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Abstract- In this paper we propose a new algorithm for linear 
programming. This new algorithm is based on treating the 
objective function as a parameter. We transform the matrix of 
coefficients representing this system of equations in the reduced 
row echelon form containing only one variable, namely, the 
objective function itself, as a parameter whose optimal value is to 
be determined. We analyze this matrix and develop a clear 
method to find the optimal value for the objective function 
treated as a parameter. We see that the entire optimization 
process evolves through the proper analysis of the said matrix in 
the reduced row echelon form. It will be seen that the optimal 
value can be obtained 1)  by solving certain subsystem of this 
system of equations through a proper justification for this act, or 
2)  By making appropriate and legal row transformations on this 
matrix in the reduced row echelon form so that all the entries in 
the submatrix of this matrix, obtained by collecting rows  in 
which the coefficient of  so called unknown parameter d  whose 
optimal value is to be determined, become nonnegative and this 
new matrix must be equivalent to original matrix in the sense 
that  the solution set  of the matrix equation with original matrix 
and matrix equation with transformed matrix are same. We then 
proceed to show that this idea naturally extends to deal with 
nonlinear and integer programming problems. For nonlinear 
and integer programming problems we use the technique of 
Grobner bases since Grobner basis is an equivalent of reduced 
row echelon form for a system of nonlinear equations, and the 
methods of solving linear Diophantine equations respectively.  
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I. INTRODUCTION 
There are two types of linear programs (linear programming 
problems): 
 1. Maximize: xCT   
Subject to: bAx ≤   
                     0≥x  
Or 
                     2. Minimize: xCT    
Subject to: bAx ≥  
                     0≥x  
where x  is a column vector of size n×1 of unknowns. Where 
C  is a column vector of size n×1 of profit (for maximization 
problem) or cost (for minimization problem) coefficients, and 

TC is a row vector of size 1×n obtained by matrix 
transposition of  C . Where A  is a matrix of constraints 
coefficients of size m×n. Where b  is a column vector of 
constants of size m×1 representing the boundaries of 
constraints.  
 By introducing the appropriate slack variables (for 
maximization problem) and surplus variables (for 
minimization problem), the above mentioned linear programs 
gets converted into standard form as: 

Maximize:   xCT  
Subject to:   bsAx =+                                          (1.1) 
                       0,0 ≥≥ sx  
Where s  is slack variable vector of size m×1. 
This is a maximization problem. 
Or 
 
Minimize:   xCT  
Subject to:  bsAx =−                                                      (1.2) 
                      0,0 ≥≥ sx  
Where s  is surplus variable vector of size m×1. 
This is a minimization problem.  
 In geometrical language, the constraints defined by 
the inequalities form a region bounded by a convex 
polyhedron, a region bounded by the constraint 
planes

ii bAx = , called feasible region and it is 
straightforward to check that there exists at least one vertex of 
this polyhedron at which the optimal solution for the problem 
is situated when the problem at hand is not unbounded or 
infeasible. There may be unique optimal solution and 
sometimes there may be infinitely many optimal solutions, 
e.g. when one of the constraint planes is parallel to the 
objective plane we may have a multitude of optimal solutions. 
An entire plane or an entire edge can constitute the optimal 
solution set.  
  We begin with some common notions and 
definitions that are prevalent in the literature. A variable ix  is 
called basic variable in a given equation if it appears with 
unit coefficient in that equation and with zero coefficients in 
all other equations. A variable which is not basic is called 
nonbasic variable. A sequence of elementary row operations 
that changes a given system of linear equations into an 
equivalent system (having the same solution set) and in 
which a given nonbasic variable can be made a basic variable 
is called a pivot operation. An equivalent system containing 
basic and nonbasic variables obtained by application of 
suitable elementary row operations is called canonical 
system. At times, the introduction of slack variables for 
obtaining standard form automatically produces a canonical 
system, containing at least one basic variable in each equation. 
Sometimes a sequence of pivot operations is needed to be 
performed to get a canonical system. The solution obtained 
from canonical system by setting the nonbasic variables to 
zero and solving for the basic variables is called basic 
solution and in addition when all the variables have 
nonnegative values the solution satisfying all the imposed 
constraints is called a basic feasible solution.  
 Because of the far great practical importance of the 
linear programs and other similar problems in the operations 
research it is a most desired thing to have an algorithm which 
works in a single step, if not, in as few steps as possible. No 
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method has been found which will yield an optimal solution to 
a linear program in a single step ([1], Page 19). We aim to 
propose an algorithm for linear programming which aims at 
fulfilling this requirement in a best possible and novel way. 
  

