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The idealized Kish-Sethuraman (KS) cipher is known to offer perfect information theoretical
security with classical physical means. However, realization of the protocol is hitherto an open
problem, as the required mathematical operators have not been identified in the previous literature.
A mechanical analogy of this protocol can be seen as sending a message in a box using two padlocks;
one locked by the Sender and the other locked by the Receiver, so that theoretically the message
remains secure at all times. We seek a mathematical representation of this process, considering
that it would be very unusual if there was a physical process with no mathematical description and
indeed we find a solution within a three and four dimensional Clifford algebra. The significance of
finding a mathematical description that describes the protocol, is that it is a possible step toward a
classical physical realization having benefits in increased security with reduced complexity.

PACS numbers: 03.67.Dd

INTRODUCTION

Securely sending a message with two locks

To securely send a message in a physical box, without
sharing a public key or resorting to any form of key ex-
change, Bob padlocks a box and sends it to Alice. Then
Alice puts a second padlock onto the box and sends it
back to Bob. Then Bob unlocks his padlock, leaving the
box still secured by Alice’s lock, and sends it back to Al-
ice who can then remove her lock, open the box and read
the message [1–3] .

This double-padlock protocol is called the Kish-
Sethuraman cipher and is perfectly secure because both
Bob and Alice keep their keys undisclosed so that at all
times the box is locked by at least one padlock, thus no
information is leaked or shared [2]. Hence we can say
that in the physical world, a completely secure classical
protocol is conceptually possible. In practice, a physical
box can be broken, however, what is important to our
analysis is the security of the lock protocol. This phys-
ical example is clearly classical and so we would expect
that there would be a mathematical model to describe
this process. That is, it would seem strange if there was
such a simple classical physical scenario for which there
was no counterpart in the mathematical world. It would
mean that there would be a simple physical scenario that
cannot be modeled with mathematics and so would run
counter to general trend of the success of mathematics
in describing the physical world. This then underlies the
motivation for expecting that a mathematical description
might indeed be feasible.

The significance of a classical mathematical protocol
simulating the double-padlock problem is that it would
be potentially as secure as a quantum protocol, but with
greatly reduced complexity and without the requirement
for the production of sensitive quantum states.

Developing a mathematical model

Firstly we note that the ordering of the padlocks com-
mutes. That is Alice and Bob can take off or add their
padlock in any order, which is the primary aspect of the
protocol that permits it to work and hence we are looking
to find two mathematical operations that can be applied
by Alice and Bob that commute. We can immediately
identify an example of this in the case of two-dimensional
rotations.

For example, the message Bob wants to secretly send
could be the value θ. Bob ‘hides’ θ by adding a random
angle φ1 (his ‘key’) to it and sends it to Alice. Then Al-
ice adds another random angle φ2 (her ‘key’) and sends
it back to Bob. Then Bob undoes his secret rotation
φ1 and returns the message to Alice. Then Alice un-
does her rotation φ2 and recovers the original value of
θ. These operations are most elegantly analyzed in two-
dimensional geometric algebra, where we have a message
vector m = m1e1 + m2e2, using e1 and e2 as orthogo-
nal basis elements, acted on by a rotor R = eιφ/2 with
R† = e−ιφ/2, giving a general rotation

m′ = RmR† = eιφ/2me−ιφ/2 = eιφm, (1)

where m′ = m′1e1 +m′2e2 is the rotated vector, the bivec-
tor iota ι = e1e2 and where φ represents the private key
and rotates the vector m by a clockwise angle φ in this
case. We can combine the two sides of the rotation op-
erator in this case because ι = e1e2 anticommutes with
both e1 and e2 within the vector m. Refer to the Ap-
pendix for a brief introduction to these operations that
utilize geometric algebra. Therefore, after the operations
by Alice and Bob we find

mfinal = R†AR
†
BRARBm = R†ARAR

†
BRBm = m, (2)

where because the rotation operators commute we re-
cover the initial message. The message (the angle with
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the e1 axis say) can be recovered from cos θ = m ·e1/|m|,
where the vector length |m| =

√
m2.

