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 1. Abstract
Asset turnover has been used for approximately a century in corporate capital allocation. Capital 
expansion coefficients have been used in the Leontief Dynamic Model but the use of asset turnover 
ratios to regulating production growth in Computable General Equilibrium models has been limited. 
This research investigates the hypothesis that there is a causal relationship between productive 
assets and production of commodities. The hypothesis is tested in global economic data using static 
and chain probabilistic graphical model selection. It was found that the hypothesis is supported for a 
significant number of commodities. The confirmation of the hypothesis establishes that production 
to assets ratios for commodities are endogenous regulators of production growth.

 2. Background
The concept of asset turnover using annual sales or sales per day as a proxy for time evolved in the 
early twentieth century, notwithstanding that the relationship between production, capital and time 
had long been a topic of interest for economists. Asset turnover was a key component in Return on 
Net Assets (RONA) analysis developed by Pierre Samuel DuPont (1870-1954) to manage capital 
allocation across diversified business 
units at E. I. du Pont de Nemours and 
Company and to measure management 
efficiency (Davis 1950; Chandler 1977, 
p.446; Nettleton 2012).

RONA Analysis was implemented at 
General Motors where it helped underpin 
Alfred P. Sloan's revolutionary 
"Organization Study," which devolved 
management autonomy to business units 
while retaining strong central financial 
control (Sloan 1990, pp.140–8). RONA 
Analysis became widely adopted 
throughout US industry, where it was 
also known as DuPont Analysis.

The relationship between profit margin 
and asset turnover, the two components 
of RONA, is shown in Figure 1 (US 
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Figure 1: Components of the RONA (DuPont) Method of Ratio 
Analysis by Industry Sector (Pretax Profit is before interest and non-
operating expenses; Operating Assets is Total Assets less non-interest 
bearing liabilities). Source: US Department of Commerce Quarterly 
Financial Report for Manufacturing, Mining, Trade and Selected 
Service Industries QFR Database Tables for the year to Second 
Quarter in 2002, 2007 and 2012 (Retail lags one quarter).
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Census Bureau 2012).

Industry asset turnover ratios are provided in 
Figure 2. It may be noted that retail and non-
durable wholesale have high sales to assets ratios 
ranging from approximately 2.5 to almost 5.0 
times. The asset turnover ratios for all 
manufacturing is approximately 1.0 times, 
implying one dollar of assets per dollar of sales.

Ex post asset turnover ratios are influenced by 
many factors such as changes to sales quantities 
and prices, varying stock levels and capacity 
utilisation. Asset turnover risk is measured by the 
volatility of the asset turnover ratio. This is an 
important consideration in residual income 
valuation, which is a widely used technique that 
evolved from DuPont Analysis (Penman 2007, 
pp.367–374,653). It has been shown in growth 
planning and forecasting that asset turnover ratios 
are stable for long periods and while capacity 
increases in steps, asset turnover reverts to the 
mean within a period of one to two years (Penman 
2007, p.512).

Asset turnover ratios embody production 
technologies and infrastructure as well as thee other 
organisational strategies embodied in operations, 
marketing and distribution. Therefore asset 
turnover is usually analysed in management 
accounts by its various asset components, such as 
days sales in inventories, days sales in debtors and 
factory investment per dollar of annual sales. From 
this it may be noted that asset turnover is 
interchangeably referred to as either a sales to 
assets ratio, as in DuPont Analysis, or the inverse 
assets to sales ratio. For example, can be expressed 
as either low days sales in inventories or high sales 
per dollar of inventory investment.

There have been many finance and investment 
studies in predicting company performance using 
DuPont Analysis (Penman 2007, p.522; Soliman 
2008). However an appreciation of the use of financial techniques such as asset turnover in 
governing production growth has been less apparent in Computable General Equilibrium (CGE) 
modelling for regional and multi-regional industry performance. The Leontief Dynamic Model and 
CGE benchmarking techniques have explicitly incorporated asset turnover ratios. 
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Figure 2: Industry Asset Turnover Ratios(Sales to 
Operating Assets as defined in Figure 1 for the year to 
Second Quarter, sorted by 2012) Source: US 
Department of Commerce Quarterly Financial Report 
for Manufacturing, Mining, Trade and Selected Service 
Industries Historical QFR Database Tables [2000 - 
Present]



The recursive Leontief Dynamic Model developed by the pioneer of Input-Output analysis, Nobel 
Laureate Wassily Leontief (Leontief 1936; 1941, p.48; 1953, pp.53–90), and David Hawkins 
(Hawkins 1948, p.312; Hawkins & Simon 1949, pp.245–8) has the form (I−A+B) x i−B x i+1= f ' , 
where f '  is final demand, xi  is production in year i  and A  is the static technical or 
direct requirements coefficient matrix of the industrial production network and  B  is the stock or 
capital expansion coefficients matrix. A proportion of production output of B( xi+1−x i)  is 
notionally sequestered for investment. The model has since been extended (Miller & Blair 2009, 
pp.642–6) by incorporating a matrix of replacement capital coefficients (D) 

(I−A+B−D) x i−B x i+1= f ' .

