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        The authors after showing that a confined helical wave possesses rest mass, electric 

charge and half spin [1][2] now proves that such a wave is a solution of the Dirac equation. 

Using the confined helical wave representation of electron, the authors explain in a simple 

manner why the eigen value for Dirac‟s velocity operator is ± c while the average value of the 

velocity of the wave packet formed by its positive energy solutions is the particle velocity. 

Further, the confined helical wave representation is seen to be consistent with van der Waerden 

equation and the zig-zag picture of electron proposed by Pen Rose. 
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1 Introduction  
 

          We have earlier shown that Maxwell‟s equations allow the electromagnetic waves to 

have oscillations not only in the electromagnetic field but also in spatial displacement [3]. 

Such a plane polarized electromagnetic wave on acquiring spin angular velocity was seen to 

get confined resulting in the creation of the particle-antiparticle pair having rest mass, electric 

charge and half spin[1][2]. If such confined waves are to represent electron-positron states, it is 

necessary to show that they satisfy the Dirac equation. We shall examine this issue in detail in 

this paper. 

          To begin with let us take the helical wave confined along z-axis. The forward 

component of such a wave can be expressed as [1] 
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  i  being equal to v/c. Here  𝐿

 denotes that the 

wave is rotating anticlockwise when viewed head on. Note that due to the periodic nature of 

the function „𝑒𝑖ħ−1𝐸(𝑧 ′ −𝑣𝑡 ′ )/𝑐 ‟ the vector (j-ii) stands for rotation in the anticlockwise direction 

in the internal coordinates. This rotation can very well be denoted by the unit vector k in the z-

direction. But then we know that such a vector will always coincide with the direction of the 

momentum and therefore we may drop the unit vector k altogether with the understanding that 

the spin can be either in the direction of the momentum or opposite to that depending on the 

fact that the rotation is either right handed or left handed. Using the relation E = ½(E1+E2) and 

þ = ½(p1-p2), where E1, p1, E2 and p2 denote the energy and momentum of the forward wave 

and the reverse wave respectively, we may express (1) as                                                                                                         
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Here  𝐴1
′  =  − 𝐸1𝑡

′ − þ1𝑧
′  ,  𝐴2

′   =  − 𝐸2𝑡
′ + þ2𝑧

′    and    =   𝑒−𝑖ħ−1 𝐸𝑡−þ𝑧 .  Note that since  is   
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an imaginary number, exp(i/2) is a real number and remains unchanged in complex 

conjugation. As we are interested only in the spin of the particle, we may drop w2* 

conveniently from the expression for  L1 [1] and re-express (2) as 
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Similarly we may express the reverse wave as 
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In the above representation, although the spin of the system is well expressed it is at the cost of 

losing sight of its internal structure. 

          Till now we have been representing a particle in terms of a confined helical wave having 

a specific value for its energy and momentum. On confinement the helical wave constituted by 

the electromagnetic waves is seen to transform itself into a plane wave which is no more a 

wave with spatial amplitude. Interestingly, the transverse displacement aspect of the 

electromagnetic waves appears to get compacted into the internal coordinates. It can be seen 

that the plane wave representation followed in quantum mechanics has its origin in the 

confined helical structure of particle as described above. Let us now using (2) and (5) represent 

the left handed confined helical wave as 
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Here the amplitude  𝐿
 given by “(w

2*
u

1
+w

1*
u

1
)

 
” is defined in the internal coordinates of the 

particle and accounts for its spin. Therefore, the amplitude of  𝐿
 in the external coordinate can 

to be taken as unity. Since we were dealing with a given state of the particle, it is obvious that 

the probability of finding the particle in that state has to be unity. But if the plane wave states 

formed by the confined helical waves are occupied in a virtual manner by the principle of 

quantum superposition, then in the place of unity, it becomes logical to introduce the 

probability amplitude. Let us now denote the plane wave state by 
𝑖
 where “i” denotes its 

energy state which may take values from 1 to n. If the i 
th 

state is occupied “ai” number of 

times in the process of superposition, then we may express it as  
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Here the function 
𝑖
∗

𝑖
 = 𝑎𝑖

∗𝑎𝑖  denotes the probability that the i
th

 state is occupied. Note that 

here the spin aspect of the particle is not expressed explicitly. 