While this process indeed hides the message at each
stage, an eavesdropper, Eve, by comparing the succes-
sive intermediate transmissions, can deduce the inter-
mediate rotations and hence discover the two keys (φ1

and φ2) thereby unlocking the message. That is, inter-
cepting two consecutive transmissions, which consist of
two-dimensional vectors, Eve can easily calculate the ro-
tation angle between them from m2 = eιφm1, which can
be rearranged to give eιφ = m2m

−1
1 . The inverse of a

vector being easily calculated when it is represented in
geometric algebra, as shown in the Appendix.

However if one goes to higher dimensional rotations,
might there be a subset of rotations that would still
commute? If so, the double-padlock protocol may possi-
bly work in higher dimensions, because the eavesdropper
then has no way to discover both the amount of rotation
and the rotation axis simultaneously. Before we explore
this in the next section, we firstly consider more general
operators using two-dimensional multivectors

M = a+ v + ιb, (3)

where a and b are scalars, ι is the bivector and v =
v1e1 + v2e2. That is

∧
<2 is the exterior algebra of <2

which produces the space of multivectors <⊕<2⊕
∧2<2,

a four-dimensional real vector space denoted by Cl2,0(<).
We now have the encryption process

mfinal = M†AM
†
BMAMBmM†BM

†
AMBMA, (4)

however while the multivector operators now cannot be
determined by an eavesdropper, we need to find multi-
vectors that commute in order to return mfinal = m. If
we now seek MA and MB to commute, then we require
MAMB −MBMA = 0 or

(a+ v + ιb) (c+ w + ιd)− (c+ w + ιd) (a+ v + ιb)

= 2v ∧w − 2ιdv + 2ιbw = 0 (5)

that allows a solution

MA = 1 + ve1 + ιv , MB = 1 + we1 + ιw (6)

where we have normalized the multivectors such that
MAM

†
A = MBM

†
B = 1 with one degree of freedom af-

ter normalization. This is insufficient to ensure security
of the two-dimensional message vector and so we need to
seek a solution in higher dimensions.

The double-padlock in three-dimensions

In three dimensions, we have a message vector m =
m1e1 +m2e2 +m3e3 and we have a general rotation

m′ = RmR† = eiv̂φ/2me−iv̂φ/2 (7)

where v̂ is a unit vector representing a rotation axis about
which a rotation of φ radians is applied. We also have
defined the trivector i = e1e2e3 that commutes with all
variables with i2 = (e1e2e3)2 = −1. Now, because the
vectors m and v do not commute in general we cannot
simplify this rotation operation as we did in two dimen-
sions.

We can write general three-dimensional multivector
operators for Alice and Bob as

MA = a+ v + ir + ib , MB = c+ w + is + id (8)

where v and r are three-vectors. This is the space of
multivectors <⊕<3⊕

∧2<3⊕
∧3<3, an eight-dimensional

real vector space denoted by Cl3,0(<). We now seek MA

and MB to be commuting in order to use the algorithm
in Eq. (4), requiring

0 = MAMB −MBMA (9)

= 2(v ∧w − r ∧ s) + 2i(v ∧ s + r ∧w),

and to make this commutator vanish we can select w =
vι = vie3 and s = rι = rie3, with the vectors now
planar in order to anticommute with e3, so we define
v12 = v1e1 + v2e2. That is, we have the normalized
commuting operators

MA = (a+ v12 + e3v12 + ib) = ev12+e3v12+iφ1 (10)

MB = (b+ p12 + e3p12 + id) = ep12+e3p12+iφ2 ,

with the encrypted message for Alice, for example, given
by

m′ = MAmM†A. (11)

Alice and Bob thus have private keys with three degrees
of freedom available to encrypt the three component mes-
sage vector.

