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Abstract

As the energies associated with particles are finite, they cannot originate from point like
entities. This leads us to present the following postulate: “The smallest unit of charge or mass
should possess a physical boundary and cannot originate from point like entities. At this
boundary, the scalar-potential (¢) becomes the limiting value, set by the Planck scale”.

Using this postulate, we can derive a general proof for both mass-energy and charge-
energy equivalences (E = mc? and E = qVjaner respectively) and derive their relativistic
energy-momentum, relativistic-energy and relativisticcmomentum relations. The results are
in accordance with special relativity.

We then discuss the non-covariance nature of the present classical electrodynamics and
show how the proposed postulate makes it a fully covariant theorem with the rest of the
classical electrodynamics.

1 Introduction

Einstein proposed mass-energy equivalence in 1905 [1], in his paper entitled: “Does the inertia of a body
depends upon its energy content?”. He concluded that the mass of a body is a measure of its energy content.
That is, if the energy changes by L, the mass changes in the same sense by L/c?. This equivalence can be
summarized in the famous equation:

E =mc? 1)

However, we emphasize that the mass-energy equivalence stated above in equation (1) is strictly ap-
plicable to indivisible mass particles only. if one were to find the total relativistic mass M for a collection
of mass particles, one should take into account the energy-momentum relation as shown below, where the
velocities u; of each particle m; are obtained with relative to the center-of-momentum of the mass body M.
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On the other hand, in classical electrostatics, energy of a charge ¢ is given by:
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E = (kq) (©)

where, (kq) is a scalar factor, which depends on how the charge is distributed. When the charge is
assumed to be distributed with a constant density, the factor (ks) becomes (2) whereas if the charge is on
the surface, the factor (k) becomes (%) Further, these relations are derived by bringing in infinitesimal
amounts of charge from infinity and constructing their corresponding charge configurations.

We observe that the energy content of a charge ¢ in equation (3) depends on the structure of the charge,
i.e. configuration and the radius of its charge distribution. Further, it suggests that, when the radius of the
charge configuration goes to zero, its energy content becomes infinite. In contrast, the energy content of
a mass particle in equation (1) is independent of both configuration and radius. Further, it represents the
energy of an indivisible mass particle.

From these observations, we state that there must also exist an indivisible charge, a charge particle
whose energy content does not depend on how its charge content is distributed or configured.

We then argue that, similar to what Einstein concluded for mass, the total charge of a charge particle
must represent a measure of its energy content, which is bounded. This leads us to introduce a new pos-
tulate which states that: “A charge particle or a mass particle should possess a physical boundary and
cannot originate from point like entities. At this boundary, the scalar-potential ¢ becomes the limiting
value, set by the Planck scale”. This postulate leads us to derive both the charge-energy E' = qVpaner and
mass-energy E = mc? equivalences. We then derive the energy-momentum relation for both charge and
mass particles in motion and show that both mass-energy and charge-energy equivalences are relativisti-
cally covariant. Further, we show that the momentum associated with both charge and mass particles in
motion are covariant as well. This makes the classical electrodynamics a fully covariant theorem.

2 Energy equivalence, relativistic-energy and relativistic-
momentum of charge and mass particles in motion

From classical interpretation, we can derive the following generalized relation for (“fi—ﬁ), from force (F),
energy (E), momentum (p) and velocity (u).

dE=F -dz = (%)dm = (u)dp 4)
dE

The electromagnetic vector potential A is defined as given below, where (J) current density, (¢) charge,
(r) distance from the charge, (u) velocity of the charge, (p) charge density, (¢g) electrical scalar-potential

1
and jipep = 3.

1o J 1 / (pu) u P u
A== —)dv = dv = — dv = —
47 ol 7") v (?4meo) Jyor T v 2 Joor Ameor v 02¢E ©)
U
A= —5dE @)
c
o5 = 1 ®)
TeQT



The electromagnetic momentum p, of a charge ¢ with velocity u is defined as (gA):

u
Pq :qA:CI(gd)E) )
by combining equations (5) and (9):
dE Pec?
o = 10
dp o (10

The energy of a single point-charge particle interacting with its own field, known as self-energy, tends
to go to infinity as the radius of the particle goes to zero, » — 0. The self-energy of a charge particle ¢ can
be worked out as:

E=q¢p=q <47:ior> (1)

