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Why Baryons Are Yang-Mills Magnetic Monopoles
Jay R. Yablon
Schenectady, New York

Abstract: We demonstrate that Yang-Mills Magnetic Monopolasirally
confine their gauge fields, naturally contain thie#ored fermions in a color
singlet, and that mesons also in color singletsthgeonly particles they are
allowed to emit or absorb. SUERCD as it has been extensively studied
and confirmed is understood in broader contexthwid contradiction, to be a
consequence of baryons being Yang-Mills magnetiopmes. Protons and
neutrons are naturally represented in the fundamlengpresentation of this
group. We use the t'Hooft monopole Lagrangian \&itBaussian ansatz for
fermion wavefunctions to demonstrate that theseopales can be made to
interact only at very short range as is requiredriaclear interactions, and
we establish topological stability following symmédireaking from an SU(4)
group using the B-L (baryon minus lepton numbenegator. Finally, the
mass of the electron is accurately predicted basethe masses of the up and
down quarks to about 3% from the experimental nieathe quark masses,
and confinement of quarks occurs energeticallyfardastically strong
negative binding energies that accord very welhvexperimental nuclear
data. All of this makes Yang-Mills magnetic mariep worthy of serious
consideration and further development as baryons.
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Introduction and Summary

The thesis of this paper is simple: magnetic motedensities which
come into existence in a non-Abelian Yang-Mills gautheory of non-
commuting fields are synonymous with baryon deesitiBaryons are Yang-
Mills magnetic monopoles!

We first show how Yang-Mills magnetic monopolesunally confine
their gauge fields for the same formal reasons thate are no magnetic
monopoles in Abelian gauge theories (section 1hek\e replace the gauge
fields of a Yang-Mills magnetic monopole with assted currents via an
inverse relationG, =1,,J° based on Maxwell's classical chromoelectric

charge equations” =g F* and then introduce fermion fields via currents

J¥=yTy*w, we find that these magnetic monopoles naturadlytain three

fermions and associated propagators (sections Zandfter showing some
ways in which these propagators may be expandedidse4), we employ
Fermi-Dirac statistics to require that each of thieee fermions contained in
this magnetic monopole system must possess unigaetym numbers, and
this compelsthe introduction of SU(3) QCD. We thus uncover a natural
system containing three colored quarks which hasptiecise antisymmetric
color WavefunctionF{G, B]+G[BH+B[RG] expected of a baryon, and which
passes through its closed surfaces objects withsyhemetric wavefunction

configuration RR+ GG + BB expected of a meson. Thus, we naturally arrive
at all the required features of QCD including thvaéence quarks and gluons
and quark-anti-quark pairs (mesons). SU@XD as it has been extensively
studied and confirmed is thereby understood in d@pacontext,with no
contradiction to be anatural consequencef baryons being Yang-Mills
magnetic monopoles (section 5).

These magnetic monopoles, however, cannot be statée with the
gauge group SU(3) alone, and will vanish unlessamploys a product group
SU(3)xU(1) with a U(1) generator for which the &#aa non-vanishing. This
leads us to obtain the required SU(3)xU(1) fromamgér group SU(4) via
spontaneous symmetry breaking, to both ensure maaimability and provide
topological stability (section 6). Close considiena of this SU(4) group
reveals that itsi® generator can naturally represent the differerssvéen
baryon number and lepton numbe®-L, and that the SU(3) subgroup
provides a natural fundamental representation fotops and for neutrons
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(section 7) which emerge as distinct entities feilgy symmetry breaking
(section 8).

The t'Hooft [1] and Polyakov [2] model may be usedthout
alteration to specify the dynamics of this magneticnopole system which
includes protons and neutrons. However, rathen thpply anansatz
Gi =£,,%G(r) to thespin 1 gauge fieldso determine radial behaviors, we

apply aGaussian ansatg/(r)= u(p)(7#?) *eW2=S"** as in [3] to thespin %
fermion fields Because Gaussians are well-behaved and eatstyrable, the
monopoles vanish at the boundaries, have finiteutable energies, and are
indeed stable (section 9). Moreover, unlike theviim monopoles which all
exhibit inverse square-law field strengths, monepdbased on the Gaussian
ansatzfrom [3] interactonly at extremely short rangevhich is precisely what
is to be expected and is experimentally observeddoyons such as protons
and neutrons (section 10).

Finally, integrating the energy tensor of these med&ig monopoles
over an entire spatial voluntEx with all gauge field interactions and vacuum
effects turned off (zero perturbation) allows usotmain expressions for the
“uncovered” proton and neutron mass as a functibrthe up and down
“current quark” masses. For experimental validatiwe show how the
observed electron masg.=0.510998928 MeV may be predicted from the
2012 PDG values of the up and down quark masgesy, not only within
experimental errors,but with only a 3% difference from the mean
experimental datavhich itself has a spread about the mean of about for
the down mass and 50% for the up mass. Specificalis predicted that
m, =3(m, - m,)/(277), with the (277! divisor directly emergent from three-
dimensional Gaussian integration (section 11). Tireovered” masses of
the proton and neutron turn out to be more than 8@%aller than the total
mass of the three quarks that they contain. Ehiswderstood as being due to
a fantastically strong binding energy which condirtbe quarks. Moreover,
latent (available) binding energi@sfor the proton and neutron are predicted
to be B, = 7.640679eV and B, =9.812358MeV , which accords well with
empirical per-nucleon binding data for many nuclginally, it is shown how
nuclear binding is intimately related to quark aonement, with extremely
tight empirical data concurrence (section 12).
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1. Yang-Mills Magnetic Monopoles Naturally Confinetheir Gauge Fields
through Spacetime Geometry

First, we demonstrate how Yang-Mills magnetic marep naturally
confine their gauge fields. We use the languageifbérential forms, and
assume the reader has sufficient familiarity withist so no tutorial
explanations are required.

In an Abelian (commuting field) gauge theory sushQED, the field
strength tensoF is specified in relation to the vector potentiauge field
(e.g., photonA according td&==dA. The magnetic monopole source denBity
is then specified classically (for high-acti®fg) = [ d*xe(¢)>>n where the

Euler Lagrange equation may be applied) by thesulak field equation
P=dF=ddA=0. This makes use of the geometric law that tkeermr
derivative of an exterior derivative is zerdg=0. In integral form, this
becomeSmP:JHdF :”jddG:ﬁF =§:fdA:0. All of the foregoing “zeros”

are what tell us that there are no magnetic momspol an Abelian gauge
theory such as QED. This absence of magnetic nweogharges at all
attainable experimental energies is well borneithe 140 years since James
Clerk Maxwell published his 1878 Treatise on Electricity and Magnetism

In a non-Abelian (non-commuting field) Yang-Millsugge theory such
as QCD, the fundamental difference is that thelfegtength tensdf is now
specified in relation to the vector gauge fieldgmtal G (e.g., gluon in QCD)

according toF =dG—iG?. For SU(N), bottF andG are NxN matrices. In
this relationship,G? =[G”,GVde#d>g expresses the non-commuting nature of
the gauge fields and the non-linearity of Yang-Mdlauge theory. Therefore,
althoughddG=0 as always because of the exterior geometry,cthssical
(high-action) magnetic monopole density becomes tien-zero
P=dF = ddG-iG?)=-idG?. For SU(N),P is also an NxN matrix. In
integral form, using Gauss'/ Stokes’ law, this bees:
[[[P=][[dF =[] dldc-ic?)=-i[[[dc? = {fF = ffdc-iffc> =-iffc*. (1.1)
and from the last two terms above, we also dehieecbompanion equation:
ffdc=o0. (1.2)
Of course, (1.2), albeit with the different fieldme, is just the relationship
ﬁdA:o which tells us that there are no magnetic monapate Abelian

gauge theory. But in light of (1.1), which provedeis with a non-zero
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magnetic monopold[[P =-iffG*#0, what can we learn from (1.2), which

is the Yang-Mills analogue to the Abelian “no maftin monopole”
relationshipﬁ dA=07?

If we perform a local transformatiof — F'=F-dG on the field
strengthF, which in expanded form is written &" - F*'=F* -9"G",
then we find from (1.1) as a direct and immediasutt of the Abelian “no
magnetic monopole” relationshﬁdG =0 in (1.2), that:

[llP=fF - ffF =ff(F-dc)=ffF. (1.3)

This means that the flow of the field strengﬁqz :-iﬁGZ across a two

dimensional surface is invariant under the localggalike transformation
F& L F~'=F# -9"G*. We know in QED that invariance under the
similar transformationa” - A“'= A* +9#A\ means the gauge parameferis
not a physical observable. We know in gravitatich@ory that invariance
under g - g”'=g*’ +0"“N\"* likewise means the gauge vectaf is not a
physical observable. In this case, the invariamde ﬁF under the

transformationF* — F*'=F* -9“G* tells us the gauge fiel” is not an
observable over the surface through which the fﬁid = —iﬁGz is flowing.

But G# are simply the gauge fields, which in QCD, aregh®n fields. So,
simply put: the Yang-Mills gauge fields", including gluons in SU(3) are
not observables across any closed surface surmgi@dimagnetic monopole
density P. Whatever goes on inside the volume represen;amp the

gauge fields remain confined.

Taking this a step further, we see that the osigifithis gauge field
confinement rest in the 140-year old mystery awhy there are no magnetic
monopoles in Abelian gauge theory. In differenf@ms, the statement of

this is ddG=0. In integral form, this becomq'§dG =0, equation (1.2). Yet
it is precisely this same “zero” which rend%‘&: - ﬁF' =ﬁ|: invariant under

F“ L F*'=F# -9"G* in (1.3). So the physical observation that theme
no magnetic monopoles in Abelian gauge theory laées into a symmetry
condition in non-Abelian gauge theory that gaugednoflow is not an
observable over the surface of a magnetic chadgain: In Abelian gauge
theory there are no magnetic monopoles. In noni&beheory, this absence
of Abelian magnetic monopoles translates into theemg no flow of gauge
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bosons (e.g., gluons) across any closed surfacgeuswting a Yang-Mills
magnetic monopole. Consequentllige absence of gluon flux, hence color,
across surfaces surrounding non-Abelian chromo-reignmonopoles is
fundamentally equivalent to the absence of magmetioopoles in Abelian
gauge theory.And, because this is turn originatesdd=0, we see thathis
confinement is mandated by the differential forne®ngetry, imposed by
spacetime itself The very same “zero” which in Abelian gauge tlyesays
that there are no magnetic monopoles, in non-Abaj@uge theory says that
there is no observable flux of Yang-Mills gaugddseacross a closed surface
surrounding a Yang-Mills magnetic monopole. Wenadbfind a free gluon in
Yang-Mills gauge theory any more than we find anekdn magnetic
monopole in electrodynamics, for identical geoncateasons.

2. Yang-Mills Magnetic Monopoles Contain Fermion Wavefunctions

While gauge field confinement is a necessary presgg for Yang-
Mills magnetic monopoles to be considered baryoantiidates,” it is not
sufficient. At minimum, we must also show thatsdenonopoles are capable
of naturally containing three fermions in suitalbl@or eigenstates, because
we know that baryons contain three colored quar®s, we now show how
the hypothesis that Yang-Mills magnetic monopoles baryons is fully
consistent with SU(3)QCD as it has been extensively studied and coefirm
replete with three valence quarks and gluons anarkganti-quark pairs
(mesons), and that QCD can in fact be viewed as¢hgconsequencef this
thesis. This will be the central focus of secti@rthrough 5.

For this purpose, we start with the classical éohoelectric” and
“chromomagnetic” Maxwell field equations:

Jv :aﬂFw :aﬂD[”GV] :aﬂD#GV —BﬂDVG” = (g””a[,D" —G”D")Gﬂ (2_1)
P =9°F" +0“F" +9"F* (2.2)
(D* =0* —-iG*) together with the Yang-Mills field strength tenso

F” =9“G’ -0"G* -i|c*,G"|=D*G" -D"G* = D*G". (2.3)

Above, group generatord' are related by the group structure relation
fT =~i|T), 7|, and F* =T'F* andG* =T'G,* areNxN matrices for any
given SU(N) (same fold” and P?). (2.2) and (2.3) respectively are just
expanded restatements of the classical field oelakips P=dF and

F =dG-iG* which we used in (1.1). We do not in general shine
interaction charge strenggh but scale this into the gauge bos@@’ - G*.
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As soon as one substitutes the non-Abelian (238 Maxwell’s
equation (2.2), while the terms basedd®" —3"G* continue to zero out by
identity in the usual way (vidd=0 which as shown in section 1 confines the
gauge fields), one nonetheless arrives at a rdsiduazero magnetic charge:
P =-i(0°|c#,6" |+a%|c",G7|+8v|G7,G*)) L (2.4)

=-ifoecr.6*]+[6*.076 | +[p+cY 67 ]+ |6 04G7 ]+ [orae . 6#] +[c7 0¥ G¥])

This is a longhand version ¢ = —idG? = -2idG used in (1.1). The balance
of this paper will largely be devoted to studyimgstP?* monopole closely.
In sections 2 through 5 we will essentially stutyydymmetry properties and
show how these coincide with QCD. In section @dgh 9 we shall study the
circumstances under which it is topologically stablin sections 10 through
12 we shall study a Gaussiansatzfor fermion wavefunctions which gives
this monopole a short interaction range and yieddsulable mass and binding
energy predictions according with experimental oles#ns.

To begin, we make use of the commutator relatipnstc” = i|k°,c*|
to replace the varioug’G* in (2.4). ExpandingG“k°G" —G*k°G"” appears
throughout, so these terms drop out. Re-consaliglgields:

P =—(|c*,c"| k7 |+|c".c7| k*|+|c?.c#| k")) (2.5)

Now, by way of brief preview, in the t'Hooft modfl] which we shall
review in detail in section 9, thepin 1 gauge fieldare specified as a function
of radial distance using theansatzG,, = #abbe(r). Solutions of Lagrangian

(9.2) infra are then used to finfB(r) and lead to the t'Hooft monopole
solutions. Here, we will instead seek an inversktion G, =1,,J° to

Maxwell's (2.1) to replace ead3” above with aJ# which can then be used
to introduce fermion wavefunctions vi&¢ =y*y . Theansatzwe employ

will then be based on the radial behavior of tregsa %2 fermion fieldsUsing
spin % fermion fields rather than spin 1 gaugedieto introduce an ansatz

about the radial behavior of th&*, is the primary difference between the
monopoles to be developed here, and the t'Hooftopales.

Proceeding usin@’G* = i[k",Gﬂ], inversel , is specified in terms of a
U - o Symmetrized configuration space operator based the
g*’0,D“ -9“D? contained (2.1), with a hand-added Proca mass, by:
1, (-9 (kk, +ilke,G, |- m?)+ k#k? +1i[k*,G])= 6%, . (2.6)
We also use ao v symmetrized |, = Ag,, +Bk,k, +1Cilk,,G,| to

o
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calculatel ,,. In doing so, we keep in mind that t@& is an NxN matrix for

the Yang-Mills gauge group SU(N), so any tit@€ appears in a denominator
we must actually form &ang-Mills matrix inverse So that expressions we
develop have a similar “look” to familiar expresssofrom QED, we use a
“quoted denominator” notation/"M"=M ™ to designate a Yang-Mills matrix

inverse. Thusg® =1/"G", etc. This inverse from (2.6) is calculated to be
k,k, +3ilk,.G, |

n 2 _La _ila n
m k7K, - ik, 6, ] e

~dy *

o "k, -m? +i[k?,G, |"
and can only be formed if we simultaneously imptse covariant gauge
condition, in configuration space:

(0,0, -10,,G, Jo*a° -16%“G* )=0. (2.8)

{o=v}

Note that the often-employe‘tk”,GU] =0’G, =0 is nota gauge condition here;
this is replaced by (2.8).

Now, inverse (2.7) has many interesting propesiagh we shall not
take the time to explore here which would requimesatire separate paper to
do them justice. Special cases of interest incl{ifes,]=0,G6, ~ 0; m=0;
both 3,G, -~ 0andm=0; and on shelk“k, —-m? =0 for m#0, or k?k, =0
for m=0. We will also note that when working towards aawum path
integral formulation,i[k”,GJ]:a”GJ in (2.7) is replaced by a gauge-invariant
perturbation-v =(3°G, +G,97)+G°G,, contracted from a perturbation tensor
-V =(aﬂ(3“ +GVa”)+G”G“. But our interest at the moment is in the low-
perturbation limit, which is specified bik,,G,]=9,G, ~ 0. Thus, using (2.7)
in the inverse relatiow, =1,,37, we “turn off” all the perturbations by setting
ifk,.G,]=0,G6, =0. When we do so, all the inverses (quoted dendis)in
(2.7) become ordinary denominators, and we obtain:

g o
G, =—-——"%_J7. 2.9
Y k%, -m? (29)
We have reduced this using the fact that in monmergpace, current
conservatiory,, J#(x) =0 becomesk,J“(k) =0 (see [4] after 1.5(4)). The above
is just like the expressions we encounter for isgerwith a Proca mass in
QED. It says, not unexpectedly, that in the lowtygbation limit, when we
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set 9,G, -~ 0 (and in a deeper analysis,v* =(9“G" +G'9*)+G*G" - 0)
QCD looks like QED.

