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Abstract

This article adds to [4] some nearer explanations. It is shown again
that Maxwell’s equations are integrable, but I am doing it without quater-
nions, which is simpler, albeit more superficial. It suffices however to take
insight into the very nature of classical electrodynamics and path integra-
tion in quantum electrodynamics.

1 Introduction
In its covariant form, Maxwell’s equations are given as
OA* (2%, x) = j" (2, %), (0<n<3),
along with two other conditions: the first is charge conservation,
05°/02° +V -j=0,
and the second equation is the socalled Lorentz gauge,
0A°/92° +V - A =0

see: [3, II-18-6].

Both, Lorentz gauge and charge conservarion are intimatedly related, and
according to Poincaré’s Lemma, they both state their local integrability on single
connected regions in space time, on which they are continuously differentiable
(see [1, Sec. 2-12 to 2-13]): Let Q C R* be single connected set contained in an
open set U C R%, and let fy, ..., f3 be continuously differentiable function on U
into either R or C. Then the following statements are equivalent:

1. Oofo(z)+ -+ 03fs(x) =0 Vre
2. For any two paths v and 7/ in  joining a,b € Q: [ f-dy= [ f-dy'.

*To the generous bookseller for Herman Kershaw, who once, at the book fair’s last day in
Frankfurt, ceded H. Cartan’s book Differential Forms [1] to me, then a poor student, after
having passed some checks that I really cared for it.



2 Problem Statement

So, obviously, one would like to condense the for Maxwell equation into a single
equation OL(z) = Q(z), where L(z) = [ A-dy and Q(z) = [, j-dv'. However,
there are two concerns as to this:

3 Concern 1

The first problem is that the domain of existence of j or A may not be simply
connected as for instance a circle in two or more spatial dimensions: In case of
a circle one might end in two different solutions, and in general, according to to
the number of holes and knots, that number may become any natural number.

In order to see that this concern can be overvcome, let me note that for
a continuously differentiable function F on U C R* and a,x € U the integral
fax OF - d~y is invariant w.r.t. diffeomorphisms ¥ : U — U (i.e. bijective map-
pings which are differentiable along with their inverse): This is so, because OF
transforms contravariantly under ¥, whereas dvy transforms covariantly, so that
the Jacobi matrix cancels against its inverse. With this, let me explore the sit-
uation of two space and one time coordinate first: Given charges confined to a
circle in the xy-plane, and let the time axis be perpendicular to it, there are two
classes of paths one may go: to the side of the circle and those intersecting the
circle. Those to the side contract homeomorphically to a point, so yield a zero
result. So, what about the loops which intersect the circle one or more times?
The point now is that with the time perpendicular to the circle in the xy-plane,
the particles will not go in a circle, but in a spiral around the time axis, and the
originally thought circle is being torn into a spiral. This spiral can be stretched
homeomorphically into a line along the time axis. That leaves us with loops
encircling the time axis one or several times. Now I observe that I can lift these
loops further up the time axis without affecting the values of path integral along
those loops. And, if the particles haven’t stayed for eternity in that place - which
may be assumed not to have happened, then, lifting the loops further towards
t — oo, no charges will then be present and potential vector field will converge
to zero. So, by the principle that all physical observable quantities are to be
confined to a bounded region in spacetime, the path integrals along all loops (in
the assumed 3-dimensional spacetime) give a zero value. The same argument
now applies to 4 dimensional spacetime: all 3-dimensional holes in space can be
streched out towards ¢ — oo and t — —o0 resp., and since there both fields and
charges are supposed to vanish, all integrals along closed paths again give zero.

4 Concern 2

The 2nd concern is that apart from the ranges of definition of j and A, the
path integration must be taken not w.r.t. the Euclidean metrics, but w.r.t.
the Minkowsi metrics, i.e.: the path integration has to be restricted to regions
on which the Lorentz matrix is invertible. Now, with one time and two space



coordinates, spacetime is divided into 3 disjoint such regions, separated by the
forward and backward light cones. in 4 dimensions, however, in the space-like
region {(z°,x) | |2°2 > ||x[|?} the Lorentz metrics is twice degenerate, because
the 3-dimensional Euclidean unit ball cuts into an upper and lower hemisphere:
the Lorentz metrics simply does not distinct between corresponding points of
either halves. The upper and lower hemispheres can be associated with the
positive and negative sign of the determinant, or equivalently, a positive or
negative sign of parity.