II. A NEW ALGORITHM FOR LINEAR PROGRAMMING 
  We start with the following equation: 

                                  dxCT =                                  (2.1) 
and call it objective equation. The (parametric) plane defined 
by this equation will be called objective plane. Thus, we have 
taken the objective function as a new unknown parameter 
called d  and the problem of linear programming is to find the 
optimal value of this unknown parameter. 
We discuss first the maximization problem. A similar 
approach for minimization problem will be discussed next. 
 Given a maximization problem, we first construct the 
combined system of equations containing the objective 
equation (2.1) and the equations defined by the constraints 
imposed by the problem under consideration, combined into a 
single matrix equation as follows: 
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Let [E, F] denote the augmented matrix obtained by 
appending the column vector F to matrix E as a last column.  
We then find R, the reduced row echelon form ([2], pages 
73-75) of the above augmented matrix [E, F]. Thus,  

R=rref([E,F])                                                                      (2.3) 
 
 
Note that the augmented matrix [E, F] as well as its reduced 
row echelon form R contains only one variable, namely, 
d and all other entries are constants. From R we can 
determine the solution set S for every fixed 
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 which also satisfies the 

nonnegativity constraints is the set of all feasible solutions for 
that d . It is clear that this subset can be empty for a particular 
choice of d  that is made. The maximization problem of linear 
programming is to determine the unique d  which provides a 
feasible solution and has maximum value for d , i.e., to 
determine the unique d  which provides an optimal solution. 
In the case of an unbounded linear program there is no upper 
(lower, in the case of minimization problem) limit for the 
value of d , while in the case of an infeasible linear program 
the set of feasible solutions is empty. The steps that will be 
executed to determine the optimal solution should also tell by 
implication when such optimal solution does not exist in the 
case of an unbounded or infeasible problem.  
 The general form of the matrix R representing the 
reduced row echelon form is   
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Among first )( mn + columns of R certain first columns 
correspond to basic variables (columns that are unit vectors) 
and the remaining ones to nonbasic variables (columns that 
are not unit vectors). For solving a linear program we need to 
determine the values of nonbasic variables such that the value 
of d  is optimal, from which we can determine the values of 
all the basic variables by substitution and the linear program is 
thus solved completely. Note that the rows of R actually 
represent equations with variables nixi L,2,1, =  and 
variables mjs j L,2,1, = on left side and expressions of type 

)1(,2,1, +=+ mkedc kk L  containing the variable d  on the right 
side. The rows with a positive coefficient for the parameter  d  
represent those equations in which the parameter  d  can be 
increased arbitrarily without violating the nonnegativity 
constraints on variables ji sx , . So, these equations with a 
positive coefficient for the parameter  d  are not implying any 
upper bound on the maximum possible value of parameter d  

however; these rows are useful in certain situations. The rows 
with a negative coefficient for the parameter d  represent 
those equations in which the parameter  d  cannot be 
increased arbitrarily without violating the nonnegativity 
constraints on variables ji sx , . So, these equations with a 
negative coefficient for the parameter  d  are implying an 
upper bound on the maximum possible value of parameter d   
and so important ones in this respect. So, we now proceed to 
find out the submatrix of R , namely, NR , made up of all 

columns of R and containing those rows j  of R for which the 

coefficients jc  of the parameter  d  are negative. Let 

kiii ccc ,,,
21
L are all and are only negative real numbers in 

the rows of R collected in NR  and the coefficients of d  in 
all other rows of R are greater than or equal to zero. Our 
method for solving linear programming problem essentially 
consists of solving certain subsystem of equations represented 
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by certain tows of R or NR , or alternatively manipulating 

entries in the columns of  R through certain suitable row 
transformations so that the transformed matrix still represents 
the same system of equations in essence and now the entries 
in the columns corresponding to all nonbasic variables in NR  
are nonnegative.  
 
