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The special relativity gives us the equations: E = mc
2
, E0 = m0c

2
, E = E0 + T, m = γm0 

and γ = (1 - v2/c2)-1/2, where E, E0 and T are the total, rest and kinetic energies of the 

particle, m and m0 its moving and rest masses, c the speed of the light in the vacuum and 

v the speed of the particle. For v
2
 << c

2
, E = m0c

2
 + (1/2)m0v

2
, which is the correct 

value for the Newton mechanics, where the kinetic energy is T = (1/2)m0v
2
. All these 

equations are obtained without using relativity, but with γ = (1 - v/c)-1, which is not the 
correct value [1]. In addition, for two inertial systems: f’/f = ((1 - v/c)/(1 + v/c))

1/2
 (from 

the relativistic Doppler effect), where f’ and f are the frequencies of the light in the 

moving and rest frames, respectively, v being the moving speed of the primed frame. 

But also, E’/E = ((1 - v/c)/(1 + v/c))
1/2
 (from the Lorentz transformation for the energy), 

then E’/E = f’/f, E’ = hf’ and E = hf, which is the Planck-Einstein equation, h being the 

Planck constant [2]. All this is in favor of the correctness of the special relativity. 

  

From the general relativity: Rik - (1/2)gikR = (8πG/c4)Tik, (i, k = 0, 1, 2, 3), where Rik is 

the Ricci tensor, gik the metric tensor, R the scalar curvature, G the universal 

gravitational constant of Newton and Tik the energy-momentum tensor. This equation is 

like the Poisson equation: ∇2ϕ = 4πGρ, where ∇ = (∂/∂x,∂/∂y,∂/∂z), x, y and z being the 
rectangular coordinates, ϕ the gravitational potential and ρ the mass density. In the 
vacuum: Rik - (1/2)gikR = 0 (Laplace equation: ∇

2ϕ = 0), and Ri
k
 - (1/2)δi

k
R = 0, Ri

i
 - 

(1/2)δi
i
R = 0, R - (1/2)4R = 0 and R = 0 (where: Ri

i
 = R, δi

k
 = 1 if k = i and δi

k
 = 0 if k ≠ 

i, and δi
i
 = 4); then, Rik = 0. This equation was solved by Schwarzschild yielding a 

square space-time interval value of: ds
2
 = (1 - rg/r)c

2
dt

2
 - r

2
(sin

2θdφ + dθ2
) - dr

2
/(1 - 

rg/r), where rg = 2GM/c
2
 is the gravitational (or Schwarzschild) radius, M being the rest 

mass of the particle that produces the gravitational field, t the time, and r, θ and φ the 
spherical coordinates. Note that r > rg, since r = rg and r = 0 would yield ds

2
 = -∞ and r 

< rg would produce a change of sign in the time and in the space. Note also that, we 

may put r = 2GM/v
2
, v being like a gravitational escape speed (E = T + V = (1/2)m0v

2
 - 

GMm0/r, V being the potential energy, and from E = 0, the escape velocity would be: v 

= (2GM/r)
1/2
), and as rg = 2GM/c

2
, it would correspond to a gravitational escape speed 

of c. As r > rg, v < c, and there is not black holes. In addition, substituting these values 

in the interval, we would have that: ds
2
 = (1 - v

2
/c

2
)c

2
dt

2
 - r

2
(sin

2θdφ + dθ2
) - dr

2
/(1 - 

v
2
/c

2
), and for given values of θ and φ (θ = constant, φ = constant, dθ = 0 and dφ = 0), 

it would be: ds
2
 = (1 - v

2
/c

2
)c

2
dt

2
 - dr

2
/(1 - v

2
/c

2
) = c

2
dt’

2
 - dr’

2
 = ds’

2
, which is a 

generalization of the special relativity for a radial motion in a gravitational field. Note 

also that for |ϕ| << c2, which implies that v2 << c2, it is recovered the Newton 
gravitation formula [3]: F = -GMm0/r

2
, where F is the gravitational attraction force 
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between the masses M and m0 separated a distance r (see the appendix). All this is in 

favor of the correctness of the general relativity. 

 

 

Appendix 

 

Newton’s gravitational attraction force from Einstein’s general relativity: 
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L being the Lagrangian. 
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S being the action. 
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 being a Christoffel symbol. 
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V being the volume, since ∇2
(1/r) = -4πδ(r), where δ(r) is the Dirac delta function: δ(r) 

= +∞ for r = 0 and δ(r) = 0 for r ≠ 0 and ∫δ(r)dV = 1; and ∇2ϕ = -G∫ρ∇2
(1/r)dV = 

4πG∫ρδ(r)dV = 4πGρ∫δ(r)dV =4πGρ. For a group of n particles 
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Mn being the masses of the particles and rn the distances from them to the field points. 

And for a single particle 
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F being the Newton gravitational attraction force between two particles of masses M 

and m0 separated a distance r. 
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