5 Conclusion

So, in 3 dimensions of space and time we end up with 3 connected regions in
which Maxwell’s equations can be integrated to one scalar equation, and in 4 di-
mensions of space and time, there are four regions in which Maxwell’s equations
can be integrated. The excluded regions in 4 dimensions, defined up to rotation
in the 3-dimensional space, is the union of forward and backward light cone with
{(2°, - ,23) | 23 = 0}. The set {(2°,--- ,23) | 2® = 0} could be included to ei-
ther be part of the upper or lower hemisphere. But a smarter solution would be
the replacement of R? by the triple (0, 0y,0) of Pauli matrices in which case
the 2-fold coverage SU(2) of SO(3) would smoothly resolve the parity flip. In
[4] just that is done. Anyhow, time inversion homeomorphically maps forward
and backward light cones onto oneanother, and so does space inversion with the
spacelike positive and negative parity cones. The four regions therefore come
from the four combinations of the two discrete symmetries that the groups O(4)
and U(4) possess: time and space inversion.

So, where did we reach? We showed that one can rewrite Maxwells equation
into a quadrupel of wave equations of action integrals, and solving these, will
give us the solution of Maxwell’s equations in form of a quadruplet of actions.
The general solution then will be any complex linear combination of the four
component solutions up to the additions of constant complex vectors y in C*.
And then, we get a U(4)-symmetry on top. (I could have chosen real linear
combinations with O(4) on top, but since the fields A* are complex, it’s better
to extend to the complex from scratch.) What is that symmetry group on top of
the solutions good for? The interchange of any two of the four components maps
one-to-one with the interchange of two of the four time and space coordinates
20, -+, 23, In non-relativistic classical mechanics time and location coordinates
are equivalent and part of one (Euclidean) symmetry group. We now achieved
right that equivalence of space and time coordinates in Maxwell’s relativistic
theory, either.

6 Outlook

The integrability of Maxwell’s equations offers an interesting perspective: It
suffices to path integrate the sources, L(z) = [j - dvy (with a fixed starting



point) to get the action integral of the vector field A, and the differential of this
action field will give A in turn.
That alludes to what R.P. Feynman said in [2]:

”..I was now convinced that since we had solved the problem
of classical electrodynamics (and completely in accordance with my
program from M.L.T.; only direct interaction between particles, in
a way that made fields unnecessary) that everything was definitely
going to be all right. I was convinced that all I had to do was make a
quantum theory analogous to the classical one and everything would
be solved..”

Moreover, we touch quantum field theory by the following: Path integrating
the vector field A in any of the four component regions, e.g. in the forward
light cone gives a function F' which has the dimension of energy by test charge.
Next, an implicit additional charge factor enters from the charged sources that
had been path integrated, plus we used dz® = cds, where ¢ is the speed of light
(that I tacitly set equal to 1). With eg being the elementary electronic charge, I
can the write eg ' = ey [ A-dy in units of e3/c as a dimensionless function. But
e3/c = ah, where « is known to be the dimensionless fine-structure constant.
Add to this, sofar the test charge is a constant eq resting at some place (2, x),
but if we let eg = eg(2) move in spacetime, then this makes F' operate on eq(z).

That all is one side of the relations. The other one is that we never departed
classical realms: It still holds that from F(z) alone, one can exactly determine
the motion of the sources j(z). It therefore repeats the canon from classical
gravitation: The field is the equivalent dual of the particle view: The field
holds the complete observability of the particles. In particular, this excludes
energy-momentum transfer from the particles to field bosons by themselves:
In it, energy-momentum exchange occurs only, when the electromagnetic field
reaches a charged particle target. Or, as Feynman put it equivalently: photons
are edges that connect two nodes: a charged particle source with a charged
particle target.
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