Algorithm 2.1 (Maximization): 
  
  Step 1: Express the given problem in standard form: 
             Maximize:   xCT  
             Subject to:   bsAx =+                                         
             0,0 ≥≥ sx  
  Step 2: Construct the augmented matrix [E F], where 
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               and obtain the reduced row echelon form:  
               R = rref ([E, F]).  
Note:  

(a) We call that variable ‘basic variable’ for which the 
corresponding column (column vector) of R  
representing coefficients for that variable is  ‘unit 
vector’. 

(b)  We call that variable ‘nonbasic variable’ for which 
the corresponding column (column vector) of R  
representing coefficients for that variable is ‘not unit 
vector’. 

   
 Step 3: If there is a row (or rows) of zeroes at the bottom of R 
in the first n columns and containing a nonzero constant in the 
last column then declare that the problem is inconsistent and 
stop.  
  Step 4:  Else if the coefficients of d  in the last column are 
all positive or if there exists a column of R corresponding to 
some nonbasic  variable with all entries negative then declare 
that the problem at hand is unbounded and stop. 
  Step 5: Else if for any chosen value of d  one observes that 
nonnegativity constraint for some variable gets violated by at 
least one of the  variables then declare that the problem at 
hand is infeasible and stop. 
Note: 

(c) Infeasibility of a linear programming problem can 
also be decided by unbounded nature of its dual 
problem 

    
  Step 6: Else find the submatrix of R, say NR  made up of 
those rows of R for which the coefficient of d  in the last 
column is negative. 
  Step 7: Solve 0=+

rr ii edc  for each such a term in the last 

column of NR  and find the value of 
ri

dd = for 

kr ,,2,1 L=  and find }min{min ri
dd =  and 

}max{max ri
dd = . 

Note: 
(d) The optimal value of doptimal, lies in between 

}min{min ri
dd = and }max{max ri

dd =  
 

  Step 8: Check the columns of NR  corresponding to 
nonbasic variables. Find out the columns with all entries 
nonnegative and set these  nonbasic variables to zero. 
  Step 9: If all these columns corresponding to nonbasic 
variables contain only nonnegative entries then (as per Step 7) 
set all nonbasic variables to zero. Substitute mindd =  in the 
last column of R . Determine the basic feasible solution 
(which will be the optimal solution for the problem) and stop.  
  Step 10: Finally, when there exist columns in NR  
corresponding to some nonbasic variables containing positive 
entries in some rows and some negative entries in some other 
rows and the initial d   values are such that they approach 
each other when the values of these nonbasic variables are 
increased from zero then we can take following two 
approaches: 

(A) We form and solve a suitable subsystem of equations 
mainly containing these nonbasic variables and may 
sometime containing some basic variables that leads 
to maximal value for d and thus solve the problem 
completely. In such case we may require to check 
optimality by separately appending each basic 
variable. 

(B) We carry out certain suitable row transformations on 
the matrix R  so that the newly  transformed matrix 
is equivalent to R  and now all the entries in the 
columns of newly transformed NR   (as an effect of 

these transformations carried out on R ) 
corresponding to nonbasic variables are nonnegative.  

 
We can also deal with minimization problems on similar 
lines and develop similar algorithm for their solution.  
 
Example 2.1: We now consider a problem for which the 
simplex iterations are exponential function of the size of the 
problem. A problem belonging to the class described by Klee 
and Minty containing n  variables requires 12 −n simplex 
steps. We see that the new method doesn’t require any special 
effort 
Maximize: 100 1x  +10 2x + 3x  

Subject to: 11 ≤x  

                  20 1x  + 1002 ≤x  

                  200 1x  +20 2x + 100003 ≤x  

            1x , 2x , 3x 0≥  

Solution: The following is the matrix R : 
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The first four columns of NRR,  correspond to basic 
variables, while the next two columns correspond to nonbasic  
variables. The last column corresponds to entries of type 

rr ii edc + . The columns for variables 31 , ss  of NR  contain 

all positive entries so we set 3s = 0. The column for variable 

2s contains entries with negative signs, so for these rows the 
value of parameter d is unbounded, since by assigning any 
large (positive) value to this nonbasic variable we can increase 
the value of parameter d  in these rows to any high value 
without violating the nonnegativity constraints. So, as 
mentioned above, we need to append a row from R  with 
positive sign for d and construct the system QPz = . So, by 

appending first row of R  and unit vector for 1s  we have 
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The solution for this system yields 1s = 1, 2s = 100, d = 
10000. The substitution of these values and the already fixed 
value of 3s , namely, 03 =s , we get the complete solution as 
follows: 