          It is now quite clear that the wave function as defined in quantum mechanics is a logical 

extension of the function representing the confined helical wave. An important property of Ψ 

as defined in quantum mechanics is that it treats the eigen state as the fundamental state which 

is not required to be analyzed any further. But we saw here that the plane wave state can be 

attributed a sub-structure in terms of the confinement of electromagnetic wave which also 

explains the creation of the electric charge of the particle. It becomes quite clear now that 

when we represent a particle by a plane wave, we are attributing it the structure of a confined 

helical wave. We shall now examine if this structure is compatible with the Dirac equation. 
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2   Introducing the Spin Matrices  

 

       We saw that  𝐿1  and  𝐿2  taken together represents a particle in the spin up state. They 

represent eigen state of the particle with a specific value for its energy-momentum and spin. 

Note that u
1
 and u

2
 have half the frequency of the respective forward and reverse waves. This 

means that when the plane wave denoted by   undergoes a phase change of 4π, the phase of u
1
 

and u
2
 which represent the spin of the particle varies by 2π. Since u

1
 and u

2
 stand for the spin 

up and spin down states, in the rest frame of reference of the particle we may denote them by 

𝑢𝑜
1  and 𝑢𝑜

2  where 
 

                                        𝑢𝑜
1   =    

1
0
              and           𝑢𝑜

2   =    
0
1
                                           (9) 

 

This is the simplest way of representing the spin state. We may now express  𝐿1  given in (4) 

and  𝐿2  in (5) as 
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Here we have dropped the functions 𝑒𝑖1
2ћ−1𝐴1

′
 and 𝑒𝑖1

2ћ−1𝐴2
′
 from the expressions in spite of the 

fact that they actually determine the spin of the forward and reverse waves [1]. This is because 

now that spin has already been represented by the two matrices, the need to retain these 

functions does not exist anymore. Besides, as the phases these luminal waves 1

2ħ
𝐴1

′  and 1

2ħ
𝐴2

′  are 

relativistic invariants, they can be conveniently equated to zero. Note that we have to retain the 

exponential functions containing  as they determine the relativistic transformation. 

          We may now express the forward and the reverse components of the confined helical 

wave as 
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It should be noted that we started by using u
1
 to represent a helical wave in the internal space 

which is spinning in the counterclockwise direction when viewed head on while u
2
 represented 

a helical wave which is spinning in the clockwise direction when viewed head on in the 

internal space. But once u
1
 and u

2
 were replaced by the two component matrix in (9), the 

connection of spin with the internal structure of the particle gets completely lost and spin 

becomes an abstract entity defined in the internal coordinates of the particle. 

          The justification for the above representation of spin rests on the fact that the forward 

wave and the reverse wave do not interfere with each other. Remember that we are dealing 

with a confined helical wave with half spin where the forward wave and the reverse wave 

move on the surface of an imaginary cylinder as a closed loop. For such a system the reverse 

wave has the opposite helicity compared to the forward wave and the introduction of two 

matrices defined above is the most simple way for accounting these properties.  

          Let us now take the confined helical wave representing the antiparticle. We know that 

the spin of the antiparticle will be in the clockwise direction and therefore we shall replace L 

by R in the super-fix. The corresponding forward wave will be given by 
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Note that with the modifications introduced, the differences between u
1
 and w

2
 as also u

2
 and 

w
1
 get lost. In the next section we shall show that this simplification of the expressions results 

in the confusion regarding the interpretation of the solutions of the Dirac equations regarding 

spin. 

