Fermat's Last Theorem (5)

Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, P. R. China
123jiangchunxuan@gmail.com

Abstract

In 1637 Fermat wrote: "It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous proof, which this margin is too small to contain."

This means: $x^n + y^n = z^n (n > 2)$ has no integer solutions, all different from 0(i.e., it has only the trivial solution, where one of the integers is equal to 0). It has been called Fermat's last theorem (FLT). It suffices to prove FLT for exponent 4 and every prime exponent P. Fermat proved FLT for exponent 4. Euler proved FLT for exponent 3[8]. In this paper using the complex trigonometric functions we prove FLT for exponents 6P and 2P, where P is an odd prime. The proof of FLT must be direct. But indirect proof of FLT is disbelieving.

In 1974 Jiang found out Euler formula

$$\exp\left(\sum_{i=1}^{2n-1} t_i J^i\right) = \sum_{i=1}^{2n} S_i J^{i-1}, \tag{1}$$

where J denotes a 2nth root of negative unity, $J^{2n} = -1$, n is an odd number, t_i are the real numbers.

 S_i is called the complex trigonometric functions of order 2n with (2n-1) variables [5,7].

$$S_{i} = \frac{(-1)^{i-1}}{n} \left[e^{H} \cos\left(\beta + \frac{(i-1)\pi}{2}\right) + \sum_{j=0}^{\frac{n-3}{2}} e^{B_{j}} \cos\left(\theta_{j} + \frac{(i-1)(2j+1)\pi}{2n}\right) \right] + \frac{1}{n} \sum_{j=0}^{\frac{n-3}{2}} e^{D_{j}} \cos\left(\phi_{j} - \frac{(i-1)(2j+1)\pi}{2n}\right), \tag{2}$$

where i = 1, ..., 2n;

$$H = \sum_{\alpha=1}^{n-1} t_{2\alpha} (-1)^{\alpha}, \quad \beta = \sum_{\alpha=1}^{n} t_{2\alpha-1} (-1)^{1+\alpha}$$

$$B_{j} = \sum_{\alpha=1}^{2n-1} t_{\alpha} (-1)^{\alpha} \cos \frac{(2j+1)\alpha\pi}{2n}, \quad \theta_{j} = \sum_{\alpha=1}^{2n-1} t_{\alpha} (-1)^{1+\alpha} \sin \frac{(2j+1)\alpha\pi}{2n},$$

$$D_{j} = \sum_{\alpha=1}^{2n-1} t_{\alpha} \cos \frac{(2j+1)\alpha\pi}{2n}, \quad \phi_{j} = \sum_{\alpha=1}^{2n-1} t_{\alpha} \sin \frac{(2j+1)\alpha\pi}{2n},$$

$$2H + 2\sum_{j=0}^{\frac{n-3}{2}} (B_j + D_j) = 0.$$
 (3)

From (2) we have its inverse transformation[5,7]

$$e^{H}\cos\beta = \sum_{i=1}^{n} S_{2i-1}(-1)^{1+i}, e^{H}\sin\beta = \sum_{i=1}^{n} S_{2i}(-1)^{1+i}$$

$$e^{B_j}\cos\theta_j = S_1 + \sum_{i=1}^{2n-1} S_{1+i}(-1)^i\cos\frac{(2j+1)i\pi}{2n}$$

$$e^{B_j}\sin\theta_j = \sum_{i=1}^{2n-1} S_{1+i} (-1)^{1+i}\sin\frac{(2j+1)i\pi}{2n}$$
,

$$e^{D_j}\cos\phi_j=S_1+\sum_{i=1}^{2n-1}\ S_{1+i}\cos\frac{(2\,j+1)i\pi}{2n}\,,$$

$$e^{D_j} \sin \phi_j = \sum_{i=1}^{2n-1} S_{1+i} \sin \frac{(2j+1)i\pi}{2n}.$$
 (4)

(3) and (4) have the same form.

Let n = 1. We have H = 0 and $\beta = t_1$. From (2) we have

$$S_1 = \cos t_1, \quad S_2 = \sin t_1 \tag{5}$$

From (5) we have

$$\cos^2 t_1 + \sin^2 t_1 = 1 \tag{6}$$

(6) is Pythagorean theorem. It has infinitely many rational solutions.

From (3) we have

$$\exp[2H + 2\sum_{j=0}^{\frac{n-3}{2}} (B_j + D_j)] = 1.$$
 (7)

From (4) we have

$$\exp\left[2H + 2\sum_{j=0}^{\frac{n-3}{2}} (B_j + D_j)\right] = \begin{vmatrix} S_1 & -S_{2n} & \cdots & -S_2 \\ S_2 & S_1 & \cdots & -S_3 \\ \cdots & \cdots & \cdots & \cdots \\ S_{2n} & S_{2n-1} & \cdots & S_1 \end{vmatrix} = \begin{vmatrix} S_1 & (S_1)_1 & \cdots & (S_1)_{2n-1} \\ S_2 & (S_2)_1 & \cdots & (S_2)_{2n-1} \\ \cdots & \cdots & \cdots & \cdots \\ S_{2n} & (S_{2n})_1 & \cdots & (S_{2n})_{2n-1} \end{vmatrix}$$
(8)

where

$$(S_i)_j = \frac{\partial S_i}{\partial t_j} [7]$$

From (7) and (8) we have circulant determinant

$$\exp\left[2H + 2\sum_{j=0}^{\frac{n-3}{2}} (B_j + D_j)\right] = \begin{vmatrix} S_1 & -S_{2n} & \cdots & -S_2 \\ S_2 & S_1 & \cdots & -S_3 \\ \cdots & \cdots & \cdots & \cdots \\ S_{2n} & S_{2n-1} & \cdots & S_1 \end{vmatrix} = 1$$
(9)

If $S_i \neq 0$, where i = 1, 2, ..., 2n, then (9) has infinitely many rational solutions.