The point of developing this inverse, is to be ableise (2.9) in (2.5)
and then deploy fermion wavefunctions vig =ygy*“y. Because (2.5)
contains six different appearances @&,, there are six independent
substitutions of (2.9) into (2.5), and what we mysesume to be six
independent Proca massas To track this, we will use the first six letteok
the Greek alphabetr,3,y,d,6,¢ to carry out the internal index summations

and to label each of these six Proca masses. sihitution yields:

g™,

9”3,

POV = ’ ,ka
Hk L m(ﬂ)z} ]

g”J,

gé'UJE

27 2
| Kk, —m," K%k, —m,

906‘]5 } KX

LKk = My Kk =M’

NZJ
g 4 :|’ KY

(2.10)

Here, we sesix massive vector boson propagateech coupled with
a current vectorld,. We raise the indexes on all the currents andrabhe

g%. We useJ” =T'J*, i=123.N*-1 to explicitly introduce the SU(N)
generators. We factor out the resulting commuﬂ;ziﬂdrTjJ. And finally, we
employ J* :z/_/'l'iy"z// and the like to introduce fermion wavefunctiona/ith

this, and moving all currents into the same nunoerg2.10) becomes:

1 YTy eyt v W

|
|

a 2 2
[[k ky =My K’k —my,

-

1 [//Tiyvl//[//ijU[//}k,,

y _ 2 o _ 2
kky m,, kK M

2

£ _ I'e _ 2
Kk —my~ k7K, =g

1 YTy, y”wj k"_

(2.11)

The above monopole now contains fermion wavefunstion three
additive terms. In the next three sections, wdl steow how these are the

wavefunctions of the three colored quarks of QCD.
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3. Yang-Mills Magnetic Monopoles Contain Three Femions and
Fermion Propagators

Let us first take a close look at the fermion term
Gy Ty wikPk, -m,,?) and the other two like-terms in (2.11). First, we
focus onyT, y*wyT, 'y , and refer to sections 6.2 and 6.14 of [5]. #sihtwo
spacetime indexes, v, had been summed with one another in the form of
YT y*wyT,y,w, then this would represent Moeller scattering. t Because

these ardree spacetime indexes, the Feynman diagram assoaidatedhis
term will be that for Compton scattering. The tlewest-order diagrams for
this, as will be developed in the discussion tdofe) are shown in Figure 1

below. Specifically, the left vertex contains tfator T, and the right
vertex containsT,y”, with the free indexeg, v shown at the end of the
respective boson lines. For the four-momentumhef wavefunctions, we
designatep’ to represent the initial incoming momentum of tightmosty ,
and p'? to represent the final, outgoing momentum of Eh‘ﬁrﬂostzz. Thus,
we rewrite this term ag(p')T, y“wyT, ' ¢ (p) -

-, . y P i v
e BT Yy e g YOIy
pﬁp/}—m: P Pg—m

) S a—— e B S
P =p°+k° Pl =p° =k’
w(p) | w(p) v w(p)
. YL
Z"P““ e T+ m M) Zw'“ﬁ = E+m (p * m)

o (o2 a ’
P p -

s-channel : p7p, = tchannel: p7p, =t P

Figure 1

Appearing in the center of the numerator4g. For Compton

scattering, these two wavefunctions have no intenge vertex and so are
represented by a single fermion line in the midufi¢he diagram. The four-
momentum is eitherp? = p? +k? for the left diagram of Figure 1, or

’o=p°-K? for the right diagram, withk? and k'’ respectively
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representing the four-momentum added to or sulgdaétom the fermion
wavefunctions at thd, ) vertex. In terms of the Mandelstam variables,

PPy =S, While p%sp,, =t, which explains the choice of t labels.
For notational compactness, we shall often makeotise® while keeping in
mind that this may represent either @’y or p’w as defined above.
Because these wavefunctions are directly back ok b the form ofyy
with no intervening vertex* , the momenta of the two wavefunctionsyig

are equalp’(y)= p"(z?/):p", so we may sefy = uu, whereu andu are a

Dirac spinor and its adjoint. For U(1M<Z=uﬁ is a 4kdrac matrix
because each spinor has four components. ButU@K)S it is important to

keep in mind that/¢ =uu  is fax N)x (4x N) matrix.

Next, we sumuwi over all spins states, . uu. Often, this spin sum

spinsu

is written as¥__uu=p+m (see e.g., [5], section 5.5). But there is an

spins

implied covariant (real) normalizatiohl” = E+m in this expression. So to
be fully explicit, this should really be writtenes [5], problem solution 5.9):

_ 2
= + , 31

Zspins uu E +m ('p m) ( )
where p+m is also a(4xN)x(4xN) matrix for SU(N), and where we have
made use ofp = y? p, using the s and t-channgl’ as defined above, with
p° =E. So we use the foregoing including (3.1) in (3.tblobtain
YTV WgTyy Ty winy'y gy S W'y _ N2 gTy (p+mTy e (3.0)

Kk, —my° Kk, —my,° Kk, —my,° E+m Kk, —my,°
for top line term in (2.11), and similarly for tisher two like-terms.

Now, let us take a moment to discuss propagatdrs.general, a
propagator (timesi} is specified byzspmsl(p” P, —mz), where p? andm are
the four-momentum and rest mass of the propagai@mticle. For fermions,
we specifically employ (3.1) including’ as defined above, so that:

Zons _ N?  p+m _ N’ p+rm _ N* 1 _ N? *.(3.3)
a 2 = a 2 = - - ('p_m) ) )
p°p,—mt E+mp’p,-m' E+m(p+m)(p-m) E+mp-m E+m
For N> =E+m, the propagator becomes the familigr-m)™ =1/(p-m).
Of course, having #xN)x(4xN)  (or even a 4x4) matrix suclpasn in a
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denominator is really not a proper mathematicalresgion, but merely a
convenient shorthand to designatenatrix inverse Thus, as we have done
previously, we will use a quoted denominatdtp-nm" to gently remind us
of this. Making use of the earlier definitions pf , (3.3) has two alternative
formulations corresponding to s and t channel @iangrin Figure 1:

s 2 2 2

splns2 — N p+k+m — N 1 - N (p+k—m)_l(34)

s-m’ E+m(p+k)’(p+k),-m* E+m"p+k-nm' E+m

Zspinz - N2 E—k'+m — N? _ 1' = N2 (p—k'—m)'l-(3-5)
t-m* E+m(p-k)7(p-k),-m* E+m"p-K-n" E+m

Now, let us closely contrast (3.2) with (3.4) aBdb]. The final term
in (3.2) contains at its center, the expresgjoam)/(k’k, —m?). This
looks intriguingly like the fermion propagator inet second terms of (3.4) and
(3.5). Howeverm, in (3.2) started out in (2.10) asgauge bosomass in

the denominator of a gauge boson propag@t@r/(kﬁkﬂ—mﬂ)z), with k”

being the associated four-momentum. By contrast, fumerator of (3.2),
with either g, +m=p+k+m or p,, +m= p-K'+m contains dermionmass

m and associated Dirac-daggered four-momentum That is, (3.2) looks to
have “apples” (bosons) in the denominator and “gesi (fermions) in the
numerator. So the question arises: is there sometw mix “apples” and
“oranges” and actually treat (3.2) — and therefive terms in (2.11) — as a
fermion propagator? And if so, what is requiredus to be able to do so?
First, the generalized expression (3.3) does marichinate fermions

from bosons. If thex in the left term of (3.3) operates om, then

spins

o°p,—nt in the denominator produces a fermion propagatiérthe >

spins
operates on an expressigrt &, with boson polarization vectorg’p, -m?
produces a boson propagator. That is, it isZhg, in the numerator of a
propagator such as (3.3) which sets the tone fetlgn the propagator is for a
fermion or a boson. This suggests, becgpsan is in the numerator of (3.2),
and of (2.11) viayy = uu, that the denominatork’k, -m,* in (2.11) and

(3.2) should be associated with fermions, not beson

Second, more fundamentally, it is instructive tmsider spontaneous
symmetry breaking, because that entails a similatngn of apples and
oranges. In weak SU(g) for example, we start with three massless gauge
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bosonsW* W W? each with two degrees of freedom for a subtotalixf
and a complex scalar doublet which contains four scalar degrees of

freedom, for a total of ten degrees of freedomteA§pontaneous symmetry
breaking, three of the scalar degrees of freedanfsavallowed” by the three

gauge bosons via the Goldstone mechanism. Theeghagons become
massive, each with three degrees of freedom foota of nine, and the

remaining scalar degree of freedom goes to the dHigdd. We still end up

with ten degrees of freedom, but they are redisteith from the scalars
(“apples”) to the gauge bosons (“oranges”). In WM(xU(1)Y electroweak

theory, we start with four massless gauge bosotierdahan three, but the
photon remains massless. So twelve degrees dldnedoefore symmetry
breaking (eight from the four massless gauge bosork four from the

complex scalar doublet) remain twelve degrees eédom afterwards (three
massive vector bosons, one massless photon, andigge field).

Equation (2.11), which is what we are working wahthe moment,
started in (2.10) with a total of six Proca (presdmmassive)boson
propagators thus totaling 18 degrees of freedom. So if watvt@ mix apples
and oranges in (3.2) using a Goldstone-like meanarthat shifts degrees of
freedom from one patrticle type to another, we nhestsure to end up with
eighteen degrees of freedom in total once we adoak.

Consequently, let us now introduce the hypothebst teach of

kk; —m*, k°k; —my* andk‘k, —m,,* in the (2.11) denominators are to
be associated with tffermionmasses and momenta in thg, uu 0 p+m of

their respective numerators as shown in (3.2). $Wall validate this
“propagator hypothesis” by showing that it leadsSQ@GD. This means that
(2.11) will now contain three massive fermion prga@rs, and therefore three
fermions, which is highly desirable if we are atpgimg to demonstrate that
the Yang-Mills magnetic monopole is a baryon. Amte a massive fermion
contains four degrees of freedom, (2.11) will noentain a total of twelve
degrees of freedom for the fermions. This leaursot the 18 degrees of
freedom for the three remaining vector bosons grapmas, and so means that
these bosons must drop down to two degrees of dreedpiece and thus
become massless, i.e., that we must now set thretaPmasses to zero,
My .M,,, M, =0. Now, the 18 degrees of freedom that initiallyobged
three apiece to six massive vector bosons have ieeistributed: 12 of these

now belong to the 3 fermions, and only 6 belongh® 3 remaining bosons.
That this hypothesis leads to the requirement tiatgauge bosons remain
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massless, is one of several results we shall seowedthat are fully consistent
with QCD and indeed are required by QCD.
Specifically, using (3.2) in (2.11) and the s arahannel diagrams in

Figure 1, we promotek”? — pf = pf +k? and k” - p’un =pf -k’ to
the momentum of the associated fermion, and silyifar the other terms in
(2.11). Thus, at thé&;y” vertex of the s-channel Figure 1, we are takirgg th

original incoming gauge boson momentufi and adding it to the incoming
fermion momentump” to arrive atp” +k”. And, at theT, ) vertex of the
t-channel Figure 1, we are taking the original mawy gauge boson
momentum k” | associating it with the outgoing momentum by isgtt
k? - —k'#, and then adding this to the incoming fermion reatam p” to
obtain p? -k'?. The final fermion momentum, in either diagram,then
p'? =pf+k? -K'* =p”+qg?. We then generally label all objects associated
with these three fermions with eithgrd or ¢, while settingm,,,m,,,m,, =0

to balance the degrees of freedom, and we shownified and final fermion
momenta. With all of this, (2.11) now becomes:

[[ : Ng)® ‘Z(ﬁ)(p’ﬂ)TiV”(/P(ﬁ) +m(ﬂ))TJ'yVl//(ﬁ)(pﬂ)] k”}

k7K, Eg) + My PP oy —my’

paw :—[Ti TJ'] + [ 1 Nw)z (,Z(J)(p;)'l'iy"(p(g) +m(5))ij“l//(5)(pg)J K (3.6)
(KK, By +my, PP =My’
+ [ 1 N’ I/I(Z)(pli)-riyﬂ(p(i)+m5))TJyVI//(Z)(pZ)J KY
Kk Ey +m, PEPr =My

The Higgs / Goldstone mechanism has long been krtowenable massless
gauge bosons to become massive by swallowing degredreedom from
scalars. Here, fermions become massive by swallpwegrees of freedom
from massive bosons, which then revert to masslessns. This turns out to
be perfect for QCD, which is known to require masslgluons and which is
expected to have massive quarks.

Looking closely at (3.6), we now also see a pathckmosing
normalizations forN which simultaneously: 1) are covariant; 2) rettie

original mass dimensionality of +3 fouu; and 3) greatly simplify (3.6).
Specifically, we now choose the covariant, mass dimension-preserving
normalizations:
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Nes) = (E(m +m(ﬁ))k”’ka; Ne' = (Ew) + n1(5))kyky; N’ = (Em +mm)k£k£. (3.7)
Using these in (3.6), and re-labeling - 1.6 - 2;¢ - 3, yields the further
simplified expression:

(1/1(1)1_}/ (lp(l) My )T Vul//(l)J
PP ps—my’
PJ;IV:_[Ti,TJ] + [‘/’(aTV (p(2)+m(2))T VW’(Z)J ] . (3.8)
| P°ps - m(2)
+ [w(a)TV (,p(3)+m(3))T VW’(B)J
PP —my’

By virtue of (3.7)_epriC|tIy preserving the massénsionality, (3.8) retains a
mass dimension +3 which one expects for a sourceerudensity p

corresponding with the second derivatives of a gqumentialG* with mass
dimension +1. We also removed the initial and Ifila and p' which

appeared in (3.6), which are now regarded to bdicithm (3.8). The above
should be contrasted with [6.103] and [6.104] ih [5

Now we return to the commutatoh‘,TjJ. This operates to

antisymmetrically commute the verticéE s )(Tj 4 ) and so visibly restores
the antisymmetric character of the spacetime insletkess:

fr 7] (’p+m)T ry wy“‘(wm) vy el (3.9)
P’ p, P’ p, "p-m'
where in the final term, we havieflnedthe shorthand operator
=PIy (3.10)
p+m

This operator allows us to write consolidated egpiens with " p-ni'
fermion propagator denominators and clearly displdye spacetime
symmetries, while at the same time providing a ghadtder to restore the full
propagator. The “quasi-commutatciy’”u y”] says that one inserts (3.10) into
(3.9) at the location designated byand then commuteg” and ) with one
another in antisymmetric combination about e m in the numerator.

Using the compact notation of (3.9) (which we simadmentarily re-
expand), we now write (3.8) as:
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P = — [w(l) [yﬂD yv]w(l) } ke |+ [w(Z) [yﬂD yv]w(Z) }k/f + [‘//(3) [y oy ]w(3)J . (311)
Py~ My P ~My" P~ Mg

This explicitly highlights the antisymmetric commatibn [G”,G"J of free
indexesu, v with which everything started back in (2.5), ancere further
back, in the underlying field densiti#F* =0“G” —a”G“—iG“,G”] of (2.3)
which is the heart of non-commuting Yang-Mills @letheory. This also
illustrates the “clean” compactness provided bysqnammutator[y”u |7 ]

All that now remains in (3.11) is the final commotawith momentum
terms such a&’. Going back to the earlier-employ@tc* = i[k”,G”J which
tells us that commuting a spacetime field with is just a clever way to take
its derivatives, we can similarly writ®’M* = [M ‘”,k”J for a second rank
tensor fieldM*(x” ) So, if we also use (3.11) ttefinea second rank Dirac

“quasi-covariant’-2ig*" = [y”u % J , we may finally consolidate (3.11) to:
paw — —2[60 Y oo™ Yy +oH Y0 Yo +d" a0 Yy _ (3.12)
Py ~My" P~ My Py My

This is our final expression for a Yang-Mills matimenonopoleP*” . We
shall now explore its symmetries and other propsrith a variety of ways.

4. Yang-Mills Magnetic Monopoles Contain Spin 0, hnd 2 Mesons

Let us first evaluate the compact expression if)(8xplicitly, so we
can see what is contained in each of the termshén monopole (3.12).

Separating the terms witp = p,y“ andm yields:

w[y o /p+m) v _ pawy[”y" y”l// mt//[y Y% ]t// 4.1)
p-ni P’ oy P’ oy P’ oy

The second separated term contains the ordinamderank Dirac covariants
2" =[y" ,y“J. But the former term contains a third rank foriomtof
Dirac matricesy**y” y*!, summed over the index with p,. So, we expand
the numerator in this term to write:

PV VW = PV VO v+ VY W+ p gy v+ oy iy (4.2)
Then, we evaluate each of the six independent coeme for
(v = 010102122331. The terms where either tlreor v index is equal to
the middlea index drop out because of they antisymmetry. Applying the
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Dirac relationy® =iy°'y?y? in various combinations to the remaining terms,
then usingg,, =7, in geodesic (flat spacetime tangential) coordimdte
lower indexes, the result can be covariantly-sunmedrvia the Levi-Civita

tensor (in a basis whe®,,,=+/—0) as:

‘Zy[ﬂlpy”l/j :2i8W"ﬂ,0[alZVmV51//- (4.3)
Therefore, the explicit evaluation of (4.1), usitige earlier-defined second
rank Dirac “quasi-covariant’-2g*" =[y"uyv J and (3.10) and also the
ordinary covariant-2ig* =|y*,y*|, is:

porry _iglyorly e erm)yy | mgoty _e”wd ey vy | (a.4)
"p-m' 2 "p-m' 2 pfp,-m’ pPpy—m? PP py—m?

This expression contains both a second rank antismic tensoryo* 'y,

and a first rankaxial vector ¢y”'y°w . This is the first of many instances
where we shall discover that Yang-Mill magnetic mpoles inherently
contain certain chiral asymmetries that introdug&laobjects which may
account for the chiral asymmetries and the manwleadibjects observed in
strong interaction hadron phenomenologihis sort of non-chiral result will
provide one very strong basis upon which to expemiadly validate the thesis
that baryons are Yang-Mills magnetic monopoles.

Let us now go one step further, and use the Godkmomposition
(see, e.g., [6] at 343-345) :
1 — 1 — ' v, 9 s _va
wy'y 2ml//[(p +p) +5 (P plio }w (4.5)
where g is the gyromagnetic g-factor, with an axial wavefion
Y - vy =y,, to further decompose (4.4) into:
l/la.ﬂm"‘// - m zlza-/lv‘//
p-nt plpymm (4.6)

T ) S W " os(p' = p)s 0"
2m  pfp,-m’ 2m2  pfp,-m’

with q=p —p as previously defined. This illustrates a) whyl(B is
desirable for compactness and b) how when fullyaexed, this compact
notation reveals not only the second rank (spina@jlisymmetric tensor

o'y and first rank (spin 1) axial vectgr/’ )’y of (4.4), but also a second
rank (spin 2) axial tensagpio” y°y (in the form of an axial magnetic moment

Gio
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term summed withg,) and a zero-rank (spin 0) pseudoscalgfy . Most

importantly, the magnetic monopole of (3.12) isltoiit of the term expanded
in (4.4) and (4.6), and so contains all of thgz@ §, 1 and 2 “vector” and
“axial” objects.  This will be very important to derstanding the
phenomenology of the observed strong interactiosom® and in the next
section, we shall show how these terms are indieati the types mesons
which mediate nuclear interactions.

5. Fermi-Dirac Exclusion Requires Using SU(3)Quantum
Chromodynamics for Yang-Mills Magnetic Monopoles, Yelding the
Correct Baryon and Meson Color Wavefunctions

The Yang-Mills magnetic monopol®? (3.12), when contracted to
the differential three-form used in section 1, nbnre= P*Vdx,dx,dx,, iS an

NxN matrix for SU(N). We have not yet chosen atipatar Yang-Mills
gauge group to associate with (3.12), and in ppieciare free to use
P =T'P™ with f*T =~i[T!,T*| generators and structure constants for
whatever gauge group we wish to explore. But,A8does contain exactly
three fermion wavefunctiongy, , ¢, and ¢, and their associated

propagators, so one is certainly motivateccaonsiderthe Yang-Mills gauge
group SU(3). But is there anything that migéguire us to apply SU(3) via
purely deductive logic?

The answer is yes: The Fermi-Dirac Exclusion Rpiec(with which
Pauli’'s name is also often associated) requiresritbawo fermions within a
given system may simultaneously occupy the samatqoastate. So if we

regard P#" in (3.12) as a “system” containing three fermioavefunctions
and associated propagators, thennuegstutilize a gauge group that enables
each of these three fermions to be distinguish&gde one another with
unique quantum numbers, similarly to how every tetecwithin a given atom
must possess a unique set of quantum numbeyrsn, s generally associated
with energy, orbital angular momentum and spin.e hhatural gauge group to
achieve this exclusion, of course, is SU(3) (or 3KJ(1) as we shall
momentarily discuss).

In fact, this is where QCD usually start$f we understand baryons as
containing three fermions which are quarks, andkmew that Fermi-Dirac
exclusion mandates these three quarks not simolishe occupy the same
guantum state, then we must introduce SU(3) orreamvathereof to enforce
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exclusion. So we call the quarks Red, Green, Bhia matter of convention,
set up an SU(3) Dirac Lagrangian for these quarkppse gauge symmetry,
and arrive at SU(3)QCD.

In the present developmenie discover that Yang-Mills magnetic
monopoles naturally contain three fermions, we Isirlyi require exclusion
and so introduce SU(g)and we thereby arrive at exactly the same S4J(3)
QCD theory, with no contradiction, simply from &felient starting point

Accordingly, we now take the step of imposing quamtexclusion
upon the three fermions in (3.12) by formally imlucing the gauge group
SU(3) with generatorsT' = ;i = 1.8 normalized tor (¥ =1, and assigning
these three fermions to one of three color eigéesta, G, B, with associated
guantum eigenvalues, as follows:

0

0 Y

These fermions are now specified in precisely thmes way as the three
coloredquarksof QCD with SU(3}. Similarly, referring back to sections 1
and 2, the eight associated gauge bosons now be@fmeiG”. And

because of (2.2), all of the non-linear gluon iattions of QCD will be
present here too. Further, earlier, between (8r8) (3.6), we determined
these gauge bosonsustbe massless for the quarks to acquire their egdect
non-zero mass. So these now have all the required characteristics to lee th
eight bi-colored, masslegguonsof QCD. The thesis that baryons are Yang-
Mills magnetic monopoles does not contradict QCamy way! Moreover,
when combined with the Exclusion Principle, thissis actually mandates
QCD! But as shown in section 1, there is a bonusimdpproach to QCD:
the confinement of gauge fields is built into thedry from the start, whereas
in many instances it is imposed by separate, adrhechanisms, see for
example, the MIT bag model in, e.g., [7] section T&is emergence of QCD
also validates the “propagator hypothesis” whicHieayielded (3.6) from
(2.11). Now, let's use (5.1) in the*" of (3.12).

In the section 3, the spin sum (3.1) played araéntle. From (5.1),
let us form the three spin sum operands:

Yoy 0 0 0 0 O 00 O
Yoo=| O 0 0 Ypyy=|0 Yoo O Yu¥y=(0 0 O (5.2)
° 00 0 0 o 0 0 Yo,

N=

0
o 2| == =%>=[we}"’<3) | =i =
0
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We see very explicitly that each of these is a 8a®r matrix in which the
non-zero elements are 4x4 Dirac matriggg (and the zeros are all 4x4
zeros). If we then start with (3.12) and backtrabkough section 3 by

applying o* :‘—Z[y”my”J; (3.9); (3.7); (38.1) andyy =uu, and if we then

substitute (5.2) into the backtracked result, wg wtatain (withz ;. - = for
notational compactness):
L oo Yl 20 o) W 0 0
K7k, pRppRp - Mg - - . (53)
pallV =—j 0 yiau wey{vfwewsyalwe 0
k ky Ps Pos ~ Mg - -
a 1
0 0 I S X I Al 2

2

kk, pBZpB( —My
Then, forward tracking again through section 3,reeapply spin sums
and normalizations, and arrive back at:

aU LI{/RO-IJDV[//T 0 0
Pr — Mg _
Payv - _2 0 a/-l wGJVDU l//G O . (54)
IIPG — mGII B
0 0 av l)[/Bo-UD” l//B
n pB — mBlI

The difference between (5.4) and (3.12) is thatrwive explicitly use the
colored wavefunctionsi, ¢, 5 rather thany ., ¢, and ¢, the

character ofP*" as a 3x3 color matrix is made explicit. And, istep that
will have great topological significance, extragtitme trace, we write:

P Hov o Voo o ogH

TrPa’/IV =_2(aa'l'l'[/Ra- l/II:\" +a/1 lf/Go- l//f +al/‘)'['/Ba- [/IEJ (55)
Pr — Mg Ps —Mg Ps — Mg

The above is identical to (3.12), but for the fdwt when we wish for the

colored wavefunctions to appear explicitly in lieliy ,, , ¢, andg, in an

analogous form, we are required to employ the temggtion.

Now, we have pointed out at the start of thisisacthat developing
Yang-Mills magnetic monopoles and then applyingl@sion yields the basic
required elements of QCD such as three colors afkgand eight bi-colored
massless gluons, plus the added bonus of a gaelgecbnfinement naturally
built in from the start. But there is more: Fjrkdt us associate each color

wavefunction with the spacetime index in the reladé operator in (5.5), i.e.,
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oc~R, u~G andv~B. Keeping in mind thaTrP*" is antisymmetric in all
spacetime indexes, we express this antisymmetrig witgdge products as
oCulCv~RLCGLCB . So the natural antisymmetry of the magnetic

monopole P*" leads straight to the required antisymmetric carglet
wavefunction RG, B]+G[B,R|+ RG] for a baryon (see [5] equation [2.70],
and compare the top line terar|c#,G"|+d#|c",G"|+d"|[c?,G#| of (2.4)).
That is, (5.5) has what is known to be the requisgdisymmetric color
wavefunction for a baryon!Indeed, one can argue that the antisymmetric
indexes inP?" should have been a tip-off that magnetic monopulesld
make good baryons.

Next, as was again noted just above, we showe(l.B) that the

invariance ofﬁ F under a gauge-like transformati®” _ F*'=F* -gl"G*

means that no gauge bosas$ (now gluonsG* = A'G*) are allowed to flow

across a closed surface surrounding a Yang-Millgmatic monopole. So for
SU(3), the gluons are confined. So far, so good. Bat bnly tells us what
cannot flow. To find out whatan flow, we return tomp = ﬁ;: = _iﬁez from

(1.1). Becauser =P?dx,dx,dx,, let us multiply both sides of (5.5) by the
anticommuting volume elemerdx,dx, dx,, form matching trace equations,

take the triple integral, then apply Gauss’ / Stokaw to the right hand side
and rename spacetime indexes. What we get is:

__ 2 _ Yo" Yo Yoo Yo wBU”wB (5.6)
[[[Tre=ffTrF =-iffTrc zﬂ( o T et de dx, -

The Gaussian integration has removed Meoperators from (5.5),
and what remains by inspection in (5.6) is the swtnim color singlet
wavefunction RR+GG+BB. This is precisely the symmetric color
combination required for a mesonBut look at the context in which this
meson wavefunction is revealed: if the integrand (}6) is in fact
representative of mesons, then (5.6) taken togetiitbr section 1 makes a
very clear statement: Mesons, not gluons, are whttlow across any closed
surface surrounding a Yang-Mills magnetic monopaBut one can say the
exact same thing about what flows in and out olbas! And, the observed
phenomenology of strong interactions makes vergrcieat baryons in fact
emit and absorb mesons, and not individual quanksgloons (see [8]
especially 14.2 and [9] for a full exposition of peximentally-observed
mesons and their spin classifications as scalapxs, tensors, etc. and axial
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variants). So this revelation of meson flow acriessurface of a Yang-Mills
magnetic monopole further supports the thesis blaayons are Yang-Mills
magnetic monopoles, not only theoreticalbyt based on experimentally-
observed phenomenolagy(5.6) says that Yang-Mills magnetic monopoles
interact by emitting and absorbing mesons!

Importantly, however, the usual approaches to Q@Dhat provide a
compelling deductive rationale for why mesons aatigiuons are allowed to
flow in and out of baryons, that is, they do nobypde a natural deductive
explanation for confinement and meson-based inierac Often, confinement
and meson flow are simply introduced through adechanisms, again, see
[7] section 18. Starting with Yang-Mills magnetiwonopoles, this is fully
explained on a deductive foundation, and so QCDstiengthened and
supplemented, again, without contradiction.

Now, let's go a few steps step further: (5.6)stels that mesons, with

RR+QG+BB color structure, flow in and out of Yang-Mills maagic
monopoles. But what types of mesons? From (4d)(4.6) which expand
the terms in (5.6), we see that the mesons whast dire: second rank (spin 2)

antisymmetric  tensor o’y ~ mesons, which are designated
phenomenologically as*2first rank (spin 1) axial vectoql_Jy/”fz/J mesons
designated as"1second rank (spin 2) axial tenggro”’y° mesons 2and

most importantly, zero-rank (spin 0) pseudoscalgy mesons designated 0

which include the varioust and K mesons and remaining generational
mesons which dominate nuclear interactions and lwhuokawa originally
predicated in 1935 to be carrier particles of ttiergy nuclear force. This is
amply demonstrated to be experimentally true, sgaina the extensive
evidence at [8], [9]. In fact, the only mesons nave not yet come across

when combining (4.4) and (4.6) with (5.6) are thin® scalanyy®y mesons

0+ and the spin 1 vectayy’y mesons 1 But these two will also make an

appearance, as follows:
Designate axial wavefunctions vja=iy°"%?/” asy, = yy, , where a

“vector” (V) wavefunctiony,, is defined as a wavefunction for which the
related current density* =y, y*y, transforms as a Lorentz four-vector in

spacetime. Based on combining the relationgiipiy®%*"/*/® with duality

based on the work of Reinich [10] later elaboradbydWheeler [11] which
uses the Levi-Civita formalism (see [12] at pagés38), it turns out that there
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is a whole system of “chiral duality” that is artagral, albeit (apparently)
heretofore undeveloped feature of the Dirac algeldfar example, given a

duality relationship* A" =1&*°A, , one may write y®=iy%"?/~ in the
alternative formg*” =i* g*y®. Then, one may formy, o*"y, =i*w,c"y, by
sandwiching between V wavefunctions.

Further, it is also well known because the secam#t duality operator

*x = -1 , that one can form continuous global rotationagig® = cosd + *sing
(this is not to exclude local duality, which is@lsf interest). For example:
@VU”WIV - COSQ[ZV U”va +i Sin@JVU”WIA. (57)
[,ZVO'WI//A - iSiI’lHl,TIVO'”Vl//V +COSQ@VUWU/A

Similar transformations may be developed for firgtird and zeroth / fourth
rank duality, with the result that tensors mix watkial tensors, vectors with
axial vectors, and scalars with pseudoscalars.inSbe end, we expect that
the Yang-Mills magnetic monopoles will allow all dfe spin 6, 1" and 2
“vector” and “axial” mesons to pass through theselb surfaces (5.6). And
y* =iy%**y* can also be used to rewrite a spitvector” meson as a spinsi-
“axial” meson and a spig“axial” meson as a spin g¢vector” meson. So3
and 4 mesons will be permitted to flow as well. Furthisere is nothing to

prevent composite mesons suchaggg. And, wheny® =iy%"Y?/2 is applied
to (3.10) as part of a Gordon decomposition (readgomposition) of a vector
current, it turns out that baryon and meson phyisiemdemically, organically
non-chiral which is consistent with what is experimentalhserved, all with
v =iy%Yy?/ being the mainspring. Duality angté comes to be associated

with the strength of the running strong coupling, and this in turn bears

well-studied relationships, [13], [14] to experint@mMmomentum transfe).

So, while we shall leave the development of thigat duality to a
separate paper, we simply note for now that fulyedoping the chiral duality
of Dirac’s equation and applying this to (4.6) tmsay be one way to
experimentally confirm the thesis that Baryons &m@ng-Mills magnetic
monopoles: simply probe nucleons at varying ensrgtudy the chiral / spin
s* characteristics of the meson debris that emerges those probes, and
correlate those chiral properties to the probegiasithat were applied.
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6. Yang-Mills Magnetic Monopoles Require the Topalgically-Stable
Gauge Group SU(3}xU(1)

Now, let us examine the topological stability dfetYang Mills
magnetic monopole baryons, by looking at sevendhén aspects of (5.4) and

(5.5). First, using the eight generatotsof SU(3): let us write the left hand
side of (5.5) aP* = AP*". The off diagonal entries in (5.4) are manifestly
zero, and as already discussed after (5.5), thidsléo baryons and mesons
respectively havingrRG,B|+G[B,R]+B[R,G] and RR+ GG+ BBcolor singlet
wavefunctions, as required by QCD. This means fibvathe left and right
hand sides of (5.4) to match up while having thesguired wavefunction
color symmetries, all six of th®™" which sum with off-diagonal generators
must be zero, i.ep # =0. Therefore:

12,456,7

ouv
| 2-2R, 0 0
P = j RO’/JV — 0 _ZL\/E, F%U/IV +%F)30'/1V 0 ) (61)
0 0 _2_\1/§F%ayv _%%ayv

(Again, rr(¥ f =1.) However, because the assumed gauge group gntipée
gauge group SU(3)with all tracelessgenerators, the trace of (6.1) is also
zero, TrP* =0. This contradicts (5.5), which has a non-zerodrand leads
us directly to an examination of topology.

In order for P = ¥P*" above to acquire a non-zero trace, we can no
longer use SU(3)alone, butmustcross SU(3) with a U(1) gauge group for
which the generator has a non-zero trace. Inquéati, the U(1) generator
will need to be a 3x3 unit matrix,,, times some constant number. We

designate this U(1) generator ds’, which we take for now to be a 3x3
remnant of theT™ generator of a simple gauge grogu(N =4). If we

normalize this torr(#°f =1, then 4 =+ 1,,- This should be reminiscent of

electroweak theory in which a U{l)generator is crossed with the three
SU(2)y isospin generators' to form SU(2)xU(1)y with the (left-chiral)
quarks having the U(%)2x2 matrix generatory =31,,,, the (left-chiral)
leptons having the 2x2 matrix generat®¥r=-11,,,, and anon-compact
embedding of the electromagnetic group with chaygeeratorQ=Y/2+13
across SU(2)xU(1)y. Once we employ SU(@¥U(1), rather than SU(3)



-26-

alone, we can now ensure tHatP*” = -2 B, on the left hand side of (5.5)

will be non-vanishing to match its non-vanishinghti hand side, and that
(5.6) will then describe a non-zero flow acrossclosed monopole surface of
objects with the color symmetry\RR+ GG + BB of a meson. Specifically,
with SU(3xxU(1) andi = 1.8 andl5, we write (5.4) as:

| LR,™ + L 2R 0 0
Po/xv =/]|Plaz4v = 0 ﬁplsauv _2%/5 Pgapv +%P30/JV 0
0 0 LP. - LR™ -1 ].(6.2)
g7 Y= Yr 0 0
Pr — Mg -
=2 0 gn e Ve 0
P —Mg -
0 0 ov Y7 Vs
" Ps —Mg"

The non-vanishing trace equation (5.5) then becomes

TP = 2 R = ‘2("” Voo Vn yqu¥eT Ve 500" Ve J 6.3)
\/6 Pr — Mg Pe —Mg Pe —Mg

So the left and right hand sides are both non-zmrothis is only achieved by

using SU(33xU(1) rather than SU(3)alone. We see that with (6.1) alone,

that is, with the simple gauge group SU(8jone, the term on the right would

become zero.This U(1) factor, which prevents the right handesicbf (6.2)

and (6.3) from vanishing, is very important to pdiwg topological stability.

In section 7, we will examine the possible phylsiteeaning of the
guantum numbers associated with this new U(1) fadBut first, we point out
the very vital benefit flowing from (6.3%his U(1) factor, by making (6.3)
non-zero, is what allows us to ensure that theseg¥dills magnetic
monopole baryons are topologically stabl€his is vital, because even though
Yang-Mills magnetic monopoles with Fermi-Dirac axgibn lead us to all of
the symmetries of QCD and baryons, to wit: gaugéd fconfinement, three
colored fermions, aR(G,B]+G[B,R|+B[RG| baryon wavefunction, mesons

with RR+ GG + BB wavefunctions, and spin 0, 1 and 2 “vector” angig

mesons but no gluons flowing across the baryonasarfwe still cannot
identify the Yang-Mills magnetic monopole with thghysical, observed
baryons, for example, proton and neutrons, untihaee established that this
magnetic monopole is a topologically stable withité spatial expanse and
finite total energy, and with the correct sefflaor quantum numbers (most
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importantly, electric charge and baryon number) clvhcharacterize the
observed physical baryons. SW8Y(1) does just that!

Specifically, as is pointed out by Cheng and Lb][&t 472-473:
“Topological considerations lead to the generalltethat stable monopole
solutions occur for any gauge theories in whickiraple gauge grous is
broken down to a smaller grotgh = h x U(1) containing an explicit U(1)
factor.” Further, “the stable grand unified monlgpo. . is expected to have
both the ‘ordinary’ and the colour magnetic chargeso, while SU(3} alone
is incapable of supporting a topologically stabddooed magnetic monopole,
the group SU(3)CxU(1) — when understood to be ésedual group following
symmetry breaking of a larger simple grand unifigdhuge group
G O SU(3)CxU(1) — will support topologically stable configurationdndeed,
in this context, the thesis of this paper is ttie stable “colour magnetic
charges” referred to by Cheng and Li are baryons

Weinberg makes a similar point in his definitiveatise [16] at 442:

“The Georgi-Glashow model [which was the basis for
t'Hooft's monopole model in [1] discussed at lengthsection

9 below] was ruled out as a theory of weak and

electromagnetic interactions by the discovery ofutrad

currents, but magnetic monopoles are expected toiroit

other theories, where a simply connected gaugepgf®us

spontaneously broken not to U(1), but to some sumr

H’'xU(1), whereH’ is simply connected. . . . There are no

monopoles produced in the spontaneous breakinigeojauge

groupSWU2)xU(1) of the standard electroweak theory, which is

not simply connected. . . . But we do find mon&golvhen the

simply connected gauge gro@of theories of unified strong

and electroweak interactions, suchSag4)xSU4) or SU5) or

Spin10, is spontaneously broken to the gauge group

SU3)xSW(2)xU(1) of the standard model. . . .”

Consequently, the thesis that Yang-Mills magnetionapoles are
baryons, together with the exclusion principle agpliad in (5.1), not only
leads us to SU(3) of QCD with no contradiction and delivers color
confinement and the flow of mesons across monogpatace. Via the non-
zero and non-trivial right hand side of (6.3), tthesis additionally forces us
to employ the non-simple gauge group SUXR)(1) with a U(1) factor to
ensure that the monopoles are non-vanishing. Nigtaoes this, in turn, lay
the foundation for a topologically stable monopalshieved by embedding
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this group in some (presently unspecified) simpleroug

G =SU(N = 4) 0SU(3), xU(1), but the right side of (6.3) will itself be the
expression from which we may calculate a finiteybarrest mass, as we shall
later see in section 11, based on a Gaussiaatzborrowed from [3].

So, what we learn from (6.1) and (6.2) is thedwihg: First, we must
start from a simple GUT gauge grogu(N > 4) because all the generators of
this group are traceless and therefore the gawgettbased on these groups
will be renormalizable, as will be in hidden formany smaller group
H O SU(N = 4) theory which emerges frorsU(N > 4) following symmetry

breaking. It is through the traceles®)(N = 4) generators that we ensure
renormalizability. But the traceless matrices : (N > 4) will cause the

monopole trace terms of such a theory to be Z&m®7" =0. Therefore, such

a theory with a simple gauge group will itself wihve no stable monopoles.
The only way tosimultaneouslyhave renormalizability and have stable
monopoles, as the above excerpts from [15], [16%titate, is to start with a
simpleG and break this down to a smaller grddig= h x U(1). And, once we
break symmetry and end up withSU(N >4) - SU(3). xU(1), we
simultaneously have two benefits: First, tg(3). xU(1) theory will inherit
the renormalizability of SUIN>4) as a hidden symmetry. Second, the
monopoles ofSU(3).xU(1) will become non-zero as in (6.3), and the U(1)

factor emerging from breaking symmetry will makee thmonopoles
topologically stable. So the tracelessness of) (Baked on S(3) contrasted
with the non-zero-non-trivial trace of (6.2) and3)6based orgsU(3). xU(1), is

a concrete illustration of the topological theorémat magnetic monopoles
only exist in a theory witld = h x U(1) that is broken from a largé.

This is what directly yields the monopole stabildf/the topological
theorems as discussed above, and as we shalhgegs what will provide us
with the ability to calculate finite monopole restasses, for example, the
proton and neutron “current” rest masses, and taimbhe electron rest mass
from the up and down quark masses well within expental errors and only
about 3% from the experimental means for quark essand to obtain
binding energies clearly in accord with measureclear phenomenology.
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7. Protons and Neutrons Naturally Fit FundamentalSU(3)xU(1)s..
Representations of Yang-Mills Magnetic Monopoles

Now let wus take a closer look at the groups
G =SU(N =4) 0SU(3). xU(1) which we came upon in section 6 and which

will undergird the topological stability for the Wg-Mills magnetic monopole.
Volovok, in [17] Section 12.2.2, employs an SU(4pup in which the
normalizeddiag( 15):2735(3,— 1-1-1) is associated with the difference between

baryon number and lepton number,B-L. Specifically,
L—Bzszdiag()llS)z(l—%,—%,—%) provides a very natural fundamental

representation for fermion eigenstates of one lepaod three (colored)
quarks. The Volovok model then goes on to usempeagenstates, but we
shall not do so here. Instead, we shall show Hsvsame approach, with the
A generator of SU(4) being proportional B>-L, may be used to directly
represent protons and electrons on the one handpeutrons and neutrinos
on the other, in relation to the Yang-Mills magonatonopoles that we have
developed this far.

Following [17], and using the simple gauge group(4, let us
normalize viaTr(/liz):% the two A** and 4° generators, and define a third
embedded electric charge generatpe B—L—%AB:—%(\EABMS) sitting
across these, as such:

-1000 00 0 O —1000(71)
0 X 00 02 0 O 0 -1 0 o \!:
B-L=-/e4%= s S L , Q=B-L-2A4= :
e 0 0% of ¥ 00 -0 Q E 0 0 20
0 001 00 0 -1 0 0 0 3%

In the fundamental representation we may then Bpeeissociated

eigenvectors with th#avor quantum numbers:
e 0 0

(7.2)

=|B=4L=00=9)

o
o o

0 0
0 5‘3:0;|_=];Q:-1> R 5‘3:%;|_=0;Q=-%> 0 5‘5:%;|_:0;Q:%>

0
0

o

0
These quantum numbers are chiral symmetric, hey, are the same for both
left and right handed states. Moreover, thesetbxfttthe expected baryon,
lepton, and electric charge quantum numbers for féteion quadruplet
ed,Us,Ug . In contrast to many approaches which attempiaoe all three

0

c

B

colors of the same flavor of quark in the same iplelt, that is,u,,u;,u; or
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dg,ds,d;, the assignments (7.1) and (7.2) put one dowmkcogether with

two up quarks in the fundamental representationis & exactly what we find
in a proton! Moreover, because the election tagrettith these three quarks
is the other member of this quadruplet, this regmétion yields a quadruplet
for which all the generators remain traceless, Wwias discussed previously,
yields a renormalizable gauge theory. Furthes tBhormalizability will be
preserved during symmetry breaking to separateskbetron from the three
guarks comprising the proton. And the zero trdab®Q generator in (7.1) is
what makes the combination of a proton plus andtele, specifically a &
hydrogen atom, electrically neutral.

Because the color triplet in the SU(3) subgroup mix of flavor and
color dg,ug,u; and not a pure mono-flavored color tripRRG,B, specifically

becausel andd also have aveak isospinelation between them, we shall refer
to (7.2) as the “proton representation” of the $gim-modified color group”
C’, designatedsU@@)... With (7.1) and (7.2), we now associate ®ig(3) .

subgroup which we have hitherto argued is a baryothn perhaps the most
important baryon of all, namely, the proton. Thebroken SU(4) group
contains a proton and an electron. So we shalkerthm the SU(4)“protium”
group because it contains the precise same cosrstitas M hydrogen, which
is the most abundant chemical substance in theri@ateniverse. At the
presumably very high GUT energies where this griswmbroken, the quarks
may of course transform into electrons and vicsaerBut because SUMiB
a simple gauge group with all traceless matrides,nhagnetic monopoles of
this simple group itself will be topologically uasie, with TrP*” =0, recall
the discussion in section 6.

When symmetry breaking, we will wish to choose Higgs sector
such that this group breaks down \8&J(4), — SUQR) . XU @, , Where the

U(1)s.. factor now represents the baryon minus lepton muingenerator
diag(B—L)z(— 11 i). Then, referring to (6.2) and (6.3), and using th

3'3'3

SU@) subgroup for the three quarks, we see thet™” =|B=1Q=1).

Specifically:  TrP*” now represents a topologically stable magnetic
monopole containing two up quarks and one down kguarth color
symmetry R[G,B]+G[B,R]+B[R G|, with its gauge fields confined, with

mesons RR+GG + BB allowed to pass through the surface to mediate its
interactions, with baryon numbes =+1 and electric charg® = +1, and it

most naturally pairs with the electron with=1 and g =-1 from which it
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becomes broken at high energy wheb(4), - SUQ) xU@,,. This is

thus perfectly situated to represent an actual maygroton. Because this
group isSUR) .« xU (1);_, , the non-zero trace of the U(1) “remnant” genearato

diagB) =(2,,4) is what prevents the term on the right hand sid&.8) from
being zeroed by the term on the left, and becadishi® U(1) factor, the
topological theorems tell us that this Yang-Millagmetic monopole proton is
a stable field configuration, as it must be to espnt the physical proton.
Finally, as we shall soon see by borrowing a Gamsansatzfrom [3],

TrP* =|B=1,Q=1) is the term from which one can calculate show ieitfyl

that this magnetic monopole baryon proton hasitefinalculable energy!
Neutrons are developed in a somewhat similar nratmeprotons.

Here, we note tha%x]s in (7.1) has the required eigenvalues to reprebent
electric charges of the three quarks in a neufprs a neutrino, and that the
B-L= —sz/lls of (7.1) will also properly characterize the baryand lepton

numbers of these fermions. So for neutrons antfines, in contrast to (7.1),
we use:

-1 000 00 O O

0 00 02 0 O
B_LE_ §/]15: 3 EL/]BZ 3 (7.3)

05 0 010 Q=% 00-1 0

0 00! 00 0 -1
and then may specify the associated eigenvectdhstihe indicated quantum
numbers:
v 0 0 0 (7 4)
Ols|B=0L=1Q=0) |"|s[B=1:L=00Q=2) | |=|B=tL=0Q=-1) |’ ||B=1L=0Q=-} o
o|FB=0L=2Q=0) | ~ =[B=1L=0Q=%) dg =[B=1:L=0Q=-}) 0 =[B=1;L=0Q=-})
0 0 0 dg

Here, the electric charge generat@rslo not sit irregularly embedded across
A® and A as they do for the proton. Instead, Qere directly, regularly
embedded into’ alone. Here, the quadrupletug,d.,d, contains a
neutrino, together with one up quark and two dowarks. This specifies a
neutron and a neutrino, and so we shall referiwah the SU(4) “neutrium”
group. This too has a traceless (neutral sum)gehgenerator. Here, a
“neutron representation” of the “isospin-modifiealar group”C’ contains a
neutron triplet of quarksi,,d;,d;, and we shall designate this 88(3),. -

When SU(4y is broken down to SU(R)*xU(1)s.., the SU(3) magnetic
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monopole containing three quarks now hasP*’ =|B=1,Q=0) Wwith
wavefunction typer[G, B]+G[B,R]+ §R,G], and thus represents a neutron.

8. Protons and Neutrons and Electrons and NeutrirdEmerge from
Spontaneous Symmetry Breaking of a Simple SU) Group Down to
SUBkxU(1)sL

Exactly how do we break these SU(4) symmetriesfie Georgi-
Glashow SU(5) model [18] provides a good templatelet’s briefly review

that first. This model has 5x5-1=24 generafdts One specifies a set of 24
real Higgs scalarsg;i =1... 24n the adjoint representation of SU(5), and

from those, the 5x5 vacuum matri® =T'g. Because the diagonal

generatorsA**, A, 2, * can be combined to formny 5x5 tracelessmatrix
that one wishes, one uses these to form a hyp@ehaenerator
diagY /2) = (-4,-1,-1 1 ,1), which is Y/2=-J0T2 56715 _5GT8 jth

the Tr(T‘Z):% normalization. Then, using the regularly-embeddederator
diag(1®) = (000,4,-1), one also irregularly embeds the electric charge
Q=Y/2+1%, which leads to diagQ)=Y/2+1%=(-%,-1-110). The right-
chiral quintuplet (ds,ds,dg,€,~V.), then matches up perfectly with these

Q.Y, 12 to form the fundamental SU(5) representation.

Symmetry breaking is specified using the generatorsuch that
diag(®) = diag(T'@ ) = veyr (2,-3,-3,1,1), where vy, is a vacuum
expectation value at which the symmetry breakiskps$ place. The rest
follows. Given the irregular embedding/2=-JoT2 56115 _53T8 one

must now set@, :—@vGUT, As = —%VGUT and @ = —%vGUT with the

remaining ¢ = Q to obtain diagd®)=vy,(-1,-1-111). As a
consequence,@,” + @, +@’ =3V?eur =CA’cur, where C*=% is the
Clebsch-Gordon coefficient. If we then irregularmbed the usual
A',i =1...80f SU(3) into the 3x3 matrix in the upper left of SU(5)ftrm

A"', and assign the',i= 128f weak SU(2), to the regularly embedded
2x2 matrix in the lower right, we find that the wvaen commutes such that
|0, "|=0i=1..8, and |®,1'|=0,i= 123, i.e., that the vacuum remains
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invariant under both SU(8)and SU(2), local gauge transformations” ¢

ande'' . Additionally, the Y generator used to break sfgpnmetry of course

commutes with itself,[CD,Y]:O, and so also leaves the vacuum invariant

under €Y U(l)y transformations. This is how we arrive at
SURBXxSU(2)wxU(1)y following symmetry breaking, as it is these three
subgroups which commute with the vacudm=T'g. The further embedded

Q=Y/2+1° then leaves the ability to engage in a second leveymmetry
breaking, using an SU(2) Higgs doublet in fthbedamentakepresentation of
SU(2) at another vev~246 GeV which happens to be the Fermi vacuum.
From this, one obtains the electromagnetic intevact

An important feature of all of this, of course,tieat by virtue of the
topological theorems discussed earlier, the produmip following SU(5)>
SURBXxSU2)wxU(1)y symmetry breaking will contain t'Hooft-Polyakov
monopoles, by virtue of SU(5) being a simple gaggmup. And, of course,
we are ensured that the broken theory will retha renormalizability of the
unbroken theory.

With Georgi-Glashow SU(5) [18] as a backdrop, we mow ready to
break the symmetry of the protium and neutrium pgsouvia
SU@), - SUQ) XU @, and SU@), - SUR)*xU@,, . As reviewed
above, in Georgi and Glashow, symmetry is brokemgusypercharge
generator diagY /2) = (-4,-1,-1,2,1).  Here, we wil instead use the
generatorB-L of both (7.1) and (7.3), wittdiagB-L)=(-1,2,), to
break the symmetry of both the protium and neutrgroups. In the former
case, this will separate the electron from thegrpand in the latter, this will
separate the neutrino from the neutron. In SW{, broke symmetry by
requiring (defining) thatdiag(®) = diadT' @) = veyr (-4,-3,-1,3,1). Here,
in contrast, we require that:
diag®) = diadT'®) = Veur (- 13,3 ,3) = vgurdiag(B-L). (8.1)

BecauseB - L E—\/g/i15 is regularly embedded in botBu(4), and

su(4), , the symmetry breaking is somewhat easier th&uU(b). We merely
set @, = —/2Ve,; and the remainingg = @ obtaindiad®) = vg,,(-12,4,3).
By inspection,qqs2 :%VZGUT, yielding a Clebsch Gordon coefficient” = 2.
Because [d),/} iJ=0,i =1..8, the vacuum is invariant under the SW(3)
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subgroup which forSU(4), contains the proton tripled,,u;,u;, and which
for SU(4), contains the neutron triplet,,d;,d;. Additionally, of course,
[®,B-L]=0 is self-commuting, which yields the (1), , subgroup for both
the proton and neutron quark triplets. For pregmmposes, where stable
magnetic monopoles are of primary interest, tha that we now have
developed a non-simple gauge groqu(d). xU @), out of the simple
gauge groups SU(@)and SU(4y for both protons and neutrons which we
denote in consolidated form as SW4) tells us that these colore8U(3)..

magnetic monopoles will be topologically stableeatg. Further, with.=0
for the fermions in the SU@B). representation, U@),, - U@),-

Topologically speaking, referring again to Weinber§l6] at 442, the
homotopy groups associated with this symmetry bnegre:
7,(SU(@) oy ISU@)e XU @), )= 1, (SUB)c xU @))

. (8.2)
= (SUE ) MU W,)=mU 0e)=2
The final terms, 73,(SUQ). )x (U @),)=mU @,)=2Z, tell us that the
topologically-stable magnetic monopoles are formetof the SU(3)... triplet
of Fermions each witlB=1/3 from U (});, and so these stabl8U(3).

monopoles havB=1. The baryons are now stable magnetic monopoles!
Returning to (6.2) and (6.3) where this topologidelcussion began,

following symmetry breaking the leptons separatenfthe quarks andP™"
is formed only from the unbroken SU¢3subset of quarks, for whidb=0.

Thus, after symmetry breaking,P*” = -BR,*” with c=,/2. So the trace
equation corresponding to (6.3) is then developewch fthe SU(3). subgroup,
using the U(1) generatatiagB)=(%,2,2) for which TrB =1. Taking the trace
of each side of CP* =-BR,”™ thus yields CTrP* =-P.*", which
combined with (6.3) then yields:
o Hov P Voo o OpH
CTrP™ =-B,™ = —zc(a”f{’Ra Ve (gu¥ed s 50 ¥e0 wa- (8.3)
Pr — Mg Pe —Mg Ps —Mg
Contrasting (6.3) with (8.3), we see tHatP*" :%Pls"”“ in (6.3) is

replaced above byrrP* =-p,* /C where the Clebsch-Gordo@ = ,/¢,

that is, we see that the coefficient B is different. In the (6.3) where the
U(1) group was tacked on to SU(3), this coefficiemterged from establishing
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is now replaced simply by -@/ which is a remnant fronsU(4) ., following

symmetry breaking.

It is the presence of this Clebsch-Gordon coefficie (8.3) which
now incorporates the symmetry breaking which moved from
SU@), - SUQ) e XU, and SU@), - SUQ) XU, .. Referring to
(8.2), P* in (8.3) is now the topologically-stable magnetiwnopole
75(SUQP) )*x (U @),)=7(U@),)=2 that we obtain following symmetry
breaking, andthe very presence of this coefficient C, ratherntha
normalization constant from a the tacked-on U(1l)xettion 6, tells us that
this is a stable monopole that emerged followingregtry breaking from a
larger gauge group In other words, if a monopole has a Clebsch-Go@
next to it as in (8.3), that signals that the maneps topologically stable,
because it emerged following symmetry breaking feolarger group.

For the stable proton monopole 8U(3).., the “red” quark will be

associated with the down quark, see (7.2), andgreen” and “blue” quarks
with the two up quarks, as a chosen conventionw&aow write (8.3) as:

m HoV s Voo i IoH
CTIP™p = P, = —zc(a” Vo0 Yar 4 gu¥us i | oo VT "/’“f]- (8.4)

normalized tore{y=*)=1, henceTr*=2. In (8.3), this coefficient

Pir ~ Myr Puic ~M" Pie ~ Mg
This expression, we associate directly with a mafsproton and its duu
constituents. For the stable neutron monopole sti(3),., see (7.4), we

similarly write:

" HoV " Voo " InH
CTrP™ = _PlsozzvN — —ZC(aJ lf/uRU wuf +9H l»f’dsa wdf +9Y l)‘[‘/dBa de] ) (8.5)
Pur — Mg Pic ~Mys Pis — Myg
This is now regarded as a physical neutron, witd adnstituents.

9. Using a Gaussia\nsatz for Fermion Wavefunctions, the t'Hooft
Monopole Model Fully Specifies the Dynamical Propdres of Yang-Mills
Magnetic Monopole Baryons

For the most part, the discussion thus far hasmgted to show that
Yang-Mills magnetic monopoles have all of the neeeg symmetry
characteristics to be regarded as baryons, anectioss 6 through 9, to show
they have the topological stability based on symynétreaking, and the
correct baryon and electric charge quantum numbefsyther be regarded as
protons and neutrons. Now, we will want to exploosv these objects behave



-36-

in spacetime, because to pass the test of beimgtanpor a neutron, these
magnetic monopoles will have to be different frame tmagnetic monopoles
with which we are familiar in two very importantichindeed, distinguishing
features: First, they will have to interact onlysiort range, because that is
what baryons do. They musebt possess the inverse square field strength
which characterizes other known monopoles. Sectimely will have to
possess masses on the order of 1 GeV. In contrestknown magnetic
monopoles are extremely massive. In GUT theohes imass is set by the
scale of symmetry breaking, which can bé°XBeV or more, and even in the
t'Hooft model, they are on the order of thg7xm,,, which is over 10 TeV.
So our monopoles here will have to obtain their seasin a very different
way, with a much smaller mass scale.

In order to explore the radial behavior of the §aills magnetic
monopole baryons, as well as their expected magsesl, now be helpful to
carefully contrast the monopole developed herd) tiat laid out in t'Hooft's
original paper [1]. It will be helpful in this sion for the reader to have
available the original t'Hooft paper, which can bé&und at
www.phys.uu.nl/~thooft/gthpub/magnetic_monopolek.pdVhere there are
differences in notation, these will be noted in dmicussion below.

For each ofSU(4), and SU(4),, , we start with 15 Higgs scalar fields

@;i =1...15. As in SU(5) reviewed above, we then form the #s¢uum
matrix in theadjoint SU(4) representation (t'Hooft us€g ):
®=T%;a=1..15. (9.2)

We have already used this expression in (8.1) aalborsymmetry via the
B-L generator of SU(4). We next specify a Lagranglansity in exactly

the same way as in the t'Hooft model [1], namekidbft usesG;,):

a 14 2
©=-1F2FM 1D @D'¢ ~1 1Pp e - A0 ). (9.2)
This specifies physical dynamimenticalto t'Hooft’s [2.1]. The gauge fields
are related to the Yang-Mills field strength tensaccording to (2.3),
reproduced below with explicit internal symmetrydéixes viaG* =T'G*,
F/=T'F" and f*T = —i[TJ',TkJ (tHooft usesW,"):
F.* =0*G,” -0"G," + f,, G*G*. (9.3)
Finally, the gauge-covariant derivative of the Higgcuum field is:
D% =08+ fuGof. (94)
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The potentiaV (p) = -1 1/°p° —%/\((paz)z in (9.2) minimizes at:

ov(@)og =-1ia -1+Aas Ja =0. (9.5)
This allows us to define a symmetry-breaking veergg v according to
(tHooft usesF 2 :(Qa>2 =1v?):
—2UP 1A = @f =2Trd? =1v2, (9.6)
So up to this juncture, we fully follow the t'Hoafhodel [1], aside from the
fact that we employ the gauge groufdJ(4), and SU(4), developed in
section 7, while t'Hooft uses the SO(3) model ofoe and Glashow [19].
But from here, we shall diverge onto a differentpa

In the t'Hooft model, the next step — which welshat employ here —
is to hypothesize the form of an explicit radialusion to the foregoing, in
which both fieldsG; and ¢ in (9.2) are written as functions of the space

coordinates x, and r?=xx*, using the ansatz G2=¢,,xG(r) and
¢ =x.¢(r), see [2.8] in [1]. Boundary conditions are theyposed ar — o,
(9.2) is solved, and three important results ataiobd: First, it is shown that
there is a radiamagneticfield strength that falls off via an inverse squar

relation 1/r?, [2.21] in [1]. This is clearly indicative of a agnetic
monopole, but this would not work for a baryon whinteracts only at short
range. Second, the total flux over a closed seria shown to satisfy the
Schwinger and in certain cases Dirac Quantizationditions eg=1 and

eg=+n, wheree andg are the electric and magnetic charges respectively

with the strength of this inverse square law gibgng/r*. This is now not

only a monopole, but a Schwinger / Dirac monopole.

Finally, keeping in mind that the canonical enenggmentum tensor
for a given fieldg is given by:

0L
T# =0"¢ -g"e, (9.7)
0(0,9)

and requiringL to be stationary under small variationsqii(‘r) and G(r), SO
that T# =-g*' ¢, thusT® =-¢ for g% =1, the total energy of the system
(92) is p°=E=|[[T®d*x=~[[[ed’x=~L. This expressionE = -L
([2.10] in [1]) then gives the mass of the magnetmnopole, which is found

to be on the order of the large wewebtained in (9.6), which mass scale would
not be suitable for a baryon.
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Following t'Hooft, we shall also use the energy &tpn:
E=-L (9.8)
to obtain the monopole mass, but as we shall seasing a differenansatz
for G;, we will not only be able to uncover a short rangeeiaction, but will

also be able to obtain a much smaller mag®r the moment, as regards the
monopole mass, it is worth noting that the vev mssale for the t'Hooft
monopole enters through the parameterizations.itj [(§ [1]. Particularly, as
regards the pure Yang-Mills gauge field sector ltg tagrangian density,
Lame="%F5F/ , given F=1v as noted earlier, the mass scale appears

gauge 4" w'a
through the parameterizations=W/F? and x=eFr. The remaining
energy in the system based gn=-1 DﬂqoaD“q/f—%,uZ%q/f—%/]( a¢f)2, which
involves the Higgs vacuum¢®, appears through the additional
parameterizationsq=Q/F% and g=A/e=M3i/M}. The term with
D, D*¢# mixes both parameterizations, and as we shalugssm section 11,

also generates the vector boson masses.
While the energies based on vacuum terms wittwill be determined

by the (very large) symmetry breaking vev, the npmie energies developed
from the pure gauge field sectey,, =-1F;F/ may in fact be decoupled

auge MY a

from the vev, and shown by different means to bammiveV to GeV order of
magnitude. So, let us now examine what is diffeldyout the monopoles
being developed here in relation to the t'Hooft mpoles, and lay the
foundation for these monopoles to a) have shogegaand b) have MeV to
GeV-order energies.

In the discussion to follow, we shall also introdwanansatzabout the
behavior of the gauge fields# =T'G* as a function of radial distance, but

shall do so in a different way. The first steptlos ansatzis already to be
found in (2.10), where as discussed following (2r&)her than go straight to a
condition such as t'Hooft'sG? = ¢, xG(r), we instead employed (2.9) in
(2.5), wherein (2.9) is the inverse, =1,J° of the classical Maxwell's
charge equationy” =9 ,F* =9 ,D*G" of (2.1) taken at zero perturbation
0,G, - 0. That is, at the point in development where t'Hoases
G? = £,.,%,06(r), we instead use? =1,,J* based on Maxwell's) =9 ,F*,

for zero perturbation, and then ugé :El'ﬁy“z// in (2.11) to introduce fermion
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wavefunctions. When we then follow this to the efdhe trail in sections 2
through 5 including applying Fermi-Dirac exclusiahthe start of section 5,
we end up with a magnetic monopole (5.5) which amstthree colored quark
wavefunctions and has all of the color symmetriggeeted in QCD, plus
confined gauge fields, plus mediation of interatsidoy mesons.One may
therefore think of (5.5) as being what emerges wie® combines both of
Maxwell’'s classical electric and magnetic chargauaipns (2.1), (2.2) in a
non-commuting (Yang-Mills) gauge theory (2.3) amehtapplies Fermi-Dirac
exclusion to Dirac wavefunctions that may be intreet via the currents
Y =yyy.

Now, in place of thensatzG: =¢, xG(r) used by t'Hooft, and given
that (5.5) which later became (8.3) contains teahthe form a”(zfxca#uvwc)

which contain Dirac wavefunctionsC(= R,G,B for shorthand), we shall

instead borrow from equation [14] of Ohanian’s [Znd will employ
Gaussian wavefunctiongith radial behavior specified by a Gaussiasatz

wlr)=u(pr) s ex{—l(r _r")zj’ (9.9)

A
where & (presently unspecified) has dimensions of lengths (xo,yo,zo)

designates the space coordinate of the centerqgdedhk Gaussiarr,is a radial
coordinate distance from,, and u(p) is a four-component Dirac spinor.

(Becausey represents a fermion, it makes sense to consithat wccurs

when z =i/ mc is the reduced Compton wavelength of the assatfatenion,
which will be further explored in section 11.) Thg, t'Hooft's ansatz
introduces radial behaviors through the spin 1 aregauge fields via

Gi(r)=£,.xG(r). Theansatz(9.9), in contrast, introduces radial behaviors

through the spin % fermion fields in (8.3) via (9.@nd in particular,

hypothesizes that these fermion fields behave ligdia spacetime as
Gaussians. One may, if one wishes, employ somer atisatzthan that of

(9.9) if desired, but (9.9) seems to be a very na@tcourse to explore, and
provides a way to do definitive exploratory caltidas of energies and
interactions based on the monopole (8.3).

The key distinguishing point of the present apphoiaicrelation to the
t'Hooft monopole is thist’'Hooft introduces radial behaviors at the gauge
field level. Here, we introduce radial behaviorsthe fermion field level.
Any sensible fermion fieldansatzmay be used with the present model, and
indeed, it will be up to experimental observatiorvalidate the corre@nsatz
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But, theansatzin the present model must be introduced via tiheifens, not
via the gauge bosonsThis is the central difference between this apphoac
and the t'Hooft model.

Based on ouansatzchoice (9.9), we easily show vid =uy® that:
2 2
Wy= ngixaex{— ron) ;Z") ]u*u - ﬂgixaexr{——(r ;Z‘)) Jﬁy(’u =gyy=3°  (9.10)
is a probability density which Lorentz transfornssthe time component of a
current four-vector. The Gaussian itself will thexperience Lorentz
contractions01/+/1-v*/c® at relativistic energies. By inspection, at the
boundary, ¢/(r — ©)=0 and ¢'y(r -~ ©)=0. When integrated over the

entiretyof a three-dimensional space at a given time, frorto +o over d°x,
this Gaussian of course integrates to unity:

e R o

TR
Consequently, combining (9.10) and (9.11):

”Il,l/Tl,l/dSX = UTUJ‘”# exp{— (r;—gc’)zdeX =u'u=upu. (9.12)

A primary reason to choose (9.9), is that #msatzguarantees finite,
well-behaved results both at - «, and when integrating out to infinity.
That is, (9.9)nherentlycomes packaged with precisely the types of boyndar
conditions and finite integrability that will resuln finite, stable, well,
behaved solutions. It should also be noted basedhe mathematics of

Gaussians that the variance (square standard ibeyiat® =1i. With the

ansatz (9.9), we will need to re-normalize so that it is dimensionless,
because the +3 mass dimensionyofy on the left hand side of (9.10) is
balanced on the right-hand side Hy#®, leaving u'u dimensionless.

Earlier, in (3.7), we normalized such thatu carried the +3 mass dimension,
so we will soon need to change this. But the odrite doing so will be our
examination of the magnetic monopole baryon mass&gctions 11 and 12,
and the normalization will be driven by empiricalal.
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10. Yang-Mills Magnetic Monopoles with a Gaussiansatz Interact
only at Very Short Range as is Required for Nucleamteractions

There are many beneficial consequences to usir) (@ place of
G: = £,,%G(r) to specify how the monopoles behave as a funaiforadial

distance. First, of course, Gaussians are weldbath, finite, stable functions
when integrated over an infinite spatial volumeirag9.12). Second, and
related to this, the boundary conditions rat- o are implicitly imposed:
because (9.9) is a Gaussian, we know it — «)=0. This means that the
field strength tensoF*" based on these Gaussian will also be well behaved.
To see this explicitly, we first extract the intagd from (5.6) (ignoring for
the moment the terms*“G" -9"G* from (2.3) which can also be included
when we extract the integrand becadde0, butd#0, see (11.1) infra where
we shall do this):

o MV e HoV o Hov

TrF* =~ l"{/Ra wff +l{/GJ wf +"le0 wf : (10.1)
Pr Mg Ps —Mg Pz —Mg

Then, we make use of (9.9) or (9.10) in (10.1) tev

ex{— (r - rOR)zj 1 uro™ ug
el )RS Pem MR
_ 2 727
TrE® (r) g, ex{— (I' rOZG) J ;1 .l.JGa- UGII , (102)
7{’6 HQKGS IpG - n‘b
f | e
Ry R Sl 11

where rys,r, Iz designate the space coordinates of the centrabskm
peaks for each of the R, G, B quarks. Clearly, la¢ tboundary,
TrF“(r  )=0. Similarly, using (9.10), the radial derivative@'y is:

2
Q)= ,{ =) j , (10.3)
and this also approaches zerorat. . Because a typical term in the
magnetic monopole density (5.5) or (8.3) is of them 0%y o* . with
colors C = R,G.B, (10.3) implies that that in space coordinaiés: (r,6,4),
the radial component:
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a QZCU”DV‘//C :ilzca”ﬂ”wc — _2I‘ —lo eX;{_ (I‘ _ro)zJ aCU#DVUC _ (10.4)
"Pomm"Or tpo-mt Rt )" pe—m”

The underlying mathematical functiorexd-r?/x?) becomes zero at — o,

thus, via (5.5) or (8.3), so too will the monopdknsity TrP?" (r - o) = Q
This type of good boundary behavior and finiteegrability are good

characteristics to have for stability. But justcasnpelling is that the inherent

concentration of the Gaussian wavefunctions aboemtral peaks at

fo = (xo, yo,zo), together with a rapid decline in intensity justesv standard

deviations way from the center, result in the tgpeshort range rot inverse
square— interaction that definitely needs to subsisté are going to be able
to associate these Yang-Mills magnetic monopoles physical baryons like
the proton and the neutron. Indeed, even if oneweuse a differeransatz
than (9.9), so long as one selects well-behavediéer wavefunctions which
are concentrated near a central peak and taperdoat infinity, one will also
have well-behaved magnetic monopoles which intesabt over short range
and not via inverse square. Let us now examirgentiare closely.

First, we write the surface integral of (10.2)iag5.6), over a given
surface atr = R, as:

(r-re)) 1 urc*uy
exg - 2 3. gn "
9 mhy Pr™Mk

_ 2 o Hv
TIF = _zﬁ +ex;{— (r=re) ] 31 IlIJGU u‘f' dx,,dXx, . (10.5)
r=R r=R ﬂ5x63 Ps — Mg

+ex[{_ (r _ros)zj 1 usd*’u,
7757&83 s —Mg"
Now, we need to be careful, because due to thedizan)ghis isnot an inverse
square field strength. For an inverse square,fieldoes not matter whether
the charges are centered within the surface, silluaear the edge of the
surface, or arbitrarily distributed in between. rN#pes the shape of the
surface matter. The total flux across the suriaiebe the same no matter

what, precisely because the surface afgad47R®> runs reciprocally to the
inverse square relationshig R, so that the magnetic field fluﬁrl_:R: gis

independendbf R no matter what the configuration or location of gurface
about the charges. So, in evaluating (10.5), whichsnot use an inverse
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square relation, let us simplify by stipulating tthlae surface is apherical
surface of radiu®Rk which is also situated such that the thrge are at the
center of the sphereFurther, because (10.5) contains three quaiks) of

which will be centered at very close albeit differeoordinatesry,rys, g
we stipulate thaR is sufficiently large so that any physical separabetween
respective quarks may be neglected and we maydegah of these quarks to
be centered at the same central coordinate locagiorFurther, let us choose
our coordinates such thaf = . (All of these are simplifying stipulations, and

if one wanted to do so, one could discard themsamgly make careful use of
unit vectorsi = /r to further develop (10.5) as a three-body systmmthat
is not necessary for the preliminary calculatiorsshall do here.

With r, = 0, in polar coordinates” = (t,r,8, @), and using the surface
integral 47R* = ﬁr:er sin® @&y, for each term from (10.5) we write:

r2) 1 uco®u 8R? R? Yuco®u.  (10.6
-2 exp——; |— Odx, = SeXg —— Uco 7l . (10.6)
ﬁﬂ[ { %JJﬂ%c @;nsz % 00k == {:KJ}Jk—mJ

Based on these stipulations and (10.6), and adiiagfurther simplifying
stipulations thal =X =A; =Z;, M=my=m; =m, and p= p; = ps = Ps

this means that (10.5), using (3.10) an@l o** = [y DV’J evaluates to:
24R2 R 3u 12R2 R? uy[z(,p+ m)y3]
TIF = = WV =, (10.7)
I J RN XF{ J p*—m?
That is, g’ is the total flux of magnetlc monopole charge thiditbe observed

to flow across the closed surfaceraR, and it is indeed dependent on the
radius R of the closed surface (as well as the surfacewtipo about the
charges). Figure 2 below, illustrates this totak fin (10.7) for x =1, hence

o? =1, as a function of the spherical surface radus
This is a magnetic-type flux because it is speditiy g'(R) :j':fTrF .

g=

But it obviously is of a very different charact&ah the usual =§:fF for a

monopole with an inverse square law, such as theoft monopole. For this
more familiar monopoleg is a constant, independent of, Rnd would be
represented by a constant, horizontal line at thghtg if drawn on Figure 2.
But for the monopole of Figure 2, the total magnéhix g'(R)=ﬁTrF IS

clearly dependent oR, as it must be if this monopole is to represeaiyon,
such as a proton or neutron, which interacts onleey short range.
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Figure 2

In Figure 2, coefficienA merely determines themplitude(height) of
the curve. With a standard deviati@n:% the flux in Figure 2 peaks at

R=1=+/20 and falls off rapidly thereafter. In general, aes:ea:%x

(see after (9.12)), we see that by abdat=3% from the center, the total
magnetic flux is virtually non-existent! So: (1§.Which is drawn in Figure
2, demonstrates clearly that while the magnetic apole we have been
developing here is indeed a magnetic monopole Ilsecds flux over closed
surfaces is specified bg'(R)zﬁTrF, this monopole does not produce an

inverse-square field. Rather, it produces a fielt falls off very sharply just
a few standard deviations from its center. Sucbrtshange fields are
hallmarks of nuclear interactions, and further dgua¥Yang-Mills magnetic
monopoles for serious consideration as baryons.

So, to summarize: we have appliedaasatzto the fermions rather
than to the gauge bosons to specify the radial\behaf these Yang-Mills
magnetic monopoles. Using a Gaussiaratz(for which one may wish to
substitute some othansatzso long as it is applied to the fermions and het t
gauge bosons), we have demonstrated (using sonpéfging stipulations
which can be lifted by more carefully using unittas =r/r to specify the
fields of this three-body system) that these Yantisihagnetic monopoles
do interact only at very short range, as do rdaJsjzal baryons such as
protons and neutrons. In the next section, wd shalv that this short range
is on the order of 2 Fermi, as it is expected térbe empirical data.
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But, as discussed at the start of Section 9,alss necessary for the
masses and energies associated with these monopdiesn the MeV and
GeV range, because that too is observed in thegaiygorld. The energy
physics of these monopoles will now be the focuSextions 11 and 12.

11. The Electron Mass is Predicted from Up and DowQuark Masses to
about 3% from the Experimental Mean

We begin our examination of the energies assatiaith the magnetic
monopoles with (8.3), which we rewrite usiag :lzlyﬂuy"J. We then take

the Gaussian surface integrﬁTrF =mTrP as in (5.6) and extract the

integrand.  Finally, referring back to (2.3), weinteoduce the terms
0#G" —0"G* which are removed from the monopole &@&=0, but do not zero
out for the field strengtk=dA, and which we left out of (10.1). Thus:

i v _i[wR[y“uy“]wR A2 +ws[y”uy“]w3], (11.1)

" P mMR" "Pe —Mg” " Pps —Mg”
This is another way of expressing (10.1) in ligh{z3), and may be thought
of as a way of rewriting the fundamental Yang-Milfield relation
F* =0“G" —6”G”—i[G”,G”J in (2.3) to capture much of our development so
far. (Note: The above is quadratic & and so can be used to dmact
calculations with the Gaussians employed in pattegmals, see, e.g.,
Appendix A of [4].)

Now, back in (2.7), we derived the inverse for thassical Maxwell
field equation J”=9,F* of (2.1). But just prior to (2.9), we made the
simplifying choice to develop the magnetic monopaléhe low-perturbation
limit by settingd, G, — 0, which we noted was more generally equivalent with
setting a gauge invariant perturbation vectar” =(6“GV +G”6")+G”G” - 0.
Thus, all of our results thus far display the betlwef Yang-Mills magnetic
monopoles for low, indeed, zero perturbation. \WWetioiue to examineero
perturbation so consistently with the development thus far,se® G, - 0

in (11.1) as well. Thus, we now reduce (11.1) &, - 0, back to:
TR = _i[af [yﬂgyv]‘f/R .\ Ef [y”DyV ]l)f/G + Ef’ [yﬂuyv ]lf/B J ] (11_2)
Pr — Mg Pe —Mg Pg —Mg
This is (10.1) withg* :lZ[y”Dy"J. Next, as in (8.4) and (8.5), we write this as
two distinct expressions, one for the proton, ane for the neutron:
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T I(z//d[y s wlrorle, vl ]%J

Pq —my" P M P, (11.3)
(wd[y 94 ]wd v 2% b uyv]wu]
Ps — /pu -m,
TrE, = I(‘// [y Dyv]l//u_l_l//d[y Dyv]l/ld +‘//d[y Dyv]l//d]
p,—m” Py —my" Py — My (11.4)
(w L uyv]wu +2wd[y uyv]wd]
p,—m” Pa My

In the foregoing, we have suppressed the cologdations as they will not be
needed for the calculations following. In combgihe two like terms for the
up quark in (11.3) and the down quark in (11.4Y because we will shortly
be integrating these ovex from <o to +o as part of the energy tensor, we
make the simplifying stipulation that any physica¢éparation between
respective quarks may be neglected, as we didwoilp (10.5).

Now, let us return to the t'Hooft monopole Lagreamgdensity (9.2).
As noted following (9.8), the portios, =-1D,¢D"¢ -1 g ¢ —%/1( aqf)z of

this density which involves the Higgs vacuuh will be determined by the

GUT symmetry breaking scale at which the quarks saearated from the
leptons via the symmetry breaking of (8.1). Foaraple, using (9.4) in the

“kinetic energy” termbD ¢ D*“¢" of (9.2) yields:
£kinetic = _% DywaDﬂwa = _%(aﬂ%aywa + 2fabcaﬂ abec + f aderG&u(f%)' (115)
When we then applyg, = —\/gvGUT and the remainingg = Qo break the

symmetry as was done following (8.1), the finalnmtebecomes a sum of
Lagrangian vector boson mass terms:

£boson mass 1VGUT g (3 fablsf aClSG,SGéu) - _%ZM ZG,UG'U’ (116)
where we have rescaled, - gG; to restore the interaction charge strength
heretofore absorbed into the bosons following (2.%0 the masses of the
vector bosons clearly flow from this term, and leson mass scale will be set
by the extraordinarily higlvg,; energy at which quark and leptons decay into

one another.
But as we shall now see, the pure gauge fielcbsegt =-1F: F/”

uge — uv' a

of (9.2) does not necessarily have to have its mass scédendeed bvaUT .



-47-

As pointed out following (9.8), t'Hooft uses the rameterizations
w=W/F?% and x=eFr to set the scale for the magnetic monopole mass to
be the same as the symmetry breaking energy secgle But this is only

becausethe t'Hooft model does not introduce any other mssale which
would not be arbitrary and this in turn, is because the t'Hoeaifhsatz
G2 =£,,,%,G(r) introduces radial behaviors inf/" via the gauge fieldS; .
Consequently, the masses of the monopoles becewchéotithe masses of the
massive gauge bosons that emerge following symnietrgking, and these
are in turn tied to the GUT scale, as shown in§Labove.

Here, in important contrast, the Gaussaasatz(9.9) introduces radial
behaviors intoF/* via the fermion wavefunctiong. Consequently, the

monopole mass scales which emerge outeof =-1F2 F/ via (9.7) and

(9.8) will be tied to thanasses of the fermignsther than to the gauge boson
masses which in turn are tied to the GUT energy. c@rse, the fermions
have now been developed into up and down quarkd, the magnetic
monopoles have been developed into protons andamsut So with this
ansatz(9.9), the masses of the proton and neutron shbaldelated in a
precise way to the masses of the up and down quarks not to the GUT
scale. We shall now show exactly how this is so.

We first return to (9.7), which specifies the caical energy
momentum tensor. The total energy of the dynansgalem specified by

is given by E=p°=[[[T®d*x as noted earlier. If Yang-Mills magnetic

monopoles truly are baryons, then because we hamed off perturbations
by settingd,G, —» 0 throughout,E in this integral should give the “bare”

proton and neutron masses absent perturbationdlowkity t'Hooft, we
require L =Hj£d3x to be stationary under small variations in thddge

which allows us to obtain the total energy fronB8f9namely,E = -L. Now
the question becomes, which terms fromo we use?

The Lagrangian density (9.2), of course, contamutiple terms. We
shall explore here, the energies specifically mgdrom the pure gauge field

term e, .=—1F;F/, thatis:

E=-L=~[[[2ued’x=1[[[FaF/d*x=1Tr[[[F, F*d*. (11.7)
Next we substitute (11.3) and (11.4) into the abtwewrite, for
protons and neutrons respectively:
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e sl Bl ol ol e, (118)
-y tatle, Bl Bl Bl o,
£, =-1[]] [‘”.“.Lffiﬂﬁ”“ +2"”:f£,yd"iﬂ?.”d j[‘”/[pyﬂl'” +2'ﬂ.?,E,yd ymlw Jdgx .(11.9)
RS hab. bbb bbb,

The above are a bit busy, but if we schematicaferrto the terms with up
guarks as U terms” and the terms with down quarks ab térms,” the
important pattern to glean from (11.8) and (11sXhat:

E,(duu) O (d +2u)’ = d? + 4ud + 4u?, (11.10)
E, (udd) O (u+2d)’ =u? +4ud + 4d?. (11.11)

This also means that thigferencebetween the neutron and proton energies is
schematically given by the relationship:
AE =E, - E, 03(d?-u?). (11.12)
According to PDG'’s latest survey [20], tmboundneutron mass is
939.565379 MeV, thenboundproton mass is 938.272046 MeV, and so their
difference AE is 1.293333 MeV. Meanwhile, the electron mas&newn
with great precision, and is listed in 2012 PDGadatl] asm. = 0.510998928
MeV. This relationship is of course well known,da is believed that the
discrepancy between 1.293333 MeV and 0.510998928 Mlearises due to
the dynamical, non-linear interactions within th@tpn or neutron. If the
“noise” of all this interaction was to be shut oiff,is believed, then this
discrepancy would vanish, and the electron m@sswould be virtually
identical toAE=E,_,,,— E (Because neutrinos emitted during beta decay

n - p+e +v have such a small (<2 eV) mass, we neglect arly s1ass.)

But as again noted following (11.1), the proton andutron
expressions (11.8) and (11.9), or (11.3) and (1éje all developed for zero
perturbationV - 0, because we have zeroed out any perturbative terms
throughout this development. In common nomenaotgtwherein the “current
quark mass” is understood to represent the “camestit or “effective quark
mass,” reduced by the mass of the respective “toest quark coverings”
arising from gluon fields and vacuum condensatesognding the “current
guarks,”we have in this development turned off all “covgsri So, having
stripped out the interactions, and solely lookih¢gha “current quark masses,”

Proton*®
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what (11.12) tells us is that th&E we will deduce from (11.8) and (11.9) is
not from the difference between tt@al, coveredmasses of the proton and
neutron,but only from the difference between that portidrthe total mass
that is directly contributed by the current quarlasses In other words,
(11.12) as based on (11.8) and (11.9) is a diffterebetween two bare,
uncovered nucleon masses, which turns off tim@ise and gets to the
underlying “current quarkssignal” As such, we should expect that
Egecion = AE = Eyeuron — E because our neglect of all perturbations allows u
to look at uncovered nucleon masses.

The “current” (uncovered) masses of the up and dowarks are
m, = 48", MeV and m, = 23" MeV based on the most recent PDG data [22].
So based particularly on (11.12), we should séeeifelectron rest mass can in
fact be described in relation to these current kjuaasses, based on the
relationships (11.8) and (11.9). Indeed, precisgmgause our development
has turned off all perturbations, we should notyatpect this to work, but
that must work in in order to validate the theses mave presented. That is,
we arrive at a point where our thesis and the dgweént so far may be
contradicted, if nature chooses to do so. Scs tt'the calculations:

First, subtracting (11.8) from (11.9) to flesh ¢Lt.12), we write:

-4 []f w [y oy ]wd ¥y [VpDVv]‘/’u _wlyorle v, a2 4ix, (11.13)
Ipd_md Hlpu_mu lpu_rnu
Then, we use thansatz(9.9) in (11.13) to obtain:
1 F{ (r _ro)zjd[y“uy”]dd[ymyv]d
sexg -2 > - -
Kd lpd - md
Sl —2(r —1o)° a[y”my“]ua[ymyv]u
r° x,’ "p, —m,"?
Above, d(p), u(p) are Dirac spinors for the up and down quarks,aetbyely.
Now, we may make use of (9.11) refashioned viarsgal - x/+/2, namely:

Neutron Proton

d°x. (11.14)

i

> _ 2
([ 2 —2(r—£°) dx =1 (11.15)
Tk’ 8
to evaluate the Gaussian integral in (11.14). Theams that:
1 (r-r,)? ), 1
e -2 52 poxe o (11.16)
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Then, we use (11.16) in (11.14) to obtain, delbsly keeping the?
coefficient ¥2 separate from the 3):
peeo b drorlaynle 1 dyerlulyonle) qa7)

(nfrs  pe-m fnfa tAmmS?

Now, as atest hypothesjslet us see what occurs if we regard
X =h/mc as the reduceblare (uncovered, “current”’) Compton wavelength of
the associated quarks. With=c=1, this allows us viam=1/% to directly
employ quark masses in (11.17) instead othus:

AE:_;B{ m,? a[yﬂgyv]da[yﬂmyv]d m? a[yﬂmyv]”a[y"gy”]uJ,(11-18)

? (2n): "y —my"? (277): P —m”

By our test hypothesist =#/mc, the mass scale fonE has now been
establishedas has the mass scale for the proton and neutrassesand it is
not the GUT scale. Importantly, and appropriatelsofar as experimental
observations are concerned, this mass scale ydbe masses of the up and
down quark that comprise the neutron and the protther than by the GUT
energy of symmetry breaking. So the Gaussaasatz (9.9), if we use
A =h/mc, gets us into the right “ballpark” in orders of gmitude. And, it
makes simple sense that the proton and neutronesiab®uld be related in
some fashion to the masses of the quarks of wiiel &re comprised. We
see that all the mass dimensions in (11.18) aneciprso long as we choose a
normalization in which the Dirac spinors are dimenkess. We shall do so

momentarily. But next, we come to thp—ni'* propagator denominators.

For this, we refer back to Figure 1 at the starsextion 3, and also
keep in mind section 12.2 of [5]. Specifically, wensider the circumstance
in which the interactions shown in Figure 1 occssentially at a point. In
that situation, the propagator disappears, shand t channels become
indistinguishable, and we can sgpb—mi'* . nm? in (11.18) above. So, also
applying (3.10) which defines=1 and reverting from the quasi-commutator
to the ordinary commutator, (11.18) becomes:

3 — — — —
AE =-%G(2—)a(md iy, Jadly, .y, Ja - m, @y, p Judly, p, Ju)- (12.29)
]T 2

The remaining termﬂ[y”,y’]da[yﬂ,n]d andﬁ[y”,y"]uﬁ[yﬂ,yv]u are
scalar numbers. They need to be normalized viaDinac spinors into a
dimensionless constant numltérso the only question now is to find the right
normalization. For the momenk sa[yﬂ,y’]da[yﬂ,yv]d :G[y”,yv]uﬂ[yﬂ,yv]u
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is definedto be a dimensionlegxperimentatonstant and we take thiK to
be an unknown. Now, (11.9) may be further reduoed
3

AE=-1K OB (m, -m,)- (11.20)
(2m):
Now, we simply plug the experimental, = 48';MeV and m, = 23"/ MeV
from [22] into the above, to obtain:
AE = -1K 3(m, -m,)/(277)} = -1K ({48'7 - 23'7)/(27) MeV
= -1K 476 2MeV = -1K [{.286MeV to .704MeV) .  (11.21)

= -1K [495MeV
This displays thepredicted AE=E,,,,—E based on the up and down

guark masses. Following (11.12) we suggestedhimtifference should turn
out to be the electron rest mass, because we havedt off all the
perturbations that distort what is otherwise thecebn mass into aE of
1.293333 MeV between the observed, unbound, ndidly, covered proton
and neutron masses. The experimental electron, nafissourse isme =
0.510998928 MeV. Using the high-side “down” anck tlow-side “up”
masses, the high end of the testm, - m,)/(277): = 704MeV. Using the low-
side “down” and high-side “up” masses, the low epnfl the term
3(m, -m,)/(27): = 286MeV. Using the experimental mean for the up and
down, however — and this is the striking resulthis tanticipated value of
3(m, -m,)/(277): = 476MeV  And, the mean (denoted by the overbar) of the

range between .286MeV and .704MeV is 0.495 MeV.e Electron mass
0.510998928 MeV is perhaps one of the most tigkiilywn natural constants,
and so the 0.495 MeV electron mass predicted in rtrexlian of the
experimental data differs only about 3% removedmfrahe actual
experimental mass! Not only is this predictiontire right ballpark, it is
centered in the middle of a fairly wide experiméntange, and so would
appear to provide direct and compelling experimesgafirmation that Yang-
Mills magnetic monopoles as developed here, tregylbaryons!

Given the closeness of them,-m,)/(277): to the experimental

electron mass based on the quark mass data, lebwgegard the electron
massme to in fact be related to the quadurrent massesprecisely by
Ececron=M. =AE, and let us introduce this as a hypothesis supgdry the

experimental data. That is, we now hypothesizedas empirical data that:

Proton
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This filters out the “noise” of the interactionsthin the proton and neutron,
and shows the real “signal” behind the noise, whsamal is the electron

mass. It also makes general sense that the elentass turns out to be a
constant times the difference between the up amthadpark masses, with the
only real question being: what is the mathemataadl physical basis for
specifying that constant? As it turns out, theeddaof 3 emerges from the
3(d2—u2) schematic in (11.12) (and also happens to beuheer of quarks in

m, =0510998928MeV = AE =

each nucleon) and the factor dprz)? comes straight from Gaussian
integration over three dimensions. Given thateleetron mass is known with
much more precision than the loosely-determinedlgossses, we then use
the electron mass to reverse the tables and predibt precision the
difference between these quark masses:

(27)

m, —m, =Tme =2.682677929MeV (11.23)
This is a very precise number, and may be usedetterbconstrain our
understanding of the current quark masses. Spaltyfi using

m, =487 MeV and m, = 23" MeV, (11.23), in light of a25'}2 MeVspread
between the midpoint experimental data, tells & the actual spread is
slightly higher than the data indicates. Sinceehs more error on the high
side of the down mass and less error on the low agidhe up mass, the down
mass is likely higher than 4.8 MeV, perhaps betw&8rand 5.0 MeV and the
up mass is likely a touch lower, perhaps 2.25 Me®n average, the true
masses should be about 3% higher based on (1112%e use (11.22) in an
identity as:

mo= MM (@) m, (11.24)

1-m/m, 3 1-m,/m,’

then becausemn, —m, is now known with great precision from (11.23)e th
experimental determination of these quark massedeamade more precise
to the degree that we can better tighterréti® m,/m;.

Now, let's tie up the normalization, taking (11.23s a given,
empirical relationship. We combine (11.20) with.@2) to find that:
-2=K = a[y”,y“]da[yﬂ,yv]d = G[y”,y”]uﬂ[yy,yv]u . (11.25)
The experimentatonstantK =-2, now known, may now be discarded. What
counts is that the spinors themselves now be naedduch thathey accord
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with the empirically-basedrelation (11.25). We shall work with the “up”
spinors, since the calculation is the same foreeithp or down. We first
expand (11.25) using,, =77,

- - —uy®yt uuy®ytu = uy®y? uay’yPu - uy’yR uuy®yPu
2=ty iy, pJu= uy’y* uyy* 7y2y2 7y2y2 uly v (11.26)
+uy'y? uuy'yPu+uyy® uuy?yu+uyiyt uyytu

We will want to calculate this with a sum over pae spin states for all the
spinors. We first make use @fuu=N?(p+m)/(E+m) (see (3.1)) with an

undetermined real normalizatidh Via p= pﬂy’*, (11.26) becomes:

—g N (-Uy°y1(p+m)y°y1u—uy°y2(p+m)y°y2u-uy°y3(p+m)V‘VUJ
suyA (prmyyEus sty (prmyyturuyd (prmlyyt ). (11.27)

E+m
— N? A - miuil= N? - _
—48E+m(pﬂuy u rrw)—48E+mu(p mu

It is easy to show using Dirac spinors in the usugy, summing both particle
spin states, thatuu = 4N?m?/(E + m). On the other hand, we recognize that

pﬂﬂy"u is a variant of the conservation equationJ” =0 written in

momentum space. So we mandqﬂlgﬁy” u =0 by continuity. Thus, we can

use these two results in (11.27) to write:
2 f— f— — —
~2=-192N* (ETm)z =dly*,y]ddly,.y Jd = . July,.pnJu,  (211.28)

which means that:
Nzt YErm. . 1 E+m
26 Vm Jar 2m
This is adimensionless covariant normalizati@arich keeps the Dirac
spinors dimensionless, and which embeds into thaclilgebra, the empirical
relationships (11.22) and (11.23) between the gaark electron masses. In
other words, the normalization (11.29) fully implems (hard-wires) the
relationship (11.22),m, =3(m, -m,)/(277)> — which appears to yield the
correct experimental relation between the elecinaiss and the up and down
quark masses — into the Dirac algebra via the nlaraten of the Dirac
spinors. To be clear: this is ampirical normalization handed to us by
nature, which reflects thatm =3(m,-m,)/(27)° appears to be an

experimentally-correct mass relationship. We nsit@ply as an observation,
via the Levi-Civita tensor in spacetime, that=-¢ &%, and that

(11.29)

uvap
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(E +m)/2m =1 in the fermion rest fram& =m. So the factor oft, while it
emerges to implement agsxperimentalmass observation, is a real integer
number which does play a central role in antisymimételd theory in four
spacetime dimensions.

Moreover, we also merely observe tht 4x3x2 is the number of
known fermions of all flavors and colors and getierss, and further
describes the way in which these fermions are ttred, as can be seen from
Figure 3 below in whichtRGB represents leptons as a fourth color of quark
at high energies as discussed in section, #;7 represents the three fermion

generationsand1,U represent isospin up and isospin down:
~ 3=eur - — 3=€eur -

1 Ve V, V, e u T
= uR CR tR dR sR bR
LRGB U, C; Ig ds S b
! uB CB tB dB SB bB
~2=Nl-
Figure 3

Therefore, if we letn, =24=4! represent the number of fermions known in

the natural world, the normalization (11.29), whagplies toeach individual
fermion in this chart of 24, may be written on an entirglyysical basis,
without any “mysterious” numbers, as:
Nz L (E+mf_ 1 (E+mf (11.30)
n, (2mp 24 (2my
While beyond the scope of this paper, this is sstige of some sort of
fermion “completeness relation” that entails acamgnfor all twenty-four of
the fermion flavors shown in Figure 4 when normatzindividual Dirac
spinors. We write (11.30) as*, because this is the power in which the
normalization enters invariant amplitudes. So mapléude which sums over
all fermions will be summing a term with a 1/24 ffmgent, over 24 distinct
terms, one for each flavor of fermion in Figure 3.

Let us finally tie up one remaining aspect of gectlO and Figure 2,
as to the short range of the nuclear interactiém.section 10, the reduced
wavelengthi was simply a parameter of the Gaussiasatz(9.9). And we
noted following (9.12) and again following Figure tBat the Gaussian
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standard deviatior = =% . But now, following (11.18), we set =h/mc

to be the reduced Compton wavelength ofdherent quarks, and this led to
the empirically-correct mass relationships (11.@1):23). But given the

current quark massesy, = 48", MeV and m, =23, MeV, and using the
conversion scaleF = 507GeV " = 1(197GeV), this means thak, ~8565F
and &, ~4104F, to which the standard deviation in Figure 2 imtexl by
a—:%x. This, of course, gives the nuclear interactishart range, but not

short enough, because the nuclear interactionagvikrio have a range on the
order of 1 to 2 Fermi. So how do we explain this?

We now keep in mind that we have been usingent quark masses
which turn off any coverings due to the non-linggunon dynamics and
vacuum condensates. When we actuabigervenuclear interactions, we are
of course observing interactions based on éffective, constituenguark
masses. |If for very rough measure, we take thedeetequal to 1/3 of the
mass of the proton or neutron, say 939 MeV/3=318/Mthen we have
A ~B63F andg =+ A ~45F . S0 now, the standard deviation for Figure 2 is

slightly less than .5 F. Figure 2 and the disars$ollowing then tells us that
the nuclear interaction virtually ceases to beatife at aboutdo =3k ~2F .

So now, Figure 2, witik based orconstituentguark masses, depicts just the
right distance for the short range of nuclear ex@ons, which are now
predicted to become insignificant at about 2 F.

12. Quark Confinement Results from Predicted Bindig Energies which
Coincide Extremely Closely with Nuclear Binding Enegies

Finally, with the empirical fermion normalizatiof1(.30) in place, we
can directly derive the proton and neutron masstsvever, because we have
turned off all perturbation, the masses in (11r8) €11.9) are not expected to
be theobservedmasses. Rather, these will thteuctural proton and neutron
masses based only on the current quark massesnaiplerturbations and no
accounting for vacuum condensates. These, oncén,agee “signal”
relationships with “noise” stripped out. While Hee masses are given
formally in (11.8) and (11.9), the schematic reaships (11.10) through
(11.12) provide a shortcut to calculate these nsasave compare (11.12) to
our eventual result (11.22) for the electron mase, may schematically
express this as:
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EEIectron D 3(d ? - u2)3 EEIectron = S(md - mu )/(2]7-)% * (121)
The key thing that we learn via the Gaussian irategn, is to use the three-
dimensional Gaussian integration numker)? as a divisor to find the correct

mass relationships. Careful consideration of (Lth8ough (11.11) and the
Gaussianansatz should make clear that the proton and neutronctsirail
(noise-free signal) masses follow an identicalgratti.e.:

E, 0 d?+4ud +4u® = E, = (m, + 4/mm, +4m, )/(27)?, (12.2)
E, Ou?+4ud+4d?= E, = (mu +4./m,m, +4md)/(2n)% : (12.3)
Then, making use of the mid-valued experimentalriquaasses from [22]
(which we know from (11.21) are low by about 3%#§ @btain:

E, = (md +4./mm, + 4mu)/(2n)% = 1733MeV , (12.4)
E, = (mU +4,/m,m, +4md)/(2ﬂ)% = 2209MeV . (12.5)

This proves in energy terms, that these magneticopales are topologically
stable with definite, finite energies.

Now, while (12.4) and (12.5) seem odd at first blus light of Ey =
939.565379 MeV anllp = 938.272046 MeV, this is actually a fascinatimgl a
very revealing result: We have turned off all pdrative terms, which means
that “interaction” energy and other “noise” accaufdr about 99.8% of the
observed mass of the proton and neutron, accortinthe above. The
underlying quarks, absent interaction, appear tdridmte only about 0.2% of
the total. But of even more interest, is thisthi “naked” proton and neutron
masses were simply a linear sum of their compogeatk masses which are

m, = 48'7MeV and m, =23’ MeV based on the best PDG data, we would
expect to have abowt, = 94MeV and E,,.,=119MeV based on the PDG

experimental means. So here, “the whola it lessthan the sum of the
parts,” and there is a stunning energy diminutidiihat does this mean that
we can put three quarks together and have a systare the total mass is
less than 20% of the mass of the component quagsye we turn on the
perturbative interactions? Imagine putting tennmtsuof anything into a black
box, and then finding that the black box weighss lé¢san two pounds.It
means that there is a fantastically-large, intrsnegative binding energy
holding these quarks together in a confined system!
We can calculate this inherent binding eneBydirectly: Using the

additive relationshipsg,,,= 94MeV=m, +2m,, Eo.=119MeV=m,+2m,

Neutron

Proton
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for mean data per above, and (12.4) and (12.5),irtherent proton and
neutron binding energies, respectively, are simply:

B, =2m, +m, —(m, +4/mm, +4m, )/(277)} = 94MeV - 1733MeV = 7667MeV (12.6)
B, = 2m, +m, - (m, +4/m,m, +4m, )/(277)* = 119MeV - 2200MeV = 9691MeV . (12.7)
For a system with an equal number of protons androwes, theaverage
binding energyer nucleorwill then be:

B =(7667MeV + 9691MeV )/2 = 8679MeV (12.8)

This is a fascinating result, because these aretlgxfie magnitudes of per-
nucleon binding energies that are observed thrautghaclear physics for all
elements from Heand C? through the balance of the periodic table, as show
in Figure 4 below which can be obtained in likeafiofrom virtually any
hardcopy or online reference on nuclear physics(12.8) a prediction that
the per-nucleon binding energy is between 8 ande¥ Mvhich isexactly
what is observed throughout Figure 4fso, then the validation of the thesis
that baryons are Yang-Mills magnetic monopoles adga well beyond
predicting the electron rest mass from the quarkses in (11.21)-(11.23), to
perhaps predicting the precisely-known binding gresrthat permeate nuclear
physics. How might this work?

Based on the data in Figure 4 and (12.6)-(12.8)atwdme might
observe as a preliminary matter is the followirkgrst, when we state that the
neutron and proton masses &e= 939.565379 MeV an@r = 938.272046
MeV, we have to be careful to be clear that theseiaboundmasses fofree
nucleons, as we were with emphasis following (1.12use a proton and a
neutron into a deuteron tHucleus), however, and the mass of each is
reduced by a well-established binding energyer nucleon of
B,./2=1112283MeV, the first non-zero data point in Figure 4. (kngral,

for the discussion to follow, we shall use bindieigergies calculated from
nuclei masses in [23].) Fuse two of these intow-hucleon alpha particle
(He* nucleus) and the binding energy per nucleon spieislly to just over 7
MeV per nucleon, entering the range predicted 8.8l Why is Hé
understood to spike so quickly, whereby the Li 8ednuclei drop back down
to under 6 MeV per nucleon before C and N rise lackbout 7.5 MeV per
nucleon before the heavier elements move smacktimaniddle of what is
predicted by (12.8)? Because for the*Hwicleus, all of the nuclei (two
protons and two neutrons, one each with spin up, each with spin down)
can remain in a ground state, but for any elenteaititas more than 4 nuclei,
the remainder of the nuclenustgo into higher energy states because of the
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fermion Exclusion Principle. This means that oh¢he nuclei in Li and Be
must “steal” some of the energy that is otherwigailable for binding, and
instead use this energy to excite to a higher gnstiage to be able to coexist
in the same nucleus with the first four nucleonshef alpha particle. All of
these observations are part of the known understgrod Figure 4.

Average binding energy per nucleon (MeV)

odH__| L | | | | | l | | |
0 20 40 60 80 100 120 140 160 180 200 220 240
Mumber of nucleons in nucleus, A

Figure 4

So based on these observations, one might fasHienfdllowing
preliminary explanation of what (12.6) — (12.8) are sayingaclk nucleon
apparently has what we shall refer to as a “labemding energy,” or “energy
availablefor binding.” When a nucleon is freall of that binding energy is
contained within the nucleon, and servesctmfine the quarks within the
nucleon throughntra-nucleonbinding. This confinement is structural based
on differential spacetime geometry, as establishesection 1. But to fuse
one nucleon with another nucleon, some of thatrmade“latent” binding
energy must become devoted to binding togethetvibenucleons. So in the
deuteron,B,, /2=1.1122881eV per nucleon is channeled into the fusion of the
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two nucleons (and thus is released as fusion ephexgg the total masses
(including theobservedmasses) of the proton and neutron drop slightlary
equivalent amount. Some, but not all, of the latending energy has now
gone intointer-nucleonbinding, rather thamntra-nucleonbinding. As one
goes up the nuclear mass scale, more and more dditdnt binding energy is
apparently channeled into inter-nucleon binding] &8s into intra-nucleon
binding. And some of that energy — for which LdaBe are good examples —
can be channeled into providing the energy needethé “fifth” nucleon to
excite into a higher energy state so that it cae fio the rest of the nucleus.
So what (12.6)-(12.8) appear to be saying, inc¢bigtext, is that each nucleon
has available for binding, a maximum latent bindemgrgy of about 7.7 MeV
per proton and 9.7 MeV per neutron. How much af th used, and what it is
used for, depends on the particular nucleus thatseeks to fuse together.

Let's go a step further and look at®Feind NF? which have the
highest binding energy per nucleon of any nucled are highly illustrative.
Fe’® contains 30 neutrons and 26 protons. Based af)(&2d (12.7) (which
again, are based on quark masses that appearaboloe 3% off on the low
side), one would expect a total binding energy3ii.872 MeV. The observed
experimental biding energy is a remarkably-clofgh8y higher 492.253892
MeV. Ni®® contains 34 neutrons and 28 protons. Based af)(a2d (12.7),
(again, about 3% low) one would expect a total ingdenergy of 544.17
MeV. The empirical binding energy is the slighttigher 545.259 MeV.
What does this mean?

First, the closeness of these numbers is furtakdation of the thesis
of this paper that baryons are indeed Yang-Millsgnetic monopoles.
Second, however, the empirical binding energiesulshan principle be
slightly lower rather than slightly highethan the theoretical maximum
available for binding via (12.6) and (12.7), othemsvit would become
possible to de-confine quarks which must in prilecipe impossible based on
section 1 as well as a general understanding dfreament principles. As we
shall momentarily show, the 3% correction note@anlier in (11.21) will fix
this, so thatno nucleuswill exceedthe maximum available latent binding
energy. Rather, these “lightest per nucleon” rive&® and NF? will use up
just a tad less than the total available bindingrgy, with (12.6) and (12.7)
establishingn principle energy limit§with energy numbers we will shortly
update).

As to the lighter elements, the amount of latanting energy used
for actual binding is lower, but let’s look at thery lightest nuclei containing
more than one nucleon. First, thé ¢euteron which consists of one proton
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and one neutron, as a “two body” system, is the/ wmplest composite
nucleus, and is known to have a binding eneBgy=2.224566VieV . This is
intriguingly close to the mass of the up quatk=23*] MeV, especially since
there is a good likelihood that the up mass isglightly smaller, as suggested

following (11.23). Might it be that, = 237 MeV=B, . = 2224566 MeV are

one and the same.e., that the deuteron binding energy is anotkgnal,”
like the electron mass, which cuts through the sabiof the nucleons to tell
us what is really going in inside? Specificallyight it be that the deuteron
binding energy is a signal that tells us éxactcurrent mass of the up quark?
If this is so, then the up and down quark massesbeacalculated to six-

decimal precision in MeV using_, and (11.23).

Based on the tantalizing closeness of these egerlgit us introduce
thehypothesighat this is so, i.e., that:

m, =B, =2.224566 MeV , (12.9)
in which case, via (11.23), we may obtain with $gamprecision:

_(2n) _
m, = 3 m, + m, = 2.6826779329MeV + 2.224566 MeV , (12.10)

=4.907244MeV
and the ratio:
m, /m, =.4533229. (12.11)
Both of these masses fit well within the currenadumassesn, = 23" MeV
and m, = 48"]MeV given in [22] and the ration,/m, = 46 (5)n equation
[5] of [24]. We shall momentarily discuss thieeoretical basis upon which
this hypothesis might be justified, but first, fetlo some calculations.

If hypothesis (12.9) is true, then via (12.6) and{}L2%e may do a
more precise calculation:

B, = 2m, +m, —(md +4./m,m, +4mu)/(2ﬂ)
= 7.640679Me/

B, =2m, +m, —(mu +4,/mm, +4md)/(2n)% =12.039054MeV - 2.226696MeV (12 13)
=9.812358Me/

Based on the discussion preceding (12.9), this Hagis every proton in a
nucleus has a latent (maximum available) bindingrgy of 7.640679 MeV,
and every neutron has available 9.812358 MeV. afmge, unbounducleon,

all of this energy is used to confine the quarks withie nucleon. But when

3
2

=9.356376MeV - 1.71569MeV (12.12)
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one nucleon binds to another, some of this energgléased as fusion energy,
and an exactly equivalent deficit of energy gods ininding the nucleons.
For F&° with 26 protons and 30 neutrons, we may calcuthg this
maximum availabléinding energy is:

B,., F€®) =26%7.64067MeV +30x9.812358/eV = 493.02839MeV (12.14)

What does the empirical data show to be dbwial binding energy?
492.253892 MeV So precisely 99.8429093% of theailablebinding energy
predicted by this model of nucleons as Yang-Millagmetic monopoles goes
into binding together the Fenucleus. The remaining 0.1570907%, which is
equal to .774502 MeV total, or a relatively scaBi8B040 KeVper nucleon
goes into confining the quarks within the nucleoms.calculation similar to
(12.14) based on (12.12) and (12.13) foP’Nieveals a predictedvailable
binding energy of 547.559184 MeV compared to anigogb binding energy
of 545.2590 MeV. So Nf uses 99.57992% of thavailable binding energy,
with the balance continuing to confine the quarkSalculations for other
nuclei and isotopes and isobars reveal tltaknown nucleus ever gets up to
using 100% of the available binding energgnd that F&€ achieves the
maximum utilization at 99.8429093%. This appearprtovide compelling
experimental validation that baryons, including tprs and neutrons, are
indeed Yang-Mills magnetic monopoles.

What would it mean to get over 100%? It would m#weat the balance
has been tipped, so that the energies within iddali nucleons would longer
confine the quarks, but would free them. The pieaKigure 4 at F®, is
nature saying that she wiltever allow quarks to be de-confined from a
nucleon, any more than she will allow material aigno reach the speed of
light! Fe*is the closest that one can come to taking aletiergy that is used
to confine the quarks inside a nucleon, and using iinstead bind nuclei
together. But even here, we never get to the peirdre we can remove the
guark from a nucleus; we only approach a natunait.li There is alwayst
least 13.83040 KeV per nucleon continuing to confine tuarks, even for
Fe®. After reaching these peaks atFand NF? the Figure 4 curve heads
back down into the fission zone, and the quarksnagacome more tightly
confined inside the nucleon. While quarks alwalgs £onfined, however,
this does suggest that®and NP? and other nuclei which commit a very high
percentage of available binding energy to interlemt binding are the best
nuclei to use, experimentally, in order to obsettve behaviors of quarks
inside the nucleons. This is because for thesdenuihe intra-nucleon
energies confining the quarks inside the nuclei aréheir lowest strength,
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having all been channeled intater-nucleonbinding. In these nuclei, quarks
have more freedom, asymptotic and otherwise, thamy other nuclei.
While the hypothesis (12.9) thah, =B,. appears to be confirmed

based on the empirical data, both directly and(¥#12) to (12.14) deduced
therefrom, it is important to try to understand theoretical reasons why
(12.9) would make sense. Figure 4, which is elytieenpirical, makes clear
that to fuse a nucleon to any given nucleus, thewmnof energy which is
either liberated (fusion) or needs to be supplfes$ipn) is adiscreetamount
of energy. For example, in fusing a proton aneatmon into a deuteron, one
will liberate exactly 2.224566 MeV (equation (13.9f energy, each and
every time,as opposed to some continuous spread of enefgyadd another
neutron to a deuteron to form the tritiun? I$otope with a total 8.481799
MeV binding energy, one will liberate exactly anatt.257233 MeV, which
is the difference between thef lAnd H binding energies. Not a continuous
spread. The same, discrete amount of energy, @adtevery time. What
determines that precise energy values like thesd, reo others, will be
released (or must be supplied)? Hypothesis (1&Bigh leads to predictions
such as (12.14) which are borne out by empiricah danding, adds new
information to the semi-empirical Bethe-Weizsackeass formula which
accounts for binding energies in general terms dase nucleus volume in
light of limited nuclear range, surface versus r@nposition of particular
nuclei, Coulomb repulsion between protons, andwskeh based on both spin
and internal symmetry quantum numbers. What (12@dg)s to all of these
considerations, is this:

Take a proton and a neutron. Think of each essanant cavity Try
to fuse them into a deuteron. Experiments teltha the same amount of
energy — 2.224566 MeV — will be released each amdyetime following a
successful fusion. Some attribute of these twdemns must determine that
this amount of energy is 2.224566 MeV, and not sother energy. So what
is that attribute? Each of these nucleons contginguarks and down quarks.
These have associated Compton wavelengths. Nieunl the early Bohr /
deBroglie models used to explain atomic spectraséhwavelengths will
establish preferred, discreet resonant energydewbich can be detected, to
the exclusion of all other energies which cannotéected. And nature will
follow least action principles and so choose a logreergy level (such as that
set by the up quark) over a higher energy levati{sas that set by the down
quark) whenever it can. So to create a two bogdyesy — a deuteron — from a
proton and a neutron, the energy released resopiaeiselywith the mass of
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the down quark, which is why 2.224566 MeV _is bdth tass of the up quark
and the energy released in this simplest, mostex&hfusion of a proton and
a neutron into a deuteron. The energy releasenh filois fusion (and
presumably other fusions) appears to depend on whatlengths “fit” with
respect to the components being fused. And at feafusing a deuteron, the
wavelength / mass that “fits” is established disgatquivalently by the mass
of the up quark which is contained twice in a pnoamd once in a neutron.

To start with a deuteron?Hand add another neutron to form ah H
tritium nucleus (which does not add the complicatidd a p—p repulsion that
occurs for H8) then also becomes a problem of asking: what atssf But
now, the problem is a three body problem. Onehef ‘cavities” is now a
deuteron. So while the empirical answer is 6.237&V, there is no simple
apparent way to get this number, at least linedrym (12.9) and (12.10).
But, to find the basis for this 6.257233 MeV enengeded to go from Ho
H? adds another consideration to the semi-empirig@stiormula: what is the
lowest energy, most natural resonance of the tvetesys that one is trying to
fuse, namely, an Hand a neutron? That resonance is 6.257233 Me¥, an
some careful analysis of the resonance betweem dddy system and a one-
body system, together with some employment of tharlg masses (12.9),
(12.10), should yield that number.

So, in sum, (12.9) becomes justified for a deutemorthe basis of the
proposition that the fusion resonance for a cayjyoton) that already
contains a quark with a mass of 2.224566 MeV wisieeond cavity (neutron)
that also contains a quark with a mass of 2.22486¥, is just that mass:
2.224566 MeV. For other nuclei, this introducegsonant cavity analysis to
supplement the other considerations in the semivgrapmass formula.

And, (12.12) and (12.13) modify our thinking ab@®#the-Weizsacker
in one other very important way: the first two ternof this formula,

a, A+a ,A”®, whereA is the number of nucleons, are designed to acdount

the volume and surface geometry of a larger nuchssed upon the fact that
because of the short range of the nuclear forae Kggure 2 in section 10 and
the discussion at the end of section 11 suggestisgiandard deviation of
0 =4k ~A5F for nuclear interactions and a virtual cessatibimteraction

at around4o = 3k ~2F ), each nucleon will only interact with its immeidiky-
adjacent neighbors, and nucleons on the surfadénaie less neighbors with
which to interact. But (12.12) and (12.13) introdithe same considerations
from a different standpoint: it sets in very psecterms, a maximum available
binding energy, and that energy limit flows frone tBaussian distribution of
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Figure 2 for the field flux across any closed scefa That is why the first two
terms of Bethe-Weizsécker agg A+ a,A*?, rather thara, A> +a A*°.

To further develop thigreliminary understanding of nuclear binding,
it will be very useful to carefully scour the wealf data for various nuclear
isotopes and isobars to see exactly how much kgndmergy is added or
subtracted each time a proton or neutron is addedrtremoved from a
nucleus, and compare those with the predicted bindnergies in (12.12) and
(12.13), as this may provide a more “granular” ghsiinto the specific data
points on nuclear binding charts such as FigureFér example, start with
Fe®. Add a single neutron to turn it into the’Fisotope. The empirical data
shows that this add¥31.919288 MeV to the atomic weightfé*® while adding
one more neutron with annbound mass of 939.565379 MeV. So, the
additional binding energy introduced (and the fosinergy released) by
adding this one neutron is:

B (Fe’’) - B (Fe®) = 7.646090MeV (12.15)
This empirical binding energy differs from theé¢heoretical predictionof
7.640679M¥ in (12.12) for the intrinsic binding energy of eofon, by a
paltry 5.412 KeV, or 0.0708%. Apparently, addingeoneutron to F&
within a small fraction of one percent, liberatesiatrinsic binding energy
virtually equal to that of a single proton. Simikxercises for other isotopes
and isobars of all nuclei should be quite instuestiand with (12.12) and
(12.13) available for guidance, can help us baitederstand what happens
each time one adds or subtracts a proton or aaretdror from a nucleus.

But theseven parts in ten thousawctbseness of thempirical energy
(12.15) to apredictedenergy in (12.12), taken together with all of titber
predictions in Sections 11 and 12 which appear ¢o experimentally
supported, cannot be dismissed as coincidence.reTére too many such
predictions, they are all intertwined, and they athme to close to
observational data to be merely coincidental.

All of this, and especially the 99.8429093% of thailable binding
energy which goes into binding together th&®Reucleus, and the fact that
nothing goes overl00%brings us full circle back to where we started in
section 1, when we showed how Yang-Mills magnetmnapoles naturally
confine their gauge fields, and how this was dudhi® very structure of
spacetime via Gauss’ / Stokes’ integration and geemetric relationship
dd=0. Now, in (12.12) and (12.13), when we are finldoking at energies,
we see that once three quarks are put into a batlgervery structure of the
baryon creates an intrinsic latent binding eneitipt is equal to more than



-65-

80% of the component quark masses. This latentirmn energy is
fundamental to the structure of baryons. As wewstb in section 1,
confinement flows from the very structure of spamet and as we showed
here, it explains with precision the experimentaadfor nucleon binding of
the heaviest elements and especially explains whyr& 4 has a maximum
binding energy per nucleon which is never exceedwtigrows smaller as one
moves away from the fusion / fission boundary.

So, expressed in terms of proton and neutron esgrgguark
confinement is signaled by the fact that for thgearks in a baryon, there is
an inherent negative latent binding energy thatgsal to more than 80% of
the quark masses themselves, and that even fondlse tightly bound nuclei,
some small amount of energy from this binding epamgervoir is always
retained to keep the quarks confined. This is lioe energy physics of a
baryon conspires to keep the quarks confined. Wiueteons are fused, some
of that binding energy migrates into a negativedinig energy holding the
nucleons together to form nuclei and a positive\edent is released as fusion
energy. If one can maximize the latent bindingrgpehat goes into inter-
nucleon binding, the confinement of the quarks wwitimy given nucleon does
loosen up, because less of the latent binding gnisrgsed for confinement
and more for actual inter-nucleon binding. In emminucleus, for example,
guarks will come close (within 0.16% per nucleohpeing able to deconfine
from the nucleus. But one never quite goes beybat] because precisely at
the point where the quarks comes closest to dezemfnt, one starts onto the
downward fission slope whemmore, not lessof the latent binding energy
starts to go back into keeping quarks confin&d, the well-known empirical
peak in Figure 4 is fundamentally a confinementoimeenorwhereby quarks
step back from the brink of becoming de-confined Fig®, and remain
confinedin principle no matter what the element. Iron-56 thus is $eesit at
the theoretical crossroads of fission, fusion, qunark confinement.

Knowing now that nucleons very likely are Yang-lilmagnetic
monopoles, and given the stark binding energy féases” just noted, it may
become possible to develop a more coherent andiledktayranular
understanding of nuclear structure. Such an utatedig, in light of what
has been developed here, now boils down to undhelisig in detail, how
collections of such magnetic monopoles — which monopole ctdles we
now understand to be nuclei and other baryons -aneg and structure
themselves.
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Conclusion

The very vast preponderance of the material unéversnsists of
baryons, and particularly, protons and neutronke fiesults developed here,
especially the empirical concurrences developeseations 12 and 13, firmly
validate that for non-commuting Yang-Mills gaugeldis, the long-sought and
ever-elusive magnetic monopoles of Maxwell do ekisthe physical world,
everywhere and anywhere that there is matter irutiigerse, hiding in plain
sight, in the form of protons and neutrons!

These Yang-Mills Magnetic Monopoles naturally caoefitheir gauge
fields, naturally contain three colored fermionsaigolor singlet, and mesons
also in color singlets are the only particles they allowed to emit or absorb.
SU(3k QCD as it has been extensively studied and cogefirre understood in
broader context, with no contradiction, to be asemuence of baryons being
Yang-Mills magnetic monopoles. Protons and newtrare naturally
represented in the fundamental representation isf ghloup. The t'Hooft
monopole Lagrangian with a Gaussiansatz for fermion wavefunctions
demonstrates that these monopoles can be madetadnonly at very short
range as is required for nuclear interactions. s&henonopoles are
topologically stable following symmetry breakingiin an SU(4) group using
the B-L (baryon minus lepton number) generatore mass of the electron is
accurately predicted based on the masses of tmdiglown quarks to about
3% from the experimental mean for the quark massed, confinement of
qguarks occurs energetically via fantastically sroegative binding energies.
And, the predicted binding energies per nucleon ca@pletely consistent
with experimental data. All of this compels sesaonsideration and further
development of baryons as Yang-Mills magnetic mahes
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