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Abstract 

 We present a method to discover signaling pathways, quantify the 

relationship of preselected source/target nodes, and extract relevant subgraphs in 

large scale biological networks. This is demonstrated over the hepatocyte growth 

factor (HGF) stimulated cell migration and proliferation in a keratinocyte-fibroblast 

co-culture. The algorithm (MCWalk) is implemented with random walks using Monte 

Carlo simulations. We extract a master network by overlaying case specific 

microarray data from the NCI Pathway Interaction Database (PID) using a fully 

automatic pipeline without any manual network construction, and uncover the 

association of HGF receptor c-Met nodes, differentially expressed (DE) protein nodes 

and cellular states. We show that the network has a scale-free structure and identify 

key regulator nodes based on their random walk traversal frequency. This property is 

shown to be very weakly correlated to node degree, contrary to what is expected 

from similar centrality measures. The differences with standard methods, such as 

shortest-path, commonly used in the analysis of such networks are discussed and 

compared with this approach, highlighting important pathways which are exclusively 

obtained with our random walks algorithm. 

 

Introduction 

 The cell receives, responds and processes information via a variety of 

signaling pathways. The components of different pathways interact with each other, 

giving rise to signaling networks. Such interactions include mechanisms like 

regulation of protein-protein interactions, phosphorylation, regulation of enzyme 

activity, production of secondary messengers etc. Systems biology teaches us not 

only that phenotypes are influenced by many important genetic and environmental 

factors, but also that we need to understand the extremely complex interactions 
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between these components [1]. The representation of biological systems as large 

scale networks has thus become increasingly popular, in order to evaluate biological 

properties based on the interaction of signaling pathways. Relatively few methods 

have been proposed so far for analyzing the structure of a given signaling (or any 

interaction) network [2]. Structural analysis is particularly useful in large networks, 

where a simple visual inspection is not possible and the construction of quantitative 

models is practically infeasible due to the large amount of parameters required. 

The method of random walks has been well-established for structural analysis 

of networks, as it can fully account for local as well as global topological structure 

within the network and is useful for identifying most important/central nodes [3–5]. 

Random walks arise in many models of mathematics and physics and their properties 

have been studied in systems of various geometries [6]. They are closely related to 

centrality in networks, which is widely used for measuring the relative importance of 

nodes within a graph [20]. Noh and Rieger [26] introduced random walk centrality in 

undirected graphs. This quantifies how central a node u is located regarding its 

potential to receive information randomly diffusing over the network. It is a measure 

of the “speed” with which randomly walking messages reach a vertex from 

elsewhere in the network, a sort of random-walk version of closeness centrality. 

Newman’s random walk betweenness [27] is a similar notion, which quantifies 

the number of times that a random walk starting at s and ending at t passes through 

a node u along the way, averaged over all s and t. This is more closely related to 

Freeman’s betweenness centrality; one end representing information that has no 

idea of where it is going and the other information that knows precisely where it is 

going (i.e. traversing the network on shortest paths). Estrada’s communicability 

betweenness [28] combines these two measures, allowing information to pass 

through all possible routes, but introducing a scaling so that longer walks carry less 

importance. 

A random walk is a finite Markov chain and in fact all Markov chains can be 

viewed as random walks on a directed graph. In physics random walks in graphs have 

been widely studied, especially in the diffusion reaction scheme (e.g.  [7–12]). These 

processes have many applications in communications and social networks (e.g. 

information propagation and rumor spreading), however few studies [5,13] have 

applied them in the analysis of the structure and function of biological, and in 

particular, signaling networks. 

A notable exception is the field of subgraph extraction, which can be used to 

predict a meaningful pathway given a biological network (e.g. protein–protein 

interaction or metabolic network) and a set of query items (e.g. genes, proteins and 

compounds) defining seed nodes in the network [14]. One is then interested in 

obtaining a subgraph that best captures the relationships between k given nodes of 
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interest (or seed nodes) in a graph. This is a powerful technique, which can be used 

to predict pathways from biological networks and a set of query items (e.g genes, 

proteins, compounds etc). The most straightforward method to obtain such a 

network is to connect all nodes of interest using the shortest path. Dijkstra’s 

algorithm [15] is widely used to obtain such paths in a network. 