1x = 0, 2x = 0, 3x = 10000, 1s = 1, 2s = 100, 3s = 0, and the 

maximum value of d = 10000. 
 
Alternative Solution: Let kR  represents k-th row of  R . 
With the aim of achieving the nonnegativity of entries in the 
columns corresponding to nonbasic variables in NR  we 

perform following suitable row transformations on R , 
namely, 2R  10 1R + 2R , 4R  1R  + 4R . With these 

transformations on R  we get the new (transformed) NR  as 
follows: 
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Now, using nonnegativity of 2nd and 6th  column from first 
row we have 1x = 0, 3s = 0, and so, d = 10000. Further using 

these values in newly transformed R  we can find the 
complete solution and check that it turns out same as we 
obtained above by solving subsystem of equations. 
 
III. A NEW ALGORITHM FOR NONLINEAR PROGRAMMING 
  We now show that we can deal with nonlinear 
programming problems using the similar technique. Here 
the methods developed by Bruno Buchberger which 
transformed the abstract notion of Grobner basis into a 
fundamental tool in computational algebra will be utilized. 
The technique of Grobner bases is essentially a version of 
reduced row echelon form (used above to handle the linear 
programs made up of linear equations) for higher degree 
equations [3].  
A typical nonlinear program can be stated as follows:  
Maximize: )(xf  

Subject to: mjxhj ,,2,1,0)( L==  

                  pmmjxg j ,,2,1,0)( L++=≤  

                   nkxk ,,2,1,0 L=≥  
Given a nonlinear optimization problem we first construct the 
following nonlinear system of equations: 

0)( =− dxf                                                                   (3.1) 

mjxhj ,,2,1,0)( L==                                                (3.2)                  

pmmjsxg jj ,,2,1,0)( L++==+                       (3.3) 
where d  is the unknown parameter whose optimal value is to 
be determined subject to nonnegativity conditions on problem 
variables and slack variables. For this to achieve we first 
transform the system of equations into an equivalent system of 
equations bearing the same solution set such that the system is 
easier to solve. We have seen so far that the effective way to 
deal with linear programs is to obtain the reduced row echelon 
form for the combined system of equations incorporating 
objective equation and constraint equations. We will see that 
for the nonlinear case the effective way to deal with is to 
obtain the equivalent of reduced row echelon form, namely, 
the Grobner basis representation for this system of 
equations (3.1)-(3.3). We then set up the equations obtained 
by equating the partial derivatives of d  with respect to 

problem variables ix  and slack variables is to zero and 
utilize the standard theory and methods used in calculus. We 
demonstrate the essence of this method by solving an 
example: 
Example 3.1: Maximize: 21

2
2

2
1 5624168 xxxx ++−−   
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                          Subject to:     421 ≤+ xx                           

                                              52 21 ≤+ xx  

                                             24 21 ≥+− xx  

                                                 0, 21 ≥xx  
Solution: We build the following system of equations: 
                 05624168 21

2
2

2
1 =−++−− dxxxx   

                        04121 =−++ sxx        

                     052 221 =−++ sxx         

                    024 321 =−−+− sxx  
We now transform the above system of equations and obtain 
its Grobner basis representation as follows:      

08561689504 2
33

2
22 =−+−+− ssssd                (3.1.1)   

0599 321 =−+− sss                                                 (3.1.2) 

 0929 232 =+−+− xss                                            (3.1.3) 

  09418 132 =+++− xss                                        (3.1.4) 
from first equation (3.2.1), in order to maximize d , we 
determine the values of 32 , ss  as follows:                                

If we set 0
2

=
∂
∂
s
d

 we get the value of 2s  that maximizes d , 

namely, 
4
1

2 =s . Similarly, if we set 0
3

=
∂
∂
s
d

 we get the 

value of 3s  that maximizes d , namely, 
2
7

3 =s . Putting 

these values of  32 , ss  in the first and second equation we get 

respectively the maximum value of 67=d  and the value of  

4
3

1 =s . Using further these values in the third and fourth 

equation we get 75.1,5.1 21 == xx . 
 