 

3   Confined Helical wave as a solution of the Dirac Equation 

 

          In section 1 we had taken sin θ = -iγv/c and cos θ = γ such that tan θ = -iv/c. This means 

that θ is an imaginary number. We shall now introduce θ′ where θ′= -iθ so that θ′ can be taken 

as a real number. In that case (12) may be written in the form 
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Note that the minus sign before “sinhθ′ ” implies that it represents the forward wave just as 

the plus sign applies to the reverse wave. We may now combine (14) and (15) and express 

them as
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where m takes values 1 and 2. Note that for m = 1 we obtain (14) and for m = 2, we obtain 

(15). Equation (16) can be written in a compact fashion as  
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          Here 
𝐿
 represents a closed helical wave that is spinning in the counterclockwise 

direction when viewed head on. This means that the forward wave and the reverse wave have 

opposite helicity although the direction of the spin of both waves with regard to the 

translational motion is the same. In other words, the system as a whole is a left handed one 

which is reflected in the use of  
𝐿
 to represent the system. We may now define a function 

𝑅
  

given by 
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We should keep in mind that  𝑅1
∗
 and   𝑅2

∗

 are not obtained just by taking the conjugation of 

the function given in (14) and (15). It also involves the reversal of the spin and therefore, the 

spin matrices will also undergo change and we have to express   𝐿1
∗

 and   𝐿2
∗

  as 
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Now following similar steps as taken in the case of χL  , we obtain 
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We may combine (17) and (20) together in the matrix form as 
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Note that for r′ = 1 and 2, 𝑢𝑜
𝑟`,𝑚

 =  
𝑢𝑚

0
 𝑎𝑛𝑑  

0
𝑢𝑚   respectively. In fact, we may combine the 

indices r′ and m into one single index r which can take values from 1 to 4. In that case 𝑢𝑟  will 

represent four-component spinor with which we are familiar. We may now express (21) as 
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Here  εr = 1 for r = 1, 2  and εr = -1 when  r = 3, 4. The components of  Ψ can be expressed as 
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Note that we had taken sin θ = -iγv/c and cos θ = γ. Since θ′ = -iθ, it can be easily shown that  

cosh θ′  =  √[(1+γ)/2] and tanhθ′ =  (v/c)/[1+√(1-v
2
/c

2
)].  In these relations, by multiplying 

the nominator and the denominator by mc
2
, we obtain,  cosθ′ = √[(E+mc

2
)/2mc

2
] and    

tanhθ′  =  þc/(E+mc
2
). If we assume that the translational motion is along the x -axis, then we 

have 
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This is the familiar four vector which is a solution of the Dirac equation [4]. For a particle 

moving in an arbitrary direction, this can be expressed in a compressed form as 
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          Let us now examine what 𝑢𝑜

1  and 𝑢𝑜
2 actually stand for in the four component 

representation of spinor. Here we should keep in mind that in the Dirac picture, the spin up 

state of the electron is represented by the forward wave with positive helicity (denoted by 𝑢𝑜
1) 

while the spin down state is represented by the reverse wave with negative helicity (denoted by 

𝑢𝑜
2). It is obvious that 𝑢𝑜

1  and 𝑢𝑜
2 represent spin of the forward and the reverse half waves 

respectively and not the spin of the confined helical wave as a whole or the particle it 

represents. This is an important point and should be well understood. But with regard to the 

translational velocity, the spin of both the forward and the reverse waves are in the same 

direction and therefore their average value represents the spin of the confined helical wave as a 

whole and the particle it represents. Similarly, 𝑢𝑜
3 and 𝑢𝑜

4 represent respectively the forward 

and the reverse waves of another confined helical wave representing the antiparticle. Recall 

that when the confined helical wave is created, simultaneously second confined helical wave 

representing the antiparticle is also created [1].  
 

          Since the spin of the forward wave is the same as that of the particle (which is taken to 

be the spin up state) treating 𝑢𝑜
1  as representing the particle as a whole does not create any 

problem. Similarly we may use 𝑢𝑜
2 to represent a particle in the spin down state. But when we 

do this, we make an erroneous assumption that the spin up and the spin down states belong to 

separate spin eigen states of the particle. This leads to a serious problem which till date has 

remained unresolved. The problem arises from the fact that in the Dirac‟s theory the eigen 

value of the velocity operator “cα” is ± c while the average velocity of the wave packet formed 

by the two positive energy solutions is equal to the particle velocity, v. If 𝑢𝑜
1  and 𝑢𝑜

