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Absract
1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate
into two biquadrates, or in general any power higher than the second into powers of like degree: |
have discovered a truly marvelous proof, which this margin is too small to contain.”

This means: X" +y" =z"(n>2) has no integer solutions, all different from 0(i.e., it has
only the trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last
theorem (FLT). It suffices to prove FLT for exponent 4. and every prime exponent P . Fermat

proved FLT for exponent 4. Euler proved FLT for exponent 3.

In this paper using the complex trigonometric functions we prove FLT for exponents 3P
and P, where P isan odd prime. We find the Fermat proof. The proof of FLT must be direct.
But indirect proof of FLT is disbelieving..

In 1974 Jiang found out Euler formula
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where J denotesa Nth root of negative unity, J"=-1, Nn isan odd number, t; are the real

numbers.

S, is called the complex trigonometric functions of order n with n—1 variables [1-7].
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where i=1,2,3,...,n;
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(2) may be written in the matrix form
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where (n—1)/2 is an even number.
From (4) we have its inverse transformation
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From (5) we have
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In (3)and (6) t, and S, have the same formulas. (4) and (5) are the most critical formulas of

proofs for FLT. Using (4) and (5) in 1991 Jiang invented that every factor of exponent N has the
Fermat equation and proved FLT [1-7] .Substituting (4) into (5) we prove (5).
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From (3) we have
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From (6) we have
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From (8) and (9) we have the circulant dete
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If S,#0,where i=12,---,n, then (10) has infinitely many rational solutions.

Assume S #0, S,#0, S,=0 where i=3,4,---,n.5,=0 are N—2 indeterminate

equations with N—1 variables. From (6) we have
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From (3) and (11) we have the Fermat equation
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Example[1]. Let n=15. From (3) we have
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Form (12) we have the Fermat equation
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From (13) we have
exp(A+ 2B, +2B,) =[exp(-t, +1,)]. (15)
From (11) we have
exp(A+2B,+2B,) =S -S,. (16)
From (15) and (16) we have the Fermat equation
exp(A+2B,+2B;) =S’ —S; =[exp(-t, +1,)]°. (an

Euler proved that (14) has no rational solutions for exponent 3[8]. Therefore we prove that (17)
has no rational solutions for exponent 5[1].
Theorem . Let N =3P ,where P >3 isodd prime. From (12) we have the Fermat’s equation
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From (19) and (20) we have the Fermat equation
P-1
2
exp(A+2D B;;) =S —S; =[exp(-t, +t,,)]° . 2D
j=1

Euler proved that (18) has no rational solutions for exponent 3[8]. Therefore we prove that (21)
has no rational solutions for P >3 [1, 3-7].
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