The use of the Leontief Dynamic Model in computable general equilibrium optimisation is affected 
by the inherent assumption that all sectors produce at full capacity, which leads to two major issues 
(Miller & Blair 2009, p.649). Firstly, the Leontief Dynamic Model is rendered unsuitable in the 
majority of intertemporal CGE applications where capacity utilisation varies with industry activity. 
Secondly, capital additions may become inadequate for future production and even become negative 
if production declines (effectively transforming productive assets back to commodities that are 
available for final consumption).

There are other disadvantages of recursive approaches. In practical situations the underlying annual 
transfer function is usually not a set of simple recursive functions of input variables. For example, 
CGE and financial projections share the same features of balance sheet and income and cash flow 
statements that represent models of stocks and flows comprising state, information and endogenous 
variables. These include many discontinuous elements such as tests, switches and external 
constraints that frustrate the use of recursive models. It has been shown that spreadsheet-like 
topological processing of acyclic networks is a better approach when the equations are functions of 
intermediate variables rather than only the initial variables (Nettleton 2010b; Nettleton 2011).

A third, albeit more theoretical issue is a mathematical inconsistency in the Leontief Dynamic 
Model. It can be demonstrated using the Make V  and Use U  framework that production in the 
current period is a function of assets in the previous period as well as in the current period 
(Nettleton 2010c, pp.13–4). This violates the conditional independence principle that production in 
a given period is dependent only upon the assets in the current period.

These issues with the Leontief Dynamic model can be stabilised using a framework accounting 
stocks and flows model that employs external asset turnover constraints, or governors, to mediate 
intertemporal production growth (Nettleton 2010a, pp.331–43). Benchmarking CGE models make 
use of multiregional commodity Make V  and Use U  matrices prepared through standard 
United Nations' SNA93 national accounting techniques (ten Raa 2005). Productive gross margin is 

U−V T
 . s  where s  is the vector of industry activity levels, which is similar to von Neumann's 

productive process intensities (Von Neumann 1938, p.3). Asset turnover constraints take the place 
of static material resource inequalities and may best be characterised as top-down asset intensity 
governors of productive intensities. For each commodity in each country in each period, the 
production constraint is given by (Nettleton 2010a, pp.335–339):
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Although supported by the extensive use of DuPont Analysis in industry and the application of 
production governors in benchmarking CGE, the research question of whether assets indeed govern 
production has not been investigated directly in data. This may be expressed as the hypothesis that 
there exists a causal influence from productive assets to production in regard to the production of 
commodities.

The Global Trade Analysis Project (GTAP) (McDonald & Thierfelder 2004, pp.3–5; Purdue 
University Department of Agricultural Resources 2012) collates, harmonises and provides 
consistent world economic data that is suitable for CGE calculations. The GTAP Social Accounting 
Matrix (SAM) is a comprehensive dataset that facilitates testing of the hypothesis defined above. 
GTAP's SAM has three unique features:

1. Commodity rows are uniformly valued at sellers' prices, which GTAP terms “market 
prices”.

2. There are three factors of production, Labour, Land and Capital (which includes natural 
resources). Factor inputs are classified both as the non-commodity inputs required by the 
production process and the gross value added by production. Labour is readily identifiable 
as the wage and salary compensation of employees. Land and Capital together comprise the 
gross operating surplus and mixed income accruing from production after labour cost but 
before to interest, other rents and any other tangible, non-produced assets required to carry 
on production. Gross operating surplus plus mixed income less the consumption of fixed 
capital provides the net operating surplus.

3. Commodities are consumed by six agents: industrial production activities, private 
households, government, investment, global transport services and other regions. The role of 
these agents is purely consumption, which is achieved through the artifice of a Regional 
Household. The Regional Household receives all factor payments and taxes from production 
activity and distributes these receipts to the agents. Capital account investment and taxes is 
funded by capital account savings, received from the Regional Household, together with 
depreciation and any net trade balance in capital investment.

Only a single aggregated figure for each country's invested capital is available in the GTAP SAM. 
This means a surrogate for productive assets by commodity class is required for empirical 
investigations. A potential proxy for capital is provided in the factor return on Capital & Land by 
commodity. While the factor return on Capital & Land is the gross operating surplus and mixed 
income, its Dupont Analysis analogy is net assets multiplied by return on net assets.

