR                         X          -1/3 
           dbR                             X      -1/3 
        u Quarks
           urL     X               X              +2/3
           uwL     X                   X          +2/3
           ubL     X                       X      +2/3
          /urR                 X               X  -2/3 
          /uwR             X                   X  -2/3 
          /ubR         X                       X  -2/3 

 TWO-d  Leptons 
           μ+      X           X   X               +1
                   X       X           X
                   X   X                   X
           μ-                  X   X           X   -1 
                           X           X       X
                       X                   X   X
        Light Mesons
        π0 (/dd)               X   X                0
                           X           X
                       X                   X
        π+ (/du)   X           E   E               +1
                   X       E           E
                   X   E                   E
        π- (/ud)               E   E           X   -1 
                           E           E       X
                       E                   E   X
        π0 (/uu)   X           X   X           X    0
                   X       X           X       X
                   X   X                   X   X

THREE-d s Quarks 
          /srL             X   X       X          +1/3
                       X       X           X
          /swL             X   X   X              +1/3
                       X   X               X
          /sbL         X       X   X              +1/3
                       X   X           X
           srR             X       X   X          -1/3 
                       X           X       X
           swR                 X   X   X          -1/3 
                       X               X   X
           sbR                 X   X       X      -1/3 
                           X           X   X
        c Quarks
           crR     X       X       X   X          +2/3
                   X   X           X       X
           cwR     X           X   X   X          +2/3
                   X   X               X   X
           cbR     X           X   X       X      +2/3
                   X       X           X   X
          /crL             X   X       X       X  -2/3 
                       X       X           X   X
          /cwL             X   X   X           X  -2/3 



                       X   X               X   X
          /cbL         X       X   X           X  -2/3 
                       X   X           X       X
        Leptons
           τ+          X   X   X                   +1
           τ-                      X   X   X       -1 

        Nonstrange Baryons
         p (uud)   X               X   X   X       +1
       /p (/u/u/d)     X   X   X               X   -1 
         n (udd)   X               X   X   X   X    0
       /n (/u/d/d) X   X   X   X               X    0

FOUR-d  Strange Mesons 
           K0              X   X   X   X            0
        (d/s=/ds)      X       X   X       X
                       X   X           X   X
        K+ (u/s)   X       X   X   X   X           +1
                   X   X       X   X       X
                   X   X   X           X   X
        K- (/us)           X   X   X   X       X   -1 
                       X       X   X       X   X
                       X   X           X   X   X
           K0      X       X   X   X   X       X    0
                   X   X       X   X       X   X
                   X   X   X           X   X   X

        Charmed Mesons
           D0      X       X   X   X   X       X    0
        (u/c=/uc)  X   X       X   X       X   X
                   X   X   X           X   X   X
        D+ (/dc)   X       X   X   X   X           +1
                   X   X       X   X       X
                   X   X   X           X   X
        D- (d/c)           X   X   X   X       X   -1 
                       X       X   X       X   X
                       X   X           X   X   X

FIVE-d  b Quarks 
          /brL         X   X   X       X   X      +1/3
          /bwL         X   X   X   X       X      +1/3
          /bbL         X   X   X   X   X          +1/3
           brR         X   X       X   X   X      -1/3 
           bwR         X       X   X   X   X      -1/3 
           bbR             X   X   X   X   X      -1/3 
        t Quarks
           trR     X   X   X       X   X   X      +2/3
           twR     X   X       X   X   X   X      +2/3
           tbR     X       X   X   X   X   X      +2/3
          /trL         X   X   X       X   X   X  -2/3 
          /twL         X   X   X   X       X   X  -2/3 
          /tbL         X   X   X   X   X       X  -2/3 

SIX-d   Top/Bottom Mesons 
           B0          X   X   X   X   X   X        0
           B0      X   X   X   X   X   X   X   X    0
           B+      X   X   X   X   X   X   X       +1
           B-          X   X   X   X   X   X   X   -1 

Note: A reader has pointed out that Table 3 is incomplete. Please note this paper was 
written in 1994 and may have contained errors then, not to mention now -- some 16 years 
later. Please update Table 3 and I'll cite your work. The point of Table 3 is simply that 
binary mechanics predicts all possible "particles" and is generally backward-compatible 
with the Standard Model.