Note: It is instructive to notice that the optimal solution that 
we have obtained is not on the boundary of feasible region 
(as one always gets in the case of a linear programming 
problem) but in the interior of the feasible region.  
 

IV. A NEW ALGORITHM FOR INTEGER PROGRAMMING 
 We now proceed to deal with integer programming 
problems using the similar technique. The essential difference 
in this case is that we obtain integer solutions by treating the 
system of equations as a set of Diophantine equations 
 We begin (as done previously for linear 
programming problems) with the following equation:  
                                  dxCT =                                     (4.1) 
where d is an unknown parameter, and call it objective 
equation. The (parametric) plane defined by this equation will 
be called objective plane. Let TC be a row vector of size 1×n 

and made up of integer components nccc ,,, 21 L  , not all 
zero. It is clear that the objective equation will have integer 
solutions if and only if gcd (greatest common divisor) of 

nccc ,,, 21 L  divides d . We now proceed to form the 
following Diophantine system of equations as a single matrix 
equation: 
We discuss the maximization problem. A similar approach 
for minimization problem can be developed.  
 Given a maximization problem, we first construct the 
combined system of equations containing the objective 
equation and the equations defined by the constraints imposed 
by the problem under consideration, combined into a single 
matrix equation, viz., 
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and obtain LP-relaxation solution. This LP-relaxation solution 
provides the upper bound that must be satisfied by the optimal  
integer solution.  Then we proceed to solve the system as a 
system as Diophantine system of equations as follows: In 
order to solve this system as Diophantine system of equations 
we use the standard technique given in ([4], pages 212-224). 
First by appending new variables )(21 ,,, nmuuu +L  and 
carrying out appropriate row and column transformations 
discussed in ([4], pages 217, 221) we obtain the parametric 
solutions for the system. Thus, we start with the following 
table:   
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and transform the system of equations into an equivalent 
system that is diagonal. Thus, we have the following 
parametric solution: 

duk =  (for some k ) 

rr ii hu = (where 
ri

h are constants for 1=r  to n , kir ≠ ), 
and 

i

n

r
jiji rr

ux δα +=∑
=1

 (where iijr
δα ,  are constants.) 

i

n

r
jiji rr

us ηβ += ∑
=1

 (where iijr
ηβ ,  are constants.) 

We setup procedure to analyze this parametric solution and 
determine the optimal integral solution. 
 
Example 4.1: Maximize: 21 10xx +−   
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                        Subject to: 255 21 ≤+− xx  

          242 21 ≤+ xx  

                      0, 21 ≥xx , and  integers. 
Solution: We first find the LP-relaxation optimal value, 
which is 58.636 for this problem. And the complete LP-
relaxation optimal solution is  
( 2121 ,,, ssxx ) = (8.6364, 6.7273, 0, 0)  
 
Thus, the upper limit for optimal value for integer program, 
say .optd , can be 58 .  Starting with the table (4.5) mentioned 
above and carrying out the appropriate row-column 
transformations we get the following parametric solution: 

                             du −=1                   (4.1.1) 

                             253 =u                   (4.1.2) 

                              244 =u                   (4.1.3) 

                         21 10udx +−=          (4.1.4) 

                                 22 ux =                 (4.1.5) 

               255 21 ++−= uds           (4.1.6) 

               24212 22 +−= uds         (4.1.7) 
Using the upper limit on the optimal value, namely, 

58. == optdd  in the last equation above we see that the 

maximum value that 2u  can take (to maintain nonnegativity 

of 2s ) is  6. The forth and sixth equation given above for 1x  

and 1s  respectively contains d with a negative coefficient 

( 1−= ). so substituting 1s = 0 and 2u  = 6 in equation (4.1.6) 
we get the desired optimal solution 

6,5,2,0,55 22121 ====== uxxssd   
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