This is often a reasonable simplification in social and communications 

networks, where information often propagates along shortest paths. However, the 

same cannot be said about biological networks, where the length of the path is often 

of no biological significance and using such algorithms is an oversimplification which 

often results in omitting important pathways. Therefore, random walk methods have 

been developed to improve the completeness and relevance of the extracted paths 

in the network. Such methods often use clustering algorithms like Markov Clustering 

(MCL) [16] and have recently been applied to split biochemical networks into 

coherent subnets [17]. A clustering method somewhat similar to MCL has also been 

applied to metabolic networks [18]. The NetWalk algorithm [5] has been developed 

to calculate the distribution of edge flux values associated with each interaction in 

the network, which reflects the relevance of interactions based on the experimental 

data. 

The discovery of all possible (non-simple) paths between any set of nodes is a 

particularly difficult case and known to be an NP-complete problem in cyclic 

graphs [34]. Various methods have been proposed to extend the completeness of 

the shortest path approach, e.g. by discovering the k-Shortest paths (i.e. the second, 

third, etc... path), and such algorithms have been recently applied to infer regulatory 

pathways in a gene network [35]. Dupont et al [19] implemented a generic algorithm 

(k-walks), to build a subgraph connecting seed nodes, which contains the most 

relevant edges and the nodes induced by those edges. The relevance of an edge is 

measured as the expected number of times it is visited along random walks 

connecting seed nodes, which reflect both the topology of the network and the edge 

weights. 

The k-walks algorithm [13,19] simulates random walks on the network using 

Markov chains, computing the set of edges/nodes most likely to be used while 

randomly walking between seed nodes. This method finds a “relevant subgraph”, 

which should be as small as possible while capturing most of the information 

between k nodes of interest (seed nodes). They follow from an interpretation of the 

graph as a Markov chain characterized by a transition probability matrix P. The 

probability of transition from node i to node j is then given by:  
,
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wi,j is the weight assigned to edge ij. 



4 
 

To formalize this idea, it’s required that a random walker which starts in any 

node of interest should be able to reach at least another node of interest, in order to 

explain the relationship between all nodes (e. g. genes in a regulatory network). A 

subgraph is then obtained by keeping only those edges above a minimal relevance 

threshold. This method, combined with shortest-path methods has been shown to 

be fairly accurate in metabolic pathway prediction [13]. While this approach is very 

valuable in analyzing gene regulation and metabolic networks, it might have 

limitations in signaling networks where terminal nodes of interest may exist. 

In our case, we frequently map unidirectional relationships (e.g. a protein 

affecting a cellular process, or a transcription factor regulating the expression of a 

gene) between nodes in pathway interaction databases, such as the PID. In specific, 

we investigate the relationship between growth factors, differentially expressed 

genes and cell states, such as proliferation and migration. It is thus possible (and a 

frequent case) that in a growth factor signaling pathway a molecule is linked to 

another in a unidirectional relationship (e.g. a GF to a DE gene or a cellular state). In 

signaling networks, many nodes of interest (e.g. cellular states) are terminal nodes, 

i.e. they don’t have any successors, or there isn’t any node of interest that is 

reachable from them. There are also cases when we want to map causal 

relationships between specific sets of nodes, which can act exclusively as source or 

target nodes. In these scenarios we are unable to use a method like kWalks, which 

requires that a directed path must exist from each node of interest to at least one 

other node of interest and that each of these nodes should have degree k ≥ 2. This is 

because the initial state of the Markov Chain cannot be an absorbing state, and 

other states (including the initial state) form the set of transient states, from which 

there is a strictly positive probability to leave. 

Thus, we developed an algorithm based on random walks using Monte Carlo 

simulations (from here on referred to as “MCWalk”), that links sets of predefined 

input/output nodes, quantifies their relation and extracts relevant functional sub-

networks. The MCWalk algorithm allows the existence of terminal nodes and in 

addition, the extraction of causal relationships between the source/target nodes 

based on the structure of the network, obtaining a quantitative estimate of the 

correlation of these nodes based on frequency of traversal. We demonstrate this on 

hepatocyte growth factor (HGF) stimulated cell migration and proliferation in a 

keratinocyte-fibroblast co-culture time series data from Busch et al. [29]. Hepatocyte 

growth factor (HGF) and its receptor, Met, regulate a number of biological functions 

in epithelial and nonepithelial cells, such as survival, motility, proliferation, and 

tubular morphogenesis [30]. We obtain a family of functionally relevant signaling 

networks based on the traversal of a random signal between the specified 

source/target nodes for HGF signaling. This method can thus be applied in 

interpreting any experiment results, where a causal relation needs to be established 
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between sets of input/output nodes and constructing case-specific networks that 

model the underlying biological mechanisms. 