The double-padlock problem in dimension greater
than three

Penrose (2007) states: “In dimension higher than 3, it
is not true that the composition of basic rotations about
(n− 2)-dimensional axes will always again be a rotation
about an (n − 2)-dimensional axis. In these higher di-
mensions, general (compositions of) rotations cannot be
so simply described. Such a (generalized) rotation may
have an axis (i.e. a space that is left undisturbed by the
rotational motion) whose dimension can take a variety of
different values. Thus, for a Clifford algebra in n dimen-
sions, we need a hierarchy of different kinds of entity to
represent such different kinds of rotation.” [4]

In four dimensions we have the space of multivectors
<⊕<4⊕

∧2<4⊕
∧3<3⊕

∧4<4, a sixteen-dimensional real
vector space denoted by Cl4,0(<). We select a message
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vector m = m1e1 + m2e2 + m3e3 + m4e4 and we define
the quadvector I = e1e2e3e4 that anticommutes with all
vectors and has a positive square, that is I2 = 1. We
once again now seek two four-dimensional multivectors
MA and MB that commute in order to use the algorithm
in Eq. (4). Now, requiring MAMB = MBMA, after some
algebra detailed in the Appendix, we find several types
of commuting multivectors, the simplest being

MA = 1+v+Iv = eφ1(v̂+Iv̂) , MB = 1+p+Ip = eφ2(p̂+Ip̂),
(12)

where v,p are four-vectors and v̂, p̂ are unit vectors that
square to one. We thus have four degrees of freedom for

the private keys for both Alice and Bob respectively. To
confirm the commutativity of the first set we find

MAMB = (1 + v + Iv) (1 + p + Ip) (13)

= 1 + p + Ip + v + vp− Ivp + Iv + Ivp− vp

= 1 + p + Ip + v + Iv

MBMA = (1 + p + Ip) (1 + v + Iv)

= 1 + p + Ip + v + Iv,

thus confirming the commutativity. Hence following the
encryption method in Eq. (4) using this set of operators
we find

mfinal = e−φ1(v̂+Iv̂)e−φ2(p̂+Ip̂)eφ1(v̂+Iv̂)eφ2(p̂+Ip̂)me−φ2(p̂+Ip̂)e−φ1(v̂+Iv̂)eφ2(p̂+Ip̂)eφ1(v̂+Iv̂)

= e−φ1(v̂+Iv̂)eφ1(v̂+Iv̂)e−φ2(p̂+Ip̂)eφ2(p̂+Ip̂)me−φ2(p̂+Ip̂)eφ2(p̂+Ip̂)e−φ1(v̂+Iv̂)eφ1(v̂+Iv̂)

= m,

thus accurately transmitting the message. Also m can
become a full multivector M encrypted by the operators
MA and MB . We have the encryption operation for Alice
(and similarly for Bob)

M ′ = eφ1(v̂+Iv̂)Me−φ1(v̂+Iv̂) (14)

and so Eve needs to discover the private key v with four
degrees of freedom, where M ′ and M are the intercepted
intermediate messages, which in general is not soluble.

DISCUSSION

In this paper, for the first time, we provide a
set of working mathematical operators for the Kish-
Sethuraman (KS) cipher that is a classically secure proto-
col. Our solution requires the use of the space of Clifford
multivectors, and we find a viable solution in three and
four dimensional space.

Further exploration in higher dimensions may be of
interest, though we have found a secure version in three
and four dimensions.

Whilst it is of interest for future work to explore how
to physically encode higher dimensional rotations on a
wireless carrier signal, the scheme we have developed
has wider implications. For example, Klappenecker has
pointed out connection between a mathematical realiza-
tion of the KS protocol and the P versus NP problem
in computer science [3]. Thus it may be of interest to
explore implications of the KS operations developed in
this paper on the P versus NP problem.

If our mathematical protocol can be encoded on a wire-
less carrier or fiber optic signal, a benefit would be secure

classical communication without resorting to the com-
plexity of quantum protocols and the production of sen-
sitive quantum states.

APPENDIX

Geometric algebra representation of vectors

In order to represent the three independent degrees of
freedom of space, Clifford defined an associative algebra
consisting of three elements e1, e2 and e3, with the prop-
erties

e2
1 = e2

2 = e2
3 = 1 (15)

but with each element anticommuting, that is ejek =
−ekej , for j 6= k. We also define the trivector i = e1e2e3,
which allows us to write e2e3 = ie1, e3e1 = ie2 and
e1e2 = ie3.