One, three and five d quark components correspond to the three pairs -- d and u, s and c, and b and t 
respectively -- of quark flavors. The flavor classification is completed by adding positron or electron 
spots for quarks with +2/3 and -2/3 electric charge, Q, in each of the three rest mass categories. In 
general, the electric charge, Q, of a particle corresponds to the sum of Q (Eq. 29) over its spot 
components XYZ. 

Leptons are represented similarly. The electron and positron have zero d quark components, while the 
muon, μ±, and tau, τ±, add the even numbers of two and four d quark spots respectively. For this 
purpose, neutrinos (Eqs. 37 below) are not listed. 

In brief, the analysis thus far has provided a qualitative accounting for the progression of increased 
rest masses in the three varieties of both quarks and leptons. Further, the basis of the larger quark 
rest masses, compared especially with the electron and positron masses, is no doubt attributable to 
the d quark bit cycle described above. 

The spot components of particles in Table 3 are one-Tick states. If these components define particle 
composition in an odd or even Tick, then most, if not all, other mite patterns in the alternate parity Tick, 
such as those shown in Table 3, could presumably occur, with the only constraints being Eqs. 26 and 
28. Thus, during multi-Tick intervals, spot cubes may contain representations of two particles from the 
lepton, quark or meson set, accounting for observed "resonance" states. Further analysis might 
identify baryon and other states as examples of this sort of multi-Tick resonance and of more complex 
intercube patterns. For example, the muon, μ±, and charged pion, π±, states are distinguished by 
assigning the pion d quark components to adjacent extracubic spots (E in Table 3), which in the next 
two Ticks, would converge on a lepton spot, consistent with observed probable decay products of 
charged pions. 

In summary, it appears that a complete listing of quarks, leptons and mesons (Table 3) may be based 
on spot components in a spot cube or adjacent spot cubes. 

Photons and Gluons 

Table 1 and Fig. 3B also categorize lites within and between spot cubes. For any line of spot units 
extending within and between spot cubes, which may be called a channel, all lites are either gluon or 
photon bits. 

Interactions between sequential spot units along any dimension i, requiring, of course, a two Tick 
interval, are called direct interactions. Indirect interactions are sequences of direct interactions 
over four or more Ticks. Intracube and intercube interactions will refer to interactions within and 
between spot cubes respectively. 

All direct interactions involve spot unit pairs of the same handedness linking spots of opposite 
handedness. 

Lites from electron and positron spots -- photon constituents -- may only participate in intracube direct 
interactions, since the respective lite directions are confined to the spot cube. Further, these photonic 
lites from lepton spots can only mediate direct interactions between spots associated with either 
particles or antiparticles, never both. All intracube photonic lites mediate direct interactions linking 
lepton spots with d quark spots. Finally, all intercube photonic lites originate from d quark spots in one 
cube and transfer to electron or positron spots in another cube, where the direct interaction links spots 
of the same particle-antiparticle class.  

There are no direct interactions among pairs of electron and positron lepton spots. All interactions 
between electrons and positrons are intercubic, since there is no intracube lite path linking electron 
and positron spots, and are indirect, as evident by inspection of Fig. 3 imagining two adjacent spot 
cubes. Indirect interactions between electron spots or between positron spots are mediated by one d 
quark spot over four Ticks. Indirect interactions between electron and positron spots require two d 
quark spots over six Ticks. 



Lites of d quark spots are identified as gluonic or photonic on the basis of the direct interactions 
mediated. 

1. Gluonic lites -- gluon constituents -- link d quark spots and mediate intracube and intercube direct 
interactions only between particle and antiparticle d spot pairs. Color charge transfer is mediated by 
gluon lite bits in direct interactions between d quark spots as shown in Table 1 and Fig. 3. Intracube 
gluonic lites form a cyclic path through all of the d quark spots in a spot cube (Fig. 3), utilized in the bit 
cycling phenomena described above. Intercube gluonic lites may scatter in the next Tick out of the 
destination cube (Fig. 3). 

2. Photonic lites from d quark mites mediate intercube direct interactions with the lepton spots, as 
stated above. 

Lite Scattering Interactions 

Bits never collide. Collisions occur between bits and spots. Combination of spot scattering angles 
(Fig. 3A) and particle identifications (Fig. 3B) define four categories of lite scattering interactions over 
two Tick intervals. 