 

Methods 

Pipeline description 

An automatic pipeline introduced in [31] is used to obtain computable 

networks from the Pathways Interaction Database (PID) [32], which are readable in 

Cytoscape [33], and link the signaling events of specific growth factors to the gene 

response observed in a particular gene expression experiment. The pipeline requires 

the following information: 

 Network: Complete PID NCI-Curated xml download. 

 Seed nodes: 

o HGF receptor c-Met nodes 

o Differentially expressed (DE) protein nodes: these were molecular 

nodes of type protein that met two conditions: (a) they are two-fold 

differentially expressed genes (i.e. corresponding to mRNA with a 

change in expression of at least two-fold) at one time point of HGF 

stimulation with respect to control and (b) they were outputs of an 

interaction node of type transcription in the PID active-network. 

o Cell states: migration and proliferation, these nodes were chosen at 

the beginning of the study 

Once this information is obtained, the following steps are required (Figure 1): 

 

1. Construction of a computable graph from the PID NCI-Curated database, by 

using the XMLtoSIF [31] software.  

2. Filtering of small molecules, such as:  ATP, GTP, GDP, Calcium, IP3, DAG and 

subsequent removal of nodes related to absent proteins, i.e. those which were 

absent in both conditions measured in the microarray experiment. 

3. Pruning of the network with respect to the seed nodes selection. This step 

consists of removal of nodes which are those that are not included in any path 

between any pair of seed nodes. Thus, the pruned graph is: 

    ,, : , s t

s t

G V E V E p


      , where pst is a path from node s to node t. 
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4. Run Monte Carlo random walk algorithm MCWalk, using as source and target 

nodes the designated seed nodes. Note that a node can belong to either or both 

sets. In this particular case all seed nodes are marked as both source and target 

nodes. 

 

Monte Carlo random walks algorithm – MCWalk 

The purpose of the MCWalk algorithm is: i) finding and quantifying the 

relationship of sets specified source and target nodes of interest (note that a node 

can belong in both sets), ii) ranking of the intermediate nodes that best explain this 

relationship and iii) extraction of relevant subgraphs based on this ranking. The 

frequency of traversal of the intermediate nodes expresses the probability that a 

node is traversed when a signal travels between source/target nodes. This is defined 

as random walk score S, identifying key regulator molecules that control signaling 

pathways in the network. Subsequently a family of subgraphs is obtained using a 

cutoff value T for this score. This approach allows us to obtain an adequate sample in 

the large space of all possible paths and networks between the nodes of interest. 

The algorithm accepts as input two sets of nodes (source and target), and the 

graph G(V,E), where the random walk is performed. At each run, a random walker 

starts from a source node and traverses the network in a random fashion. The 

random walk stops when it reaches a target node and the nodes and edges that have 

been traversed at least once are “marked” during this realization. The process is then 

repeated until the desirable number of runs is reached. The score S of each node at 

the end of the simulation is defined as the number of runs when this node is 

traversed at least once, over the total number of runs. This is proportional to the 

expected number of times this node is traversed when a signal is sent from any 

source to any target node (e.g. in a signal transduction pathway) and takes values 

0≤s≤1. The algorithm can be described in simple steps as follows: 

1. The sets of source and target nodes are determined 

2. A random source node is selected 

3. At each time step the random walker moves into a random successor 

node and marks this node as traversed for the current run 

4. If the successor node is a target node, then the process stops and one 

realization is complete. 

5. The steps 2-4 are repeated until we reach the pre-assigned number of 

realizations, where the simulation stops. 

After each node’s score is assigned, a subgraph ( , ) ( , )G V E G V E    can be 

extracted. This graph includes each node u, whose score Su is above a specified 
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threshold T, such that , uu V S T   . Thus, T is used as a cutoff that controls which 

nodes will be included in a subgraph for a particular value of T. This score Su is 

related to Newman’s random walk betweeness [27], but applied in our case in 

directed graphs for specific paths of signal transduction, and describes each node’s 

contribution to all paths connecting the source and target nodes. By relaxing T one 

can obtain a more complete picture in the pathways associating these nodes, at the 

expense of having a larger subgraph, while for large values only the most relevant 

nodes remain in the network resulting in a smaller, but more incomplete graph.  