The scalar-potential ¢z becomes infinite as 7 — 0, during which the corresponding self-energy of the
charge particle becomes infinite as well. However, as particles cannot possess infinite energies, we argue
that the self-energy of a charge particle must be bounded and finite. Therefore, the scalar-potential ¢z
which tends to go to infinity as = — 0 must be finite, so that the total energy of a charge particle becomes
finite and bounded. That is, as the physical size of a charge particle goes to zero (r — 0), the scalar-
potential must reach a maximum limit. Thus, we introduce the following postulate: “A charge particle
should possess a physical boundary and cannot originate from point like entities. At this boundary, the
scalar-potential ¢z becomes the limiting value, set by the Planck scale”. The postulate presented above
leads us to find the maximum scalar-potential of a self-interacting charge particle and thereby to derive its
charge-energy equivalence.

q
(¢E)maz = (47’[’607") = (vOltage)planck = Vplanck (12)
max

(¢E)max = Vplanck (13)
by substituting in equation (11):

E= Q<¢E)maz = qulanck (14)

Equation (14) gives us the total self-energy or the charge-energy equivalence of a charge particle. We
then use the same postulate presented above to derive the self-energy of a mass particle (mass-energy
equivalence).

b6 =" (15)
E =m¢g = m(GTm) (16)

The Self-energy of a mass particle becomes infinite (co) as 7 — 0. As for the postulate presented earlier,
the gravitational scalar-potential (¢ ) must also be finite and bound by the Planck scale.

Gm .
(0G)maz = (T)mar = (Ueloczty)f)lamk =c (17)

(¢G)maw = 02 (18)



E = m(¢G)max = mc? (19)

Equation (19) is the mass-energy equivalence relation (E = mc?) which was affirmed by Einstein in
about eighteen different presentations. However, he was not able to provide a conclusive general proof of
this seminal hypothesis from first principles [2][3]. The same mass-energy equivalence is proved above,
from first principles, using the postulate we presented in this paper. Further, by using the same postulate
and a similar set of procedures led us to obtain a general proof for the charge-energy equivalence relation
given in equation (14).

Now let us derive the momentum-energy relations for both charge and mass particles, where ¢ =
Vplanek and ¢ = ¢? are their self-interacting scalar-potentials, respectively.

’ mass ‘ charge ‘
Pm = mu Pq =qA
pm = ("5')dG = (%3)¢E
Pm = (m¢G)c% (Q¢E)cz
dE,, __ U = pmcz dE — — pq
dpm — még dpq — ~ q9%E

(m¢G)dEm = (pmc2)dpm (Qd)E)qu = (quQ)dpq
(mCQ)dEm = (pmc2)dpm (qvplanck)qu = (pqc2)dpq
EpdEp = (pmc®)dpm E,dE; = (pgc?)dpg
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By introducing boundary conditions, where the energies become rest frame energies, moc? and qo Viplanck
when the velocity becomes zero (u = 0), we can obtain the following results.

E}, = (pm0)® + EL(0) < E. = (pgc)® + E2(0) (20)

E2 = (me)Q + (m082)2 — E2 = (pqc)2 + (qO‘/planck)2 (21)

? = ((Vpranet)? = (00 (P22 4 (qVptaner @)

Equation (22) gives us the relativistic energy-momentum relations for both charge and mass particles
in motion. In Einstein’s Special Relativity, only the relativistic momentum-energy relation for mass bodies
in motion was derived. On the other hand, by observing the finiteness of energies associated with a given
amount of charge (or mass), and by introducing our new postulate led us to derive the relativistic energy-
momentum relation for both mass and charge particles in motion.

(mc*)? = (muc)? + (moc?)

Further, using charge-momentum p, = ¢A = q("?gE) and the self-interacting scalar-potential ¢5 =

Vilanck, we can show that the energy of a charge particle is covariant (similar to that of mass particles).

’ mass ‘ charge ‘
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This shows that the mass-energy equivalence (E = mc?) and the charge-energy equivalence (E =
qVpianck) are both relativistically covariant. In like manner, we can show that mass-momentum (mu) and
charge-momentum (gA) are relativistically covariant as well (for p # 0, i.e. u # 0).

’ mass ‘ charge ‘
Viianc
m264 = mQuQCQ + my C4 2‘/172lanck = q2u2( pl k) =+ q(%VpQIanck
C4 (m2u2 B mQL) = (64)m(2)u2 (‘/planck)(q U2 - q2 02) (Vp%anck)(qOU )
2
(mu)?(1 — &) = m3u® (qu)*(1 — %) = qpu’
mu — —mou qu( Vplanck) _ ou (Vplanrk)
Vptanck Vptanck
mu = ymou <= qu( pcagm ) = vgqou( pcagnc ) (25)

Note that, all the above derivations were based on the assumption that there exist an indivisible quanta
of charge (or mass). One can then define the notion of a body with total charge () (or with total mass M) as
a collection of many such particles. Thus:

i=n i=n

(Mc*)? = (vimiuie)® + Z mic? (26)
i=1
(valanck Z YidiUq plam:k 2 + Z plan('k (27)
=1 =1