1. Intracube gluon scattering follows the intracube d quark lite path and consists of gluon-to-gluon 
interactions at d quark spots, resulting in the intracube bit cycling described above. 

2. Intracube photon scattering may convert lepton spot lites to centrifugal d quark lites. That is, d 
quark spots may scatter intracube photonic lites to gluonic lites exiting a cube. 

3. Intercube gluon scattering may convert d quark lites (gluons) entering a cube to a d quark spot 
into centrifugal d quark lites (photons) exiting the cube. 

4. Intercube photon scattering may convert d quark lites (photons) entering a cube to a lepton spot 
into intracube lepton lites (photons). 

Neutrinos 

Neutrino constituents are bits in the zero state (Eqs. 37), 

vM = /M = 1 - M; vL = /L = 1 - L; vM, vL = 0, 1 (37)
 

where vM, vL = 1 are neutrino bits in mite and lite spot unit loci respectively, and would have zero 
electric charge. The binary neutrino field, [vM, vL], then, is the bit complement of mites and lites. 
Neutrino bits refer to M = 0 or L = 0. In short, an absolute vacuum (see "Vacuum thresholds") is 
entirely filled with neurtrinos. 

Eq. 37 defines one-bit neutrinos. However, any number of n-bit neutrinos may be defined as 
convenient to study physical phenomena forming desired groups or flavors. For example, the neutrino 
equivalent for the absence of an electron might consist of a number of zero-state bits located in an 
electron spot. 

Can neutrinos have mass? Yes, in binary mechanics, since mass is an expression of the underlying 
mechanism related to motion, namely, the difficulty in moving the object, whatever its bit pattern may 
be. 

Eqs. 24 and 25 state that neutrino bits will move along any axis of S or channel as long as the strong 
potential F is zero at each spot unit. 

At any spot, a neutrino bit will experience absence of strong potential F only when the source bit of F is 
also in the neutrino zero state. Thus, neutrinos do not display interdimensional, i.e., intraspot, 
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interactions with other neutrinos. On the other hand, if the source bit is present, and hence, strong 
potential F as well, the neutrino bit will be replaced by a bit in the one state in the strong interaction 
transition. But the neutrino bit is not annihilated, since it replaces the one-state source bit. In brief, 
strong potentials F may scatter neutrino bits between dimensions in the opposition direction as the 
non-zero, non-neutrino bit.  

By definition (Eqs. 24, 25 and 37), a strong potential may occur only when a neutrino bit is present. 
Since resulting strong interactions may occur at electron, positron and d quark spots, neutrino bits 
affect time development of these leptons and quarks in an identical manner at the spot level of 
analysis. In particular, observations described as a neutral weak force supposed to be mediated by a 
Z0 particle, then, correspond to this coupled scattering of electron or positron bits and neutrino bits, 
which is in fact a strong interaction (Table 4). 

Table 4: Binary Mechanical Bit Operations 

Primary Forces           A Conventional Classification of Forces

                         Electro  Electro-                     Neutral 
Transitions   Equations   Weak    magnetic  Gravity   Strong   Weak

Unconditional    7, 8       X                 X
Scalar            10                X         X
Vector            14                X         X
Strong          24, 25                        X         X        X

Note:  Conventional forces are listed (X) by their binary mechanism(s).

Eq. 37 means that neutrino bit interactions with photonic or gluonic lites cannot occur at a single lite 
locus in a spot unit. However, the scalar force eΦ (Eq. 10) and vector force qA (Eq. 14) both depend 
on the presence of a neutrino bit, else the mite-to-lite motion is disabled. That is, vL neutrino bits are 
always required in electromagnetic interactions. 

The requirement for neutrino bits in interactions due to the strong or electromagnetic potentials is in 
general agreement with experiment. Also, by definition, the binary mechanical scalar and vector forces 
both require the absence of neutrino bits, but the resulting bit motions require vL neutrino bits.  

Electroweak Force 

Electroweak interactions, purported to be mediated by the W± particles, are already encompassed in 
Eqs. 24 and 25. This postulate may be illustrated with several examples, which require only 
unconditional bit motion (Eqs. 7 and 8). 