Assume $S_1 \neq 0, S_2 \neq 0, S_i = 0$, where i = 3, ..., 2n. $S_i = 0$ are (2n - 2) indeterminate

equations with (2n-1) variables. From (4) we have

$$e^{2H} = S_1^2 + S_2^2, \quad e^{2B_j} = S_1^2 + S_2^2 - 2S_1 S_2 \cos \frac{(2j+1)\pi}{2n},$$

$$e^{2D_j} = S_1^2 + S_2^2 + 2S_1 S_2 \cos \frac{(2j+1)\pi}{2n}.$$
(10)

Example. Let n = 15. From (9) and (10) we have Fermat's equation

$$\exp[2H + 2\sum_{j=0}^{6} (B_j + D_j)] = S_1^{30} + S_2^{30} = (S_1^{10})^3 + (S_2^{10})^3 = 1.$$
 (11)

From (3) we have

$$\exp[2H + 2\sum_{i=0}^{1} (B_{3j+1} + D_{3j+1})] = [\exp(-t_{10} + t_{20})]^{10}.$$
 (12)

From (10) we have

$$\exp[2H + 2\sum_{j=0}^{1} (B_{3j+1} + D_{3j+1})] = S_1^{10} + S_2^{10}.$$
 (13)

From (12) and (13) we have Fermat's equation

$$\exp[2H + 2\sum_{i=0}^{1} (B_{3j+1} + D_{3j+1})] = S_1^{10} + S_2^{10} = [\exp(-t_{10} + t_{20})]^{10}$$
 (14)

Euler prove that (11) has no rational solutions for exponent 3[8]. Therefore we prove that (14) has no rational solutions for exponent 10.

Theorem [5,7]. Let n = 3P, where P is an odd prime. From (9) and (10) we have Fermat's equation.

$$\exp[2H + 2\sum_{j=0}^{\frac{3P-3}{2}} (B_j + D_j)] = S_1^{6P} + S_2^{6P} = (S_1^{2P})^3 + (S_2^{2P})^3 = 1.$$
 (15)

From (3) we have

$$\exp[2H + 2\sum_{i=0}^{\frac{P-3}{2}} (B_{3j+1} + D_{3j+1})] = [\exp(-t_{2P} + t_{4P})]^{2P}$$
 (16)

From (10) we have

$$\exp[2H + 2\sum_{j=0}^{\frac{P-3}{2}} (B_{3j+1} + D_{3j+1})] = S_1^{2P} + S_2^{2P}.$$
 (17)

From (16) and (17) we have Fermat's equation

$$\exp[2H + 2\sum_{j=0}^{\frac{P-3}{2}} (B_{3j+1} + D_{3j+1})] = S_1^{2P} + S_2^{2P} = [\exp(-t_{2P} + t_{4P})]^{2P}$$
 (18)

Euler prove that (15) has no rational solutions for exponent 3 [8]. Therefore we prove that (18) has no rational solutions for exponent 2P [5,7].

.

References

- [1] Jiang, C-X, Fermat last theorem had been proved, Potential Science (in Chinese), 2.17-20 (1992), Preprints (in English) December (1991). http://www.wbabin.net/math/xuan47.pdf.
- [2] Jiang, C-X, Fermat last theorem had been proved by Fermat more than 300 years ago, Potential Science (in Chinese), 6.18-20(1992).
- [3] Jiang, C-X, On the factorization theorem of circulant determinant, Algebras, Groups and Geometries, 11. 371-377(1994), MR. 96a: 11023, http://www.wbabin.net/math/xuan45.pdf
- [4] Jiang, C-X, Fermat last theorem was proved in 1991, Preprints (1993). In: Fundamental open problems in science at the end of the millennium, T.Gill, K. Liu and E. Trell (eds). Hadronic Press, 1999, P555-558. http://www.wbabin.net/math/xuan46.pdf.
- [5] Jiang, C-X, On the Fermat-Santilli theorem, Algebras, Groups and Geometries, 15. 319-349(1998)
- [6] Jiang, C-X, Complex hyperbolic functions and Fermat's last theorem, Hadronic Journal Supplement, 15. 341-348(2000).
- [7] Jiang, C-X, Foundations of Santilli Isonumber Theory with applications to new cryptograms, Fermat's theorem and Goldbach's Conjecture. Inter. Acad. Press. 2002. MR2004c:11001, http://www.wbabin.net/math/xuan13.pdf. http://www.i-b-r.org/docs/jiang.pdf
- [8] Ribenboim, P, Femat's last theorem for amateur. Springer, New York, 1999.