2 are 

representing two separate eigen states of spin, it is not clear why the velocity operator should 
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give values ± c, since a particle with mass cannot travel at the luminal velocity. To make 

matters worse, the average velocity of the wave packet formed by the two positive energy 

solutions is equal to v. This problem gets resolved logically in the present approach since 𝑢𝑜
1  

and 𝑢𝑜
2 represent the spin states of the forward and the reverse wave states constituting the 

confined helical wave. To put it briefly, the confined helical wave structure of the electron 

gives us a simple and consistent physical picture behind the currently accepted solutions of the 

Dirac equation.  
                                                                                               

4  The Confined Helical Wave and the van der Waerden Equation 

 

          We shall now examine the van der Waerden equation given below in the light of the 

confined helical wave representation of electron [5].  
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Here χ is a two component wave function. This equation can be split into two first order 

equations each of which acts on two separate functions as given below. 
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Here 
𝐿
 and 

𝑅
 are by convention taken to describe respectively the left handed and the right 

handed states of the spin  particle. We shall now show that 
𝐿
 can be identified with the 

confined helical wave representing the particle state that is spinning in the anticlockwise 

direction while 
𝑅

 can be identified with the confined helical wave representing the 

antiparticle spinning in the clockwise direction. 
 

          In the approach followed by us, we saw that the confined helical wave representing the 

particle state  𝐿1  is left handed while the reverse wave  𝐿2  is right handed. But we know that 

the confined helical wave formed by these two waves together can be taken as the left handed 

system denoted by 
𝐿
. Similarly, if we take the confined helical wave representing the 

antiparticle, it will be a right handed system and we may denote it by 
𝑅

. We know from (17)  
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where cosh θ′ = √[(E/c + mc)/2mc] and tanh θ′ =  þ/(E/c + mc).
 
 On substitution it can be 

easily seen that 
𝐿
  and 

𝑅
 given in (29) and (30) respectively satisfy the van der Waerden 

equations given in (27) and (28). This confirms our assumption that a particle like electron has 

a confined helical wave structure. 
 

          In the currently accepted interpretation, the right handed and the left handed waves are 

taken to represent two spin states. The sub-quantum nature is brought out by the confined 

helical wave structure of electron. A detailed study of the Dirac equation and the van der 
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Waerden equations shows that the later ones are more consistent with the confined helical 

wave structure of electron than the former one. The Dirac equation identifies the spin of the 

forward wave for the spin of the entire particle itself which leads to interpretational problems 

already discussed. 

 

5. Discussion       
 

          Apart from these two we have another representation of the electron in the 2-spinor 

formalism proposed by Penrose. According to Penrose, the Dirac electrons can be pictured in 

terms of a pair of 2-spinors [6]. He calls the state denoted by one of the 2-spinors as the „zig‟ 

particle and that by the other as the „zag‟ particle. He treats these as massless particles 

traveling with the speed of light, more like „jiggling‟ backwards and forwards where the 

forward motion of the zig is continuously being converted to the backward motion of the zag 

and vice versa. He uses this picture of zig and zag particles to explain what is termed as 

„zitterbewegung‟ of the electron. According to him each ingredient has a spin about its 

direction of motion with a magnitude of ћ. The spin is left handed in the case of zig and right 

handed for the zag. Although the velocity keeps reversing, the spin direction remains constant 

in the electron‟s rest frame. He proposes that the zig particle acts as the source for the zag 

particle and the zag particle as the source of the zig particle, the coupling strength being 

determined by M which is the rest mass of the particle. He observes that the average rate at 

which this zig-zag motion takes place is equal to the de Broglie frequency of the electron. Note 

that the picture that emerges from Penrose‟s 2-spinor formalism coincides with the one 

proposed here based on the confined helical wave structure of electron except that he has 

chosen the negative helicity wave as the forward wave instead of the positive helicity one we 

had taken in our approach. 
 