Photonic lites simultaneously emitted by d quark spots in up to three different cubes can converge 
toward an electron spot in a fourth cube. Meanwhile, if the originating d quarks receive incoming 
neutrino vL bits during the same Tick, the d quarks would tend to vanish. In the next Tick, the one to 
three lites become mites at the electron spot. If at this time, the cube containing the electron mites also 
has d quark mites in at least one spot, then the result is by definition a two-spot u quark particle 
constituent (Table 3). In sum, the W- constituents are lites in the first Tick and become u quark mites in 
the second Tick. Hence, given the conditions specified, the W- lites are simply intercube photonic lites 
mediating a direct intercube interaction. 

On the other hand, if there are no d quark mites in the electron spot cube at the second Tick, the 
electron mites may be distributed to the d quark spots in the same cube after two more Ticks. 
Depending on the presence of mites in various other spots in this cube at that time, one or more 
resulting u quark states might occur. Thus, in a four Tick weak interaction, the W particle may consist 
of photonic lites, then electron mites and finally electron lites. The weak interaction may be completed 
when the electron lites become d quark mites. Then there are two possibilities. First, two d quark 



spots can define a resonant state of two d quarks with Q = -2/3. Second, the d quark mites with a 
positron spot defines a u quark with Q of +2/3; and the W particle would be classed as W+.  

Conversely, photonic lites mediating electroweak interactions by convergence on positron spots 
would be classed as W+ and W± for direct (two Ticks) and indirect (four Ticks) interactions 
respectively. 

In the four-Tick weak interactions, the W particles have the mass of their mite components. This 
treatment of electroweak interactions reveals that the neutrino bit is most necessarily related to 
zeroing the initial d quark state. Also, it is not required to postulate neutrino bits traveling backwards in 
time. 

Grand Unification 

Table 4 tabulates four primary forces of nature. Hence, binary mechanics encompasses a grand 
unification. 

A primary force of nature was defined above as a distinct type of binary mechanical bit transition. In 
other words, four primary forces of nature exist arising from the unconditional, scalar, vector and 
strong bit operations. This categorization is mutually exclusive and thereby permits attainment of 
increased clarity in analysis of physical phenomena. 

A conventional listing of five forces of nature is cross referenced with the four primary forces of binary 
mechanics in Table 4, which may clarify underlying mechanisms of the conventional forces presented. 
But measurements and data analysis keyed to some of the listed conventional forces are best viewed 
as composites of all four primary bit operations, until further analysis clarifies this situation. 

As evident in the presentation above and in Table 4, there is not always a one-to-one correspondence 
between the primary and conventional force classifications. For example, the electromagnetic force 
consists of two primary forces, which by definition may independently cause bit transitions. Gravitation 
appears to be a consequence of a combination of primary forces. The neutral weak force is a 
particular instance of the strong force in binary mechanics as described above. 

The electroweak force may be explained by unconditional bit shifts alone (Eqs. 7 and 8). It is arguable 
whether the electroweak bit transitions should be classed as a force at all, since the bit transitions are 
unconditional. In this view, favored by the author, there are only three primary forces defined as 
independent bit transitions modifying unconditional bit shifts. This is only a semantic issue. Time will 
tell. 

The conciseness of binary mechanics provides a means to determine whether a newly observed 
phenomenon meets the criteria for a new primary force or is merely a pattern of bit states over space 
and time that had not been previously noted. 

The binary mechanical criterion for a primary force may help prevent a proliferation of conventional 
forces, considering that a single spot cube may alone assume up to 248 distinct states, not to mention 
purpoted particles with multi-cube components. In short, binary mechanics may facilitate increased 
discipline in theoretical physics. 

Finally, the theory of binary mechanics allows for the addition of new primary forces should they be 
discovered. One need only note that the primary forces described thus far do not encompass all 
possible local bit interactions. Hence, a new primary force might be added, with the expectation that it 
would not overlap with, or otherwise violate, the presently described primary forces, defined in terms 
of specific bit operations. 

Pauli Spin Matrices 

After transforming the binary mechanical bit function (Eq. 2) to a suitable form, quantum mechanical 



and electrodynamic operators may be obtained from the postulates and equations of binary 
mechanics. 