Now, given two vectors a = a1e1 + a2e2 + a3e3 and
b = b1e1 + b2e2 + b3e3, using the distributive law for
multiplication over addition [5], as assumed for an alge-
braic field, we find their product

ab = (a1e1 + a2e2 + a3e3)(b1e1 + b2e2 + b3e3) (16)

= a1b1 + a2b2 + a3b3 + (a2b3 − a3b2)e2e3

+(a3b1 − a1b3)e3e1 + (a1b2 − a2b1)e1e2,

where we have used the elementary properties of e1, e2, e3

defined in Eq. (15). We recognize a1b1+a2b2+a3b3 as the
dot product and (a2b3 − a3b2)e2e3 + (a3b1 − a1b3)e3e1 +
(a1b2 − a2b1)e1e2 as the wedge product, so that we can
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write

ab = a · b + a ∧ b. (17)

In three dimensions only, we can equate the wedge prod-
uct to the cross product, giving a ∧ b = ia × b. We
can see from Eq. (16), that the square of a vector a2 =
a · a = a2

1 + a2
2 + a2

3, becomes a scalar quantity. Hence

the Pythagorean length of a vector is simply |a| =
√
a2,

and so we can find the inverse vector

a−1 =
a

a2
. (18)

These results can easily be adapted for a space of any
number of dimensions.

Derivation of commuting operators in 4D

We can write a general multivector in four dimensions
as

M = v+Iw+e4 (x + Iy) = x4 +v+e4~x− i~y+Iw−y4I
(19)

thus forming the complete set of scalar, vector, bivec-
tor, trivector and quadvector components, where ~x and
~y are three-vectors and v, w, x, y are four vectors. The
space of multivectors < ⊕ <4 ⊕

∧2<4 ⊕
∧3<3 ⊕

∧4<4

is a sixteen-dimensional real vector space denoted by
Cl4,0(<) as shown in Eq. (19).

For two four dimensional multivector operators MA

and MB we have the grade zero or scalar components,
represented by the brackets 〈〉0, given by

〈MAMB〉0 (20)

= 〈(v + Iw + e4 (x + Iy)) (p + Iq + e4 (r + Is))〉0
= v · p−w · q + x′ · r + y′ · s
〈MBMA〉0
= 〈(p + Iq + e4 (r + Is)) (v + Iw + e4 (x + Iy))〉0
= p · v − q ·w + r′ · x + s′ · y,

where x′ = e4xe4 = −x1e1 − x2e2 − x3e3 + x4e4 and so
x′ · r = x · r′. Now, because the dot product commutes,
the scalar components of the product will commute as
required. For the quadvector or grade four components
we have

〈MAMB〉4 (21)

= 〈(v + Iw + e4 (x + Iy)) (p + Iq + e4 (r + Is))〉4
= −Iv · q + Iw · p− Ix′ · s− Iy′ · r
〈MBMA〉4
= 〈(p + Iq + e4 (r + Is)) (v + Iw + e4 (x + Iy))〉4
= Iq · v − Ip ·w − Is · x′ − Ir · y′.

In order to satisfy commutativity this requires

v · q = w · p. (22)

For the bivector terms

〈MAMB〉2 (23)

= 〈(v + Iw + e4 (x + Iy)) (p + Iq + e4 (r + Is))〉2
= v ∧ p− Iv ∧ q + Iw ∧ p−w ∧ q

+x′ ∧ r− Ix′ ∧ s− Iy′ ∧ r + y′ ∧ s

〈MBMA〉2
= 〈(p + Iq + e4 (r + Is)) (v + Iw + e4 (x + Iy))〉2
= p ∧ v − Ip ∧w + Iq ∧ v − q ∧w

+r′ ∧ x− Ir′ ∧ y − Is′ ∧ x + s′ ∧ y,

which gives the condition

v∧p−w∧q− ~x∧~r− ~y ∧~s+ I~x∧~s+ I~y ∧~r = 0, (24)

using the result that x′ ∧ r − r′ ∧ x = −2~x ∧ ~r. For the
vector components we find