We would like to emphasize some facts regarding the rest-mass and the relativistic-mass concepts. The
relativistic-mass is derived from the relativistic energy (ymoc?) or relativistic momentum (ymou) of the
system and thus it is argued that relativistic-mass (ymg) is not a good concept. Einstein wrote “It is not

good to introduce the concept of the mass M = —=2— of a moving body for which no clear definition
1=t

can be given. It is better to introduce no other mass concept than the rest-mass mg. Instead of introducing
M it is better to mention the expression for the momentum and energy of a body in motion” [4]. The
same set of arguments holds true for the proposed relativistic charge-energy (vqoVpiancr) and relativistic

charge-momentum 'quU(M) concepts as well.

3 Classical electron theory and its lack of relativistic co-
variance

Max Abraham [5] and H.A Lorentz [6], based on Maxwell’s theory of electricity and magnetism developed
the first set of theories for the classical electron. As for the classical electrostatics, the rest energy Uy of a
spherical charge body with radius r, associated with total charge e, uniformly distributed over its surface

is given by:
1 e?
o= <2) dmepr @8

One can then obtain the relativistic electromagnetic energy U of the moving charge ¢ as for the definition
given below [7] [8] [9] [10]:

1 1
U= 7/ <60E2 + H2> dv (29)
2 all—space Ho

e? 1
U=+~ (1 + ﬁ2> (30)
8megr 3
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and its relativistic electromagnetic momentum P as:

pP= 60/ (E x B)dv (31)
all—space
4 e?
P = 3 e 42

where u is the velocity of the charge e, and

1= —— (33)
B== (34)
C

However, according to mass-energy equivalence and the theory or relativity, we can find the equivalent
electromagnetic invariant mass m. of an electron with charge e as:

U 0 62
My = 2 = —— 35
© 2 8meyre? (35)
Therefore, equations (30) and (32) can be written in terms of the electromagnetic invariant mass m. as
given below.

1
U =ymec®(1+ 552) (36)
4
pP= g'ymeu (37)

From equations (36) and (37), it is immediately obvious that the terms U and P do not transform prop-
erly as an energy-momentum four-vector. Also the relativistic energy-momentum relation U? = (Pc)? +
(Up)? is violated, which implies that the terms U and P are neither relativistically covariant nor transformed
as an energy-momentum four-vector.

On the other hand, if they are to be relativistically covariant, they should be of the form:

U =~ym, ¢ (38)

P =~ymeu (39)
which satisfies the energy-momentum relation:
U? = (Pc)? + (Uo)® (40)
and gives rise to a relativistically covariant energy-momentum four-vector.

The formulation of the relativistic electromagnetic energy and momentum in equations (23) and (25):

U= Ve%lanck (41)
P = vyeu VplaQan (42)
C

can be re-written in terms of the electromagnetic invariant mass m.:

me = UO _ eVplanck (43)

c? c?

from which we can derive the following relations:



U = ymec? (44)

P =vm.u (45)

From equations (44) and (45), one can observe immediately that the terms U and P are relativistically
covariant and that they form a relativistically covariant energy-momentum four-vector:

E Vplanck Vptanck Vplanck Vplanck
VE=( % pa py p:)= ( yeTHEE  yesEgtu,  ye=tiptu, ye-EEu, ) (46)
which gives rise to energy-momentum relation as shown below.
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('V@Vplanck)2 = (76“%)2 + (eVplanck)2 (48)
U? = (Pc)? + (Up)? (49)

Below are a list of notable works, which are supportive of our work presented in this paper.

1. J.W Butler, in his paper titled “On the Trouton-Noble Experiment” published in 1968 [11], showed
that the Trouton-Noble experiment’s [12] Null result can be explained, if the energy density of an Electro-

magnetic field is expressed as g- (ﬁ)(E2 — H?), where § = ¢, in Gaussian units in vacuum. However,

the conventional Electromagnetic energy density equation ¢-(E? + H?) cannot explain the Null result.
Similar work has been done by Fermi [13], Wilson [14], Kwal [15] and Rohrlich [16].

2. ].W Butler, in his paper titled “A proposed Electromagnetic Momentum-Energy 4-Vector for charge
bodies”, published in 1969 [17], argues that “the conventional electromagnetic momentum and energy den-
sity expressions are known not to lead to a momentum-energy 4-vector for the fields of charged bodies. Yet
the rest of classical electrodynamics is a co-variant theory. This is a most remarkable anomaly.” In his paper,
he derives a 4-vector to represent the 4-momentum, contained within a volume element (dv) of the electro-
magnetic field of a charged body with a 4-velocity u = (yu, yc). This leads to a resolution of the famous (3)
problem, and accounts for the energy of a moving charge as U = Uy, where (U)) is the rest frame energy

of the charge and (U) is the energy transformed to the laboratory frame with a Lorentz transform.