This approach can be combined with the shortest path methods in order to 

extract the underlying subgraph. This might be desirable, particularly for high 

threshold values, which tend to disconnect a large part of the network if we want to 

ensure that the seed nodes will remain connected. In this case, the nodes in the 

shortest paths between all source and target nodes are discovered with Dijkstra’s 

algorithm [15] and are pre-assigned with a score of 1. Relaxing T adds more relevant 

nodes to the existing shortest path subgraph, combining the compactness of the 

shortest path method with the completeness of the random walk approach. Thus, 

the traversal of the network using the random walk between the seed nodes yields a 

family of subgraphs, with respect to the threshold cutoff value T. 

The simulation is run on the pruned master network structure, which is critical 

to avoid paths that lead to “dead ends” (i.e. nodes with no successors, which are not 

target nodes), and therefore do not contribute in the exploration of the network. 

This pruning is also important to avoid a subtle bias effect; because these dead ends 

increase the probability to reach nodes which are near the source nodes compared 

to those which are further away, the signal will most likely get trapped in a dead end 

while trying to reach them. Note that this algorithm can be easily adapted to biased 

random walks on weighted networks, where the walker follows a successor with a 

probability equal to its edge weight (in our case we consider all weights equal to 1 

and therefore the walk is completely random). If there are paths ending in non-seed 

nodes after the sub-networks are obtained, these can be removed in a final pruning 

step. 

The random walk dependency matrix D quantifies the frequency with which a 

signal from a source node arrives at a target node. This measures the strength of 

relationship between these two nodes u and v based on the reachability of the 

target from the source i.e. the number of paths through which the source can 

influence the target. As a convention from hereon, the rows of the matrix represent 

the source and the columns the target nodes. Du,v is then the relative frequency with 

which a signal from u reaches v, such as: ,, 1u vv
u D  . 
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This matrix can then be reordered based on the reachability of each node. 

First, all target nodes (columns) are reordered based on total number of times they 

are reached from all sources defined as:
,, ( ) u vu

v g v D  . Subsequently the source 

nodes are reordered based on how strongly they are connected with the most 

frequently accessed target nodes as:
,, ( ) ( )u vv

u f u D g v  .  

The MCWalk algorithm was implemented in Java, using the Java Universal 

Network/Graph library (JUNG - http://www.jung.sourceforge.net)  

 

Results & Discussion 

The PID active network is revealed to be scale-free, as shown by Figure 2. The 

degree distribution follows a power law of the form: ( )P k k  , with γ=2.3 for the 

active network and γ=3 for the pruned network. γ is the degree exponent that 

controls (among others) the density of  the network and the importance of highly 

connected nodes (hubs). Statistical large scale analysis of large scale metabolic [36] 

and protein interaction networks [37] revealed that such systems are described by 

scale-free networks. These deviate from the classical random network theory 

introduced by Erdös and Rènyi [38], in that their topology is extremely 

heterogeneous, dominated by a few highly connected nodes. This type of networks 

has been shown to be especially resilient under random failures [39], but also very 

prone to intentional attacks [40]. 

The pruned network is sparser than the active network and significantly 

smaller: 530 nodes instead of 9092 nodes in the original network. Therefore, while 

pruning reduces significantly the network complexity, it loosely retains the original 

scale free structure of the network (noise in the distribution tail is increased due to 

the small network size). This implies that our network is controlled by a small 

number of hubs, which are essential for its structure and will collapse if even a few 

of these nodes are removed. Examples of such nodes are ERK1/2 and uPAR. The 

network is very robust when nodes of low connectivity, such as Laminin6 are 

removed. 

 

Correlation of random walk score and node degree 

Typical centrality measures usually have a high correlation with the node 

degree. Betweeness centrality is known to be highly correlated with node degree in 

different types of networks [41]. Random walk centrality was also found to be highly 

correlated with degree in the Barabasi-Albert network [26]. Newman’s random-walk 

http://www.jung.sourceforge.net/
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betweenness is moderately highly correlated with degree (R2=0.626) and very highly 

correlated with shortest path betweenness (R2= 0.923). Thus, in general, vertices 

with higher degree or higher shortest-path betweenness tend also to have higher 

random-walk betweenness  [27]. 