〈MAMB〉1 (25)

= 〈(v + Iw + e4 (x + Iy)) (p + Iq + e4 (r + Is))〉1
= e4v

′ · r + 〈e4v
′ ∧ r〉1 − i~v ∧ ~s− i ~w ∧ ~r + e4w

′ · s
+e4x · p + 〈e4x ∧ p〉1 + i~x ∧ ~q − i~y ∧ ~p− e4y · q
〈MBMA〉1
= 〈(p + Iq + e4 (r + Is)) (v + Iw + e4 (x + Iy))〉1
= e4r · v + 〈e4r ∧ v〉1 + i~v ∧ ~s− i ~w ∧ ~r − e4s ·w
+e4p

′ · x + 〈e4p
′ ∧ x〉1 − i~q ∧ ~x− i~p ∧ ~y + e4q

′ · y.

This produces the condition for commutativity
〈MAMB〉1 − 〈MBMA〉1 = −e4~v · ~r + v4~r − i~v ∧
~s+ e4w4s4 + e4~x · ~p− ~xp4 − i~y ∧ ~p− e4y4q4 = 0. For the
trivector terms

〈MAMB〉3 (26)

= 〈(v + Iw + e4 (x + Iy)) (p + Iq + e4 (r + Is))〉3
= −e4~v ∧ ~r − iv · s− 〈iv ∧ s〉3 + iw′ · r + 〈iw′ ∧ r〉3
−e4 ~w ∧ ~s+ e4~x ∧ ~p+ ix · q + 〈ix ∧ q〉3 − iy · p
−〈iy ∧ p〉3 − e4~y ∧ ~q
〈MBMA〉3
= 〈(p + Iq + e4 (r + Is)) (v + Iw + e4 (x + Iy))〉3
= e4~r ∧ ~v − is · v − 〈is ∧ v〉3 + ir ·w + 〈ir ∧w〉3
−e4~s ∧ ~w − e4~p ∧ ~x+ iq′ · x + 〈iq′ ∧ x〉3 − ip · y
−〈ip ∧ y〉3 − e4~q ∧ ~y.

This produces the condition for commutativity
〈MAMB〉3 − 〈MBMA〉3 = I~vs4 − I~sv4 − i ~w · ~r +
I~rw4− e4 ~w∧~s+ i~x ·~q− I~xq4 + I~yp4− I~py4− e4~y∧~q = 0.

From commutativity of the quadvector components we
have the condition in Eq. (22) that firstly can have a
solution v = ±w and p = ±q. This then leaves the
conditions for the bivectors from Eq. (24) as as −~x∧~r−
~y ∧ ~s = 0 and I~x ∧ ~s + I~y ∧ ~r = 0 that implies ~x = −~y
and ~r = ~s. The vector and trivector conditions are then



5

satisfied as well provided x = −v′ = −e4ve4 and r = p.
This then gives two commuting multivectors

MA = a+ v + Iv − (v + Iv)e4 = a+ (v + Iv)(1− e4)

MB = c+ p + Ip + e4(p + Ip) = c+ (1 + e4)(p + Ip).

From the bivector condition, we could have selected the
alternative x = y = 0, that also leads to commuting
multivectors

MA = a+ v + Iv , MB = c+ p + Ip. (27)

Alternatively, beginning from Eq. (22), but selecting a
solution with q = w = 0, we find the commuting opera-
tors

NA = b+ e4(x− Ix) , NB = d+ e4(r + Ir) (28)

and we can indeed confirm the required property
MAMB = MBMA and NANB = NBNA through rou-
tine multiplication.

Inspecting the commuting operators in Eq. (27) we no-
tice the use of the projection operators P+ = 1 + e4 and

P− = 1− e4, with (P+)2 = 2P+ and P+P− = P−P+ =
0. Hence we can identify two commuting operators

MA = a+(1+e4)M1(1−e4) , MB = b+(1+e4)M2(1−e4)
(29)

where M1 and M2 are now two general four dimensional
multivectors, as shown in Eq. (19) that can be used as
the private keys by Alice and Bob.
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