The bit function, Bi, expressed in Eq. 26, is a binary mechanical analog to the quantum mechanical 
wave function. Projecting the components, L and M, of B to a complex plane for each spatial 
dimension i, defines a complex bit function, BC, 

BC(000)i= Ω(000)B(000)i = Li + iMi; L, M = 0, 1 (38)
 

where subscript i denotes matrix columns. Both Ω, the projection matrix with diagonal elements [1, i], 
and the positive lite and mite signs in Eq. 38 correspond to positron spot XYZ = 000 (Table 1). 

In general, the complex bit function BC for each spot XYZ is 

BC(XYZ)i = Ω(IiJiKi)B(XYZ)i (39)
 

where the i subscripts specify Ii, Ji and Ki from Eqs. 4 and 20 and Bi from Eq. 2. The eight projection 
matrices, Ω, are obtained by premultiplication of Ω(000) by one or more of the Pauli spin matrices, σx, 

σy and σz, as follows.  

First, σz inverts Ii parity along any spot unit axis i in S, 

Ω(0JK)i = σzΩ(1JK)i; Ω(1JK)i = σzΩ(0JK)i (40)
 

Thus, σz alternates mite sign over odd and even spot units. 
 

Second, σx inverts Ji parity in spatial dimensions i, 

Ω(I0K)i = σxΩ(I1K)i; Ω(I1K)i = σxΩ(I0K)i (41)
 

and therefore identifies concurrent spot units as defined by equal lite signs and equal mite signs. The 
projection matrices Ω in Eq. 41 swap the real and imaginary components in the complex bit function. 

Third, σy inverts Ki parity in spatial dimensions i, 

Ω(IJ0)i = σyΩ(IJ1)i; Ω(IJ1)i = σyΩ(IJ0)i (42)
 

thereby identifying countercurrent spot units which have opposite lite signs and by definition, opposite 
lite directions. 

Table 1 presents BC values resulting from Eqs. 39 to 42. The parallel pairs of both concurrent and 
countercurrent spot units are seen to consist of real and imaginary pairs of both mites and lites. In 
addition, the mite and lite signs of BC match those of B in Table 1. In this regard, then, the Pauli spin 
matrices produce identical results as the binary mechanical sign functions (Eq. 5 and 6). 

By a similar analysis, the four Dirac spinor components may be uniquely mapped to solid diagonal 
pairs of spots in the spot cube (James Hughes, personal communication, 1993). These are the same 
pairs, as shown above, which represent four color states -- red, green, blue and none, and which each 
include a particle and an antiparticle spot. The spot cube, then, corresponds to two Dirac spinor 
equations, one for each spot handedness -- right and left. From the perspective of binary mechanics, 
the improved description of the behavior of the electron achieved by the Dirac spinor components is 
based on their representation of d quark spots. 



When its six components are normalized to unit length, the complex bit function, BC, corresponds to a 
quantum mechanical amplitude, integrated over the volume of a spot. 

Four-Momentum Operator  

The four-momentum operator for time development of the state vector, which has the status of a 
postulate in quantum mechanics, results from unconditional bit motion (Eqs. 7 and 8). 

If the complex bit function (Eq. 39) does, indeed, correspond to an amplitude, then the four-momentum 
operator may be obtained from binary mechanics by simply rewriting the bit shift equations for the 
complex form, BC, of the bit function, B.  

For the dBC/dt operator on the rest mass component, -i, 

LC(t=1) = -iHMC(t=0); MC(t=1) = -iHLC(t=1) (43)
 

where the superscript C specifies positive or negative, real or imaginary lite and mite components of 
BC, and the H coefficients (Eq. 30) represent spot handedness which is identical to the spot particle or 
antiparticle attribute, as described above. Table 5 illustrates the results for dimension i = 1, listing the 
initial states BC(XYZ)x and the -iH component of dBC/dt. In brief, the -iH component of the four-
momentum operator sets the lite component and clears the mite component, if a mite is present at t = 
0. Thus, the -iH operator shifts bits within spot units in the lite direction according to spot handedness.  