In Figure 3 we examine the correlation of random walk score S (i.e frequency 

with which a node is traversed when a random signal travels between the seed 

nodes) and node degree k, where k is the total number of connections of each node. 

For a selection of random seed nodes, this correlation seems to be very weak (R2= 

0.37). This is even more the case when using case-specific seed nodes i.e. HGF 

receptor c-Met nodes, DE genes and cell states, and R2 then drops to 0.07 (inset of 

Figure 2), indicating that the high degree nodes are not necessarily the ones 

controlling the signaling pathways in the network, as one would expect. 

A significant number of nodes are found to have low k but high S, including 

effector molecules and precursors for biological processes. Such examples are the 

Laminin isoforms, which are important and biologically active parts of the basal 

lamina, influencing cell differentiation, migration and adhesion [42]. β-catenin, 

which is involved in Cysteine-rich angiogenic inducer 61 (Cyr61) regulation also falls 

in this category. Activation of β-catenin signaling elevates the mRNA level of Cyr61 in 

HepG2 cells, while inhibition of β-catenin signaling reduces both mRNA and protein 

levels of Cyr61 [43]. A smaller number of nodes, as expected from the scale free 

structure of the network, have high S, but also high k, indicating that they are key 

players in many biochemical processes. Such nodes are active RAC1/GTP, which 

stimulates endothelial cell migration and activates the JNK cascade reaction and 

alpha catenin, which participates in many biological complexes (see Table 1 for more 

such examples). 

In order to ensure that all our seed nodes will remain connected, we set the 

score of all the shortest-path nodes discovered with Dijkstra’s algorithm to 1. Thus, 

the minimal subgraph will contain the nodes only included on the shortest path and 

the maximal subgraph will be equivalent to the pruned network. The number of 

nodes/edges of this subgraph with respect to T is shown in Figure 4. Note that in the 

range in the range 0.001 < T < 0.1 this number scales approximately as the logarithm 

of T. This is true both for the random and for the specified seed nodes selection set. 

As a result, we get a tradeoff between size and pathway completeness for the 

respective node set. The appropriate network size can then be selected according to 

the respective problem at hand. In our case we use a value of T=0.01 to highlight the 

differences between the random walk and shortest path algorithm (Figure 6). 
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Linking the seed nodes with a dependency matrix 

In some cases it is useful to know even whether any influence between two 

nodes exists (i.e. a growth factor and a differentially regulated gene). For such 

questions standard methods from graph theory can be applied, such as the distance 

matrix, calculating the geodesic distance between two nodes (see e.g. [2] for such an 

application). While this matrix also allows us to see if two nodes are connected at all, 

provides little knowledge about the strength of the association. This also has little 

meaning in biological networks, because distance has very little meaning since 

information in such networks doesn’t travel preferentially on shortest paths. As 

such, we attempt to quantify the relationship between the source and target nodes 

using the random walks by constructing the dependency matrix for all the seed 

nodes, shown in Figure 5.  

The rows correspond to sources, i.e nodes where a randomly moving signal is 

produced the columns to the target nodes which receive this signal. The values of 

this matrix are the fraction of times that a signal travels from any source to any 

target node, while traversing the network randomly. Therefore, the random walk 

dependency matrix may provide a more realistic quantification of the relationship of 

two nodes. Note however that this is highly dependent upon the network structure 

and should only be considered as an indication rather than an absolute measure. 

This approach has the advantage that it doesn’t require any prior knowledge 

on gene expression data, as it relies only on the network structure. However, the 

disadvantage is that as it does not incorporate any functional information, the 

results can be somewhat biologically irrelevant. To address this issue, an expression 

dependency matrix can be employed, which relies in the microarray expression data. 

This has the advantage that the reordering of the targets (e.g. differentially 

expressed genes) is done according to: 2( ) log ( )cg v f v , where fc is the fold change 

of v obtained in the microarray. The source nodes are then reordered according to 

the above formula, which expresses how correlated they are (in terms of frequency 

of reachability) with the most strongly expressed differentially regulated genes. In 

this sense, the expression dependency matrix allows a more biologically relevant 

picture in the context of growth factor signal transduction pathways. 

By examining the dependency matrix, it is possible to obtain information about 

the strength of relationship between our seed nodes. Laminin-alpha 3, which is 

exclusively linked with cell migration,  is known to induce keratinocyte migration, 

playing an important role in re-epithelialization at tissue remodeling [44]. uPAR is 

strongly connected with cell migration; uPAR-knockdown cells also display greatly 

reduced migration and invasion rates, as well as a complete loss of the cells' ability 

to augment their invasiveness following plasminogen supplementation [45]. Met is 
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also found to be significantly associated with proliferation and migration. Met 

controls cell migration and growth in embryogenesis; it also controls growth, 

invasion and metastasis in cancer cells; and activating Met mutations predispose to 

human cancer [46]. Met is known to be essential for wound healing, as its signaling 

not only controls cell growth and migration during embryogenesis but is also 

essential for the generation of the hyper-proliferative epithelium in skin wounds, 

and thus for a fundamental regenerative process [47]. 

 

Pathway analysis of the MCWalk extracted network 

In Figure 6 we present a version of the HGF stimulation network obtained using 

the random walk algorithm. Nodes which are included in the shortest path nave a 

black border, while nodes that are only obtained with the random walk traversal are 

marked in red to highlight the differences in subgraph extraction between of the two 

algorithms. Note that two or more nodes may share the same name. This is so 

because short names are used as labels for the nodes. These correspond to unique 

identifiers which include information about different modifications (e.g. 

phosphorylation information) for every node [31], but short names are shown for 

simplicity in visualizing the network. Many uPAR complex members, such as 

UPAR/PAI-1/Integrin and pro-uPA/uPAR are only available in the random walk 

version of the network. 

The Neural Wiskott Aldrich Syndrome Protein (N-WASP) pathway which 

activates cell migration is also absent in the shortest path version. N-WASP-/- cells 

were found to migrate more rapidly than N-WASP+/+ cells in a scratch migration 

assay, suggesting that N-WASP deficiency leads to reduced adhesion to fibronectin 

and increased cell motility [48]. The NF-kappaB pathway is another important 

omission of the shortest path method. The transcription factor NF-kappaB is 

activated in response to a wide variety of stimuli, including growth factors, and is 

involved in biological responses in part overlapping with those triggered by HGF [30]. 

NF-kappaB is also involved in the Jun-N-terminal kinase and NF-kappaB pathways in 

the repression of the human COL1A2 gene [49]. 

Further examples involve pathways such as the uPA/Plasmin system mediated 

MMP-9 activation. Here, shortest path just discovers the direct connection from uPA 

to endothelial cell migration. It has been shown however, that uPA is involved in 

human bronchial epithelial cells migration, and this action is mediated by the 

generation of plasmin, which in turn activates MMP-9, thus making possible cell 

migration [50]. Moreover, we get a more complete picture of the uPA activation 

from RACO-1, which is a co-activator that links c-Jun to growth factor signaling and is 

essential for AP‑1 function in proliferation [51]. Other signaling pathways involve 
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cadherin clustering regulation, which is a key determinant of strong cell–cell 

adhesion [52]. It has been demonstrated that p120 catenin is required for growth 

factor–dependent cell motility and scattering in epithelial cells [53]. It was further 

suggested that in fibroblasts p120 could affect other cell functions such as 

organization of the actin cytoskeleton and cell motility by virtue of its influence on 

the activity of Rho GTPases [54–56]. 

 

Conclusions 

We have developed a method (MCWalk) based on random walks using Monte 

Carlo computer simulations to connect input to output nodes, associate target genes 

and cellular processes and extract relevant subgraphs that best capture their 

relationship. This method can be used in any network (directed/undirected) and with 

no restrictions on the selection of the source and target nodes. It ranks all the 

intermediate nodes based on their random walk traversal, highlighting key regulator 

nodes in the network, and allows the extraction of subgraphs with respect to that 

score. We have applied this method on an example dataset of HGF stimulation in a 

keratinocyte-fibroblast co-culture [29] to retrieve a global network from NCI 

Pathway Interaction Database. 