Due to an absence of viable alternatives, factor return on capital has often been used as a proxy for 
capital by commodity (Reimer 2006, p.406). In circumstances where source data is unsatisfactory 
due to issues such as negative factor returns, GTAP harmonises the factor return on Capital & Land 
using appropriate estimates of return on capital (Huff et al. 2000, p.10).

However, it is quite possible that in an empirical investigation from data the factor return for Capital 
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V T
⋅st ≤ ninvt t−1⋅

Production
Assets

where :
V T is the Make matrix
st is the industry activity matrix
ninvt t−1 is the net investment at the end of the previous period



& Land may be insufficiently robust as a surrogate. There are a number of major issues. Firstly, 
factor returns are both inputs to production and outputs from production. The aggregate value of 
factor inputs for each class of commodities is equal to the difference between the value of material 
outputs and the total value of domestic and imported material inputs and non-factor service inputs. 
Therefore, it may be expected that there would be a strong causal relationship between production 
and factor returns, which might be termed the profit causality, in contrast to the asset turnover 
causality where there is a causal link from assets to production. It quite possible that the profit 
direction could heavily mask any causal link from assets to production.

A second major issue is that the factor return on Capital & Land is a joint distribution of productive 
assets and the rates of return achieved in sustainable commercial enterprises in the commodity class 
across different countries. The factor return for Capital & Land in different countries may not have 
the same distribution due to differing production functions, infrastructure and returns to scale. It 
might also be considered that the factor return for Capital & Land may be affected by business 
conditions in different country and over time in a single country.

Two further substantive issues are working with world economic data, which is inherently a 
complex, noisy and uncertain domain, and computational challenges such as data size and 
combining the algorithms of computing science with the probabilistic foundations of statistics to 
infer a single unified model that simultaneously solves for multiple variables.

These challenges to the suitability of the factor return for Capital & Land as a surrogate and of its 
use in a difficult problem mean that there is an inherently large bias against establishing the 
hypothesis.

 3. Methodology

 3.1.Data Source

GTAP SAM data is investigated at the lowest level, that is, without aggregation by commodity or by 
country. The GTAP 8 flexagg8 databases for 2004 and 2007 were exported to 19.3Gb sql-script files 
using GTAP utility programs. Binary operations in Mathematica (Wolfram 2011) to condition 
descriptions and remove zero entries delivered reduced file sizes of about 652Mb that could be used 
to create standalone Hsqldb 9 (Hypersonic SQL Group 2012) databases. The commodity 
components of each of the variable class by country were obtained with crosstab queries executed 
across the Social Accountability Matrix (“ASAM”) (McDonald & Thierfelder 2004).

The first column in each dataset contains a discrete country identifier, which means the dataset is 
“mixed”, and the subsequent columns containing commodity class variables industrial production 
outputs (V), industrial uses inputs (U), the factor inputs of Capital, Land and Labour, and the net 
non-industrial consumption of output calculated as:

Consumption
(Net )

=
Household
Consumption

+
Government
Consumption

+
Investment
CGDS

+
Net

Exports

In the industrial production matrix of inputs and outputs, the production of a commodity draws 
inputs of other commodities. These are termed Uses (“U”). For example, the production of 
automobiles consumes steel, electricity and many other commodities. For the production of each 
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commodity, the Uses of all commodities are aggregated as a single “U” variable (i.e. vertically 
aggregate in the SAM's industrial production matrix).

Other ways to mode Uses are either to aggregate the Outputs of production (i.e. horizontally 
aggregate in the SAM) or to retain the Uses structure as a full Input Output matrix. The former 
greatly weakens any causalities between Uses and Factors because of the orthogonality between 
Inputs and Outputs. The latter approach of preserving an unaggregated Uses matrix is not viable. It 
results in the number of Use variables rising from 57, which is the number of commodities 
considered, to 3,249. This has a number of consequences. Firstly, the number of potential edges in 
each models rise from approximately 61,000 to 11.8 million. Secondly, the computational 
complexity of algorithms is polynomial in the number of tests, usually O(n2), where n is the number 
of variables, and execution time scales with the size of the data set. A study based on the 
unaggregated Uses matrix was commenced but failed during processing. Thirdly, even had there 
been success in processing, the exceptionally high number of Uses variables would be so highly 
disproportionate to the number of other class variables (Production (V), Capital, Land, Labour and 
Consumption) that overfitting could have been a major issue and the analysis of causalities 
potentially misleading.

 3.2.Static Mixed Directed Gaussian Graphical Model

 a) