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ABSTRACT: We study a given exponential potential ge™ on the Real half-line which is possible
related to the imaginary part of the Riemann zeros. We extend alsostudy also our WKB method
to recover the potential from the Eigenvalue Staircase for the Riemann zeros, this eigenvalue
staircase includes the oscillatory and smooth part of the Number of Riemann zeros.
In this paper and for simplicity we use units so 2m =1=h
* Keywords: = Riemann Hypothesis, WKB semiclassical approximation, exponential
potential.

1. Exponential potential and Riemann zeros:

For T >>1 , the number of Riemann zeros with imaginary part on the interval
[0,T] is given by [3]
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Re(s) >0 is the Riemann zeta function [2] , and

Here {(s)= T Z

the Branch of the logarithm is chosen, so the condition N(0) =0 is satisfied

nS

The Hilbert-Polya version for Riemann Hypothesis is the following ,can we find
a Hamiltonian operador with positive and Real (since is a self-adjoint operador)

1
so their Energies satisfy E, =y. with p, :E+iy,, a non-trivial zero of the

Riemann zeta function?.

For this Hamiltonian on the Real half-line [0,%) in the form H =p’ + f(x) the
potential should be positive ¥ (x) =20 | so the energies would be also positive

E, =(W,|H|W,)=(p¥, | p¥,)+{(¥, |V|¥, )20 (2)



In order to obtain a Hamiltonian we will use the Bohr-Sommerfeld quantization
conditions [5] in the form

a=a(E) E -1 1
2nN(E) =2 [ JE, —V(x)dx =2 I«/En -x dg =2JD, 2 (7 (x) (3)
0 0 X

Here ‘a’ inside V' (a) = E is a turning point of the classical Hamiltonian
H =p*+ f(x) , inside (3) we have used the definition of the half-derivative and
the half-integral [7]
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Also for our Hamiltonian we have imposed boundary conditions on the half line
[0,0) so the Eigenfunctions Hy,(x) = E, y(x) satisfy the boundary conditions

Y,(0)=0=y,(c0).

From (3) we obtain that the inverse of the potencial can be described implicitly
in terms of the half-derivative of the Eigenvalue staircase (the smooth par)

. i o 01 x>0 L
function N(E)=% H(E=-y,) with H(x)= Ep <0 the Heaviside’s step
n=0
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function f7'(x)= Zf
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zeros, then the smooth part is given approximately by
To compute the half-derivative we use the representation for the logarithm
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€50, e= z— in this case we get
n=0n!
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The constants are A(€) = and B=T EEB: — and we have used
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The last expression inside (5) is equal to eXp% i os = Ef S(x)
r B, O
+S . .
F(s) = BE H .So our toy model or approximate model for the Riemann
|'(1+s)

zeros is given by the Hamiltonian on the half line
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S(x)= %4 exp% Jroos 7 x>0 . the properties of (6) are
H 00 x<0

* The potential inside (6) tends to ® in the limit x - £  so (6) has a
discrete spectrum

» The potential inside (6) is always positive so the Energies will be always
positive (H)=E, >0

» The spectrum is approximately given by the imaginary part of the
Riemann Zeros, Hamiltonian (6) reproduces approximately the imaginary
part for the Riemann zeros

» The Bohr-sommerfeld conditions for the exponential potential inside (6)
reproduces the smooth part of the spectral staircase for the square of the

a=a(E) \/E D\/E C

imaginary zeros 2 [ +E, —ce”dx=N,, ., (E)= Eln %E
0
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» The factor 2 may be viewed as a Maslov index inside the Bohr-

|:| 7 D a=a(E)
Sommerfeld quantization conditions Tn(E)+— (x)dx with
a FEsE e

p =+ E—-ae” the momentum of the particle inside the potential.

» The square root of the Energies satisfy that ‘\/E,m —\/E_,,

of big quantum numbers 7 — ®,
* Berry and Keating [3] get a similar smooth density of states for their

- 0 in the limit
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Hamiltonian —i ﬁxa +E%V(X) = E,¥(x) however they do not know what

boundary conditions to impose in order to get a discrete spectrum ,which
is equal to the imaginary part of the zeros

Equation (6) can be inmediatly solved [9] and [1] with a change of variable
x =¢* the ODE (6) becomes a differential equation that can be solved in terms
of the Bessel functions
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condition (not the one coming from the Bohr-SommerfeId rules) is then
determined by the boundary condition on the half real line [0,%) and it is

Jﬂél\/%_/\éiOZg(En) A= 4nlexp% E l\/_n (8)

Unfortunately , there is no exact analytic method to solve the equation (8) to
obtain the energies of the Hamiltonian so we can only solve (8) by numerical
methods, an aproximate method to obtain the Energies for big values of the
Quantum number n is to use the semiclassical method

JE, VED
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N oo (E) = —1 ETE n+—=n, this equation can be inverted to get the

C
=0 E the exact quantization

energies in term of the Lambert W-function
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If we use the asymptotic property for the Lambert W-function lim—— W) and
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take the positive square root we find E, =k, = l_nn , this is precisely the
nn

imaginary part of the Riemann zeros in the limit 7 - ©

The Quantum condition for the energies inside (8) can be generalized to the half

L-A
line [u,,%) in the form J, ET@

,depending on the value of i, we should have different approximations to the
s(s— 1) Os O
2

X, this is why the condition (8) should give an approximation for the square of
the Riemann zeros.
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O
E: 0, one of our conjecture is that

Riemann Xi-function &(s) = E{(S) for positive and negative values of
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2. An implicit equation for the potential /' (x) on the real line
[0,00)

The main problem with our Hamiltonian operator (6) is that we have simpli
ignored the contribution of the sum of the primes to the eigenvalue staircase for
the Riemann zeros defined by
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The EXACT equation for the potential (defined implicitly) is the following
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The sum Zs \/—y is made over the imaginary part of the Riemann zeros on
X

the upper complex plane Um(s) >0, this sum over zeros can be turned into a
sum over primes and prime powers with the aid of the Riemann-Weil explicit
formula [10]

Idsh(s)%% l; E (13)
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Here, g(k) = %Idxh(x) cos(kx) = g(=k) h(x) and g(x) are test functions which
0

D Inp n=p" |
form a Fourier transform pair and A(n) = is the Mangoldt
[p otherwise

function., see [2].

If we insert the expression A(x,r) _HG=r) inside (12) and use the identit
’ VX — 7”2 y

for the Bessel function - (£ _ Jol e then th ion for th
or the bessel Tunction J-\/i 3 en € expression 1or the

potential of our Hamiltonian (2) on the real half-line [0,©) becomes
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The last sum over primes and prime powers can be interpreted in terms of the
half derivative of the argument of the Riemann zeta function on the critical line

1

2
\/— 1

dE

+lIEr Z’\(”) Jy[Nxmnn|  (15)

For x>>>1 equation (13) becomes € - 0.
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Unfortunately the sum Z%)JO(«/;IHH) is DIVERGENT so we must truncate
n

it , for example by summing only up to some finite number of primes and their
prime powers to get some corrections to the exponential potential deduced for
the Hamiltonian inside (6).

n=1

Another idea would be the following, the sum cos B\/ilnn -—T[is
g Z\/ 7Tn1nn E
related to the real part of the half-integral of the divergent series

= N\(n) - _¢'al +i\/;[ _
2 Lim ¢ BE Efor x>>1, this last term may be computed by
n

numerical method instead of evaluating a divergent series for positive x >0

From the WKB method and the properties of the half-derivative operator we
know for our model that the potential is related to the density of states by

1

0 =NTLE S H(x-E,) #—f (x)= Zé(x E) (17)

dx? " dx?

d2 d
D ﬁ/( )—M if we take the half derivative inside (14) and use

the identltles for the Bessel function and the Dirac delta function
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We obtain the distributional Riemann-Weil trace formula, so the density of

states of our Hamiltonian , with the potential defind implicitly inside (14) is just
the Riemann-Weil trace formula
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If we take the integral inside (18) with respect to ‘X’ we obtain the eigenvalue

staircase N(x)=% H(x-E,) =

(19)
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- ngE iNx Ethe spectral eigenvalue
staircase for the Riemann zeros.

In general for small ‘X’ we can evaluate the inverse of the potential numerically

H(x-
by computing the sum Z \/7 , from the properties of the Heaviside step
XY,

function this sum is finite and easy to evaluate with a computer for y> <10* for
big ‘X’ we can use the asymptotics x>>>1
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