          Penrose wonders whether the zig and zag particles are „real‟ or if they are the artifacts of 

a particular mathematical formalism that he has been adopting for the description of the Dirac   

equation for the electron. He comments “ So are these zigs and zags (particles) real? For my 

own part, I would say so: they are as real as the „Dirac electron is itself real- as an idealized 

mathematical description of one of the most fundamental ingredients of the universe” [6]. We 

now know that the zig and zag particle picture represents the basic structure of electron with 

the forward component of the confined helical wave playing the role of the zig particle and the 

reverse component playing the role of the zag particle. In fact, the Dirac spinor turns out to be 

just a convenient mathematical approximation that represents a spin  particle. In that sense, 

what Penrose assumed to be two mutually exclusive approaches turns out to be just two ways 

of looking at the most basic confined helical wave structure of particle. From the above 

discussion we should not have the notion that a particle is represented by a single confined 

helical wave. Actual state of a particle like electron is composed of a vast number of such 

individual confined helical waves existing in all directions due to what is known as quantum 

superposition. This also would provide the spatial symmetry which is the basic requisite for 

any structure that represents a particle. Therefore, the observed electron will be some sort of 

the average of these states.  

          These three pictures of electron appear to be partial pictures as they do not take into 

account all aspects of the case. For example, the picture emerging from the Dirac equation 

wrongly identifies the forward wave state of the confined helical wave with the particle state 

resulting in the confusion regarding the eigen value of the velocity operator. The van der 

Waerden equation gives a better picture by representing the particle in terms of the right 

handed and left handed two-component solutions. But without the concept of the confined 

helical wave, it becomes difficult to understand what these states stand for. The problem is 
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made more confusing when the solutions of van der Waerden‟s equations are read in 

conjunction with those of the Dirac equation. Remember that in the conventional approach the 

first two components of the Dirac spinor represent two spin states which belong to two 

different particle states. The Penrose picture seems to be closest to the confined helical wave 

picture as they explain the spin states in terms of the forward and reverse waves.   

 

5  Conclusion 
 

          From the above discussion, the representation of electron by a confined helical wave 

appears to be a viable proposition particularly as it is found to satisfy the Dirac equation. 

Besides, it provides us with a new insight into generation of mass, electric charge and the spin 

of electron. We are now able to get a clear physical picture of the spinor in terms of the 

spinning motion of the forward and reverse half waves having frequency half that of the plane 

wave. Needless to say one important advantage of this approach is that it gives a simple 

explanation for Pauli‟s exclusion principle [1] and the non-classical behavior of the spin 

angular momentum of the particles.         

          In quantum mechanics the state of a particle is represented by a plane wave which is an 

eigen state of the four-momentum in the coordinate representation. Note that the eigen state is 

taken as the ultimate level of reality in quantum mechanics, beyond which no measurement is 

assumed to be possible. In relativistic quantum mechanics spin is introduced as an internal 

degree of freedom and is not directly related to the plane wave representation of the particle. 

But in the approach followed in this paper, it is observed that the confinement of the 

electromagnetic wave leads to the vector nature of the spatial component getting compacted 

into the inner coordinates where the spin of the particle is defined while the time dependent 

component which is defined in the laboratory coordinates becomes the plane wave. Therefore, 

we are effectively assuming that the plane wave representation is not the dead end in the 

investigation into the structure of the particle. We are attributing an inner structure to the plane 

wave.  

          The confined helical wave structure proposed for electron may be appropriate for other 

leptons like muons and tau particles. In fact, even for particles like quarks it may be possible to 

attribute a similar confined helical wave structure. The only difference will be that while in the 

case of electron the wave that gets localized is the electromagnetic wave, for  quarks, the 

corresponding wave might be a more complex one having oscillations in the electromagnetic 

as well as the strong field. It is quite possible that the SU(2) symmetry and SU(3) symmetry 

that determine the properties of the elementary particles may be traced to such inner structures.  
 

          The present approach is based on the assumption that the confinement of the helical 

wave is effected by a pair of mirrors kept facing each other. This is obviously an artificial 

construct and needs to be replaced by the interactions with some field. In the next paper, we 

shall examine this aspect in detail.   
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