Table 5: Correspondence With Quantum Mechanic Operators 

Spot XYZ   000    001    010    100    011    101    110    111  Comments
Symbols    + >    < +    + >    - >    < +    < -    - >    < - 

BC(XYZ)x  +L+iM  -L+iM +iL+ M  +L-iM -iL+ M  -L-iM +iL- M -iL- M L,M = 0,1 

H           1     -1     -1     -1      1      1      1     -1   Handedness 

dBC/dt 
-iH       +1-i   -1-i   +i-1   +1+i   -i-1   -1+i   +i+1   -i+1 
+ieΦ      +1-i   -1-i   +i-1   +1+i   -i-1   -1+i   +i+1   -i+1 
+iH       -1+i   +1+i   -i+1   -1-i   +i+1   +1-i   -i-1   +i-1 
-eAH      -1+i   +1+i   -i+1   -1-i   +i+1   +1-i   -i-1   +i-1 

To complete the complex representation of unconditional bit motion, the id/dx momentum components 
correspond to the required shift of bits between successive spot units along a channel, 

LC(t=1) = iHMC
x(t=1); MC(t=1) = iHLC

x(t=0) (44)
 

where the I parity subscripts (x) in MC
x(t=1) and LC

x(t=0) specify the next and preceding spot units 

respectively. In Table 5, the results from the +iH operator in dBC/dt for one dimension, BC(XYZ)x, show 

the addition of a mite bit from LC
x(t=0) at the preceding spot unit and the negation of a lite bit due to 

its shift to MC
x(t=1) in the next spot unit in the lite direction.  

Handedness, H, in Eqs. 43 and 44 is required because the eight spots in a cube correspond to two 
sets of Dirac equations. 

Electromagnetic Four-Potential  

Table 5 lists results where the sign of charge e equals -1. Given the concurrent mite product 



representation of eΦ (Eq. 10), 

eΦ = -1; ieΦ = -i; if M = 1 and MJ = 1 (45)
 

Hence, the scalar force in dBC/dt moves mites to lite loci similar to the momentum operator -i

LC(t=1) = +ieΦLC(t=0); MC(t=1) = +ieΦMC(t=0) (46)
 

For clarity, Table 5 lists the dBC/dt results for the +ieΦ operator when the scalar potential is present 
(Eqs. 45 and 46), where the -iH and +ieΦ rows in Table 5 are identical. 

The -eA operator in the relativistic forms of the Dirac equations for each handedness, H, must be +i 
since e equals -1 and one of the two multiplicands is imaginary: 

-eAH = -(-i)H = +iH (47) 

In brief, the +iH and -eAH rows in Table 5 are identical.  

Finally, BC(t=1) equals BC(t=0) plus dBC/dt, where 

dBC/dt = -iHBC + ieΦBC +iHBC
x -eAHBC

x 
 

= -i(H - eΦ)BC + H(i - eA)BC
x (49) 

Substitute H = 1 in Eq. 49 for an approximate analog of the conventional relativistic Dirac spinor 
equation for the electron in an electromagnetic field. 

Intrinsic Limitations of the Wave Function 

Several features of Eqs. 49 may be noteworthy. First, the operators obtained from binary mechanics 
are essentially identical to the postulated quantum electrodynamic operators. Second, the strong 
potential operators may be readily written for the complex representation BC of the bit function.  

Finally, the described differences in the state vectors -- the binary mechanical bit function and the 
quantum mechanical wave function, pinpoint why quantum mechanical formalism cannot, in principle, 
provide exact results. Namely, it assumes that bits at different physical locations are positioned at one 
point. This defect remains even if quantum mechanical calculations are conducted at the same fine 
scale of binary mechanics, based on the primary constants presented below. 

This oversimplification intrinsic to the quantum mechanical wave function limits the accuracy of 
calculations at reduced distances and time durations. It also leads to qualitative paradoxes and 
discrepancies with experimental observation, similar in nature to those found when classical 
mechanics is applied at an atomic scale. 

On the other hand, binary mechanical calculations of physical quantities are, in principle, exact. 
Therefore, the precision of any calculation of an observable is limited only by the degree of precision, 
available at the time, of measurements used to set the primary constants of binary mechanics. Thus, 
the intrinsic limitations of the wave function may be easily remedied by usage of the bit function. 