In this paper, he further argues that the anomalous values for the energy and the momentum of an
electron presented in equations (36) and (37) are usually “explained” by the assumptions of ad-hoc forces
(Poincare stresses). But these ad-hoc forces are assumed to be also non-covariant, but in a different way from
electromagnetic forces. That is, these ad-hoc forces are “assumed to compensate” for the non-covariance of
the electromagnetic force, so that the entire electron system becomes covariant.

Further, it was shown in this paper that the source of the non-covariance of energy and momentum
density expressions arise from the procedure used to derive the Poynting’s theorem, which is shown not to
be covariant in the presence of moving sources. In other words, Poynting’s theorem is covariant only in the
absence of charges in moving frames. A similar analysis on hidden momentum and electromagnetic mass
of a charge has been carried out by V. Hnizdo [18].

3. J.A Stratton [19] had pointed out that “the classical interpretation of Poynting’s theorem appears to
rest to a considerable degree on hypothesis”. In other words, the application of Poynting’s theorem to a
charge body in motion, which gives rise to the non-covariance nature of its energy and momentum relations
in classical electrodynamics, should be carefully studied.



4. In relation to energy and momentum of moving charge bodies, W. Pauli [20] had stated that “the
Maxwell-Lorentz electrodynamics is quite incompatible with the existence of charges, unless it is supple-
mented by extraneous theoretical concepts”.

5. Energy associated with an electron, as per QED (Quantum electrodynamics) and its renormalization
techniques, can be separated into two parts: the energy associated by its interactions with other charge
particles and energy associated by interactions with itself. In renormalization, the part that interacts with
itself is removed or taken out from the theory. Therefore, after the renormalization, the electron’s charge
doesn’t fly-off or repel itself. Further, the infinities which arise, when the radius of the spherical electron
goes to zero, is removed with this treatment. Later, one of the fore-fathers who developed the renormal-
ization techniques in QED, Richard Feynman said that the renormalization was more or less “sweeping the
dirt under the rug” [21].

On the other hand, in our derivation of the charge-energy equivalence, we identified a quanta or an
indivisible amount of charge associated with a particle which does not fly-off or repel itself. This means
that, in our treatment for infinities arising from energies associated with a charge particle, a given amount
of charge contained in a single particle is treated as a whole, and thus, the repelling action arising from the
classical picture of a charge particle, where the total charge of the particle is sub-divided in to smaller charge
quantities, which are repulsive, is removed. Therefore, our treatment is only applicable for indivisible
charge particles, to which we could apply £ = ¢q¢, where ¢ is the scalar potential associated with its charge
g and its radius 7. Further, in our treatment to eliminate the infinities arising when radius r reaches zero,
we introduced a postulate, which introduces a cut-off value for the scalar potential ¢ at Planck scale.

6. Lorentz’s electromagnetic momentum of a spherical electron [22] shows that the momentum is given
by p = ymau, where m = &r;%, lgading to a total energy of £ = mc? = 6::0 7 This relation has been
proven with great accuracy by experiments with beta-rays. However, our present postulate states that the

potential scalars are finite and bound by the Planck scale. By using equation (3):

2 e 2
= 2 — = (= =
E=mc = (3)6(47T€0R) (3)6¢)EM (kd)ev;;)lanck
Vplanck
m = (kq)e 2

V anc V anck
p == ((ha)e(*25%) ) = (ko) e 255)

The above work shows that the derived electromagnetic momentum eu(%) being covariant in
equation (25), is on par with that of the finding of Lorentz.

7. Max Planck, publishing his first memoir on relativity [23], produced an equation for the relativistic
momentum of a point-mass, where p = ymu, in 1906.

4 Conclusions

In this paper, we proposed a new postulate to treat the electric and gravitational scalar potentials, so that
they become finite and bounded. This led us to derive a general proof for both mass-energy (E = mc?) and
charge-energy (E = qVpianck) equivalences, from first principles. We then derived the energy-momentum
equation for a charge particle in motion. The result of this work showed that charge-energy and charge-
momentum are relativistically covariant.

The paper then discussed the non-covariance nature of the present classical electrodynamics, intro-
duced by its definitions of electromagnetic field momentum and electromagnetic field energy, arising from



a charge particle in motion. However, the postulate presented in this paper and the results derived there
of, show that these components are covariant with the rest of the classical electrodynamics.

The present paper is a call for a revision of the classical electrodynamics to make it a fully covariant

system with the rest of the classical physics.
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