We have shown that the random walk score in the studied sample network is 

very weakly correlated with the node degree, contrary to what might be expected. In 

addition, we obtained a dependency matrix based on the frequency of random walk 

traversal between the seed nodes, as more reasonable alternative to standard 

methods, such as the distance matrix. We have also presented an expanded version 

of the network and highlighted important differences with standard shortest path 

methods. This method complements our previously published work [31] consisting 

of fully automated steps to construct case-specific signaling networks, combining 

microarray data and online databases. Therefore, it may provide a more complete 

approach in analyzing large-scale biological networks and retrieval of case-specific 

relevant subgraphs, linking sets of input and output nodes into coherent signaling 

networks with a distinct underlying biological function. 
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Figures 

 

 

Figure 1 - Pipeline describing the steps required to integrate automatically the regulatory knowledge stored in 
the Pathway Interaction Database and the biological observations given a microarray experiment. The networks 
obtained can be read in Cytoscape.  Blue boxes correspond to automatic steps for data filtering and 
preprocessing. The pruned active network is used an input for the Monte Carlo random walk algorithm which 
obtains a family of subnetworks depending on the score threshold T. 
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Figure 2 - Normalized degree distribution P(k) of the PID active network (x and y axes are logarithmic.). Inset: 
Same, but for the pruned active network. k is the total degree of the node (number of links) and P(k) the 
probability distribution of k in the network. Red lines correspond to a power law ( )P k k  , with γ=2.6 for the 

active network and γ=3 for the pruned active network. Thus, the network has a scale-free structure dominated 
with a few highly connected nodes (hubs) and a large number of nodes with very few links. 

 

Figure 3 – Random walk score S vs degree k for 50 random seed nodes. Inset: Same but using the specified seed 
nodes (i.e. HGF receptor c-Met nodes, DE genes and cell states). x and y axes are logarithmic. Lines correspond to 
linear and power law fitting. Correlation between score and degree is very weak, especially for our specific case 
of seed nodes selection (inset), in contrast to popular measures such as betweeness or closeness centrality. 
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Name Degree (k) Score (S) 
uPA 8 0.19515 

alpha6/beta4 Integrin/Laminin[l] 2 0.15539 

HGF/MET 3 0.15017 

alpha6/beta4 Integrin/Laminin[h] 5 0.13081 

HGF(dimer)/MET(dimer){+}[itm] 4 0.125 

Laminin 3 0.12499 

RAC1/GTP{+} 45 0.12386 

cell adhesion 6 0.11178 

E-cadherin/beta catenin/alpha catenin[bpm] 5 0.10971 

alpha catenin[c] 20 0.10932 

E-cadherin(dimer)/Ca2+[cj] 16 0.10505 

E-cadherin/beta catenin/alpha catenin[cj] 5 0.09711 

AP1{+}[n] 10 0.09227 

E-cadherin/Ca2+/beta catenin/alpha catenin[cj] 4 0.08893 

JUN/FOS{+}[n] 4 0.08513 

E-cadherin/Ca2+/gamma catenin/alpha 
catenin/p120 catenin[cj] 

4 0.08457 

uPA/uPAR (dimer){+}[pm] 7 0.08334 

E-cadherin/gamma catenin/alpha catenin[bpm] 3 0.08232 

ARF6/GTP{+}[pm] 22 0.07508 
 
Table 1 – List of top 20 ranked intermediate nodes in the HGF network based on their random walk score S (see 
Figure 6 for corresponding legend in name symbols). 

 

 

Figure 4 – Number of nodes and edges vs random walk threshold T for 50 random seed nodes. Inset: Same but 
using the designated seed nodes (i.e. HGF receptor c-Met nodes, DE genes and cell states). x axis is logarithmic. 
High threshold values include only nodes that are in the shortest path (these nodes are preassigned with a score 
of 1 and thus always present). The relation is close to logarithmic in the range 0.001 < T < 0.1. 
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Figure 5 - Dependency matrix linking the chosen seed nodes. Column (targets) reordering is done based on the 
reachability of each node. Values in each matrix element are corresponding probabilities for a signal to arrive 
from a specific source to a target node. The rows (sources) are then reordered based on how strongly they are 
connected with the most frequently accessed target nodes. Color scale is logarithmic. 



20 
 

 

Figure 6 - Network obtained using the MCWalk algorithm for threshold T = 0.01 using as seed nodes the HGF 

receptor c-Met nodes, DE genes and cell states after 1hr of HGF stimulation. Nodes with black border are 

obtained using Dijkstra’s shortest path algorithms, while nodes with red border are obtainable only with the 

Monte Carlo random walk algorithm. Number of nodes/edges with i) shortest path: 115/155, ii) random walk (T = 

0.01): 231/349. Short names of nodes are shown on the network; two nodes with the same name may have 

different modifications (e.g. phosphorylation) and are represented in the network with a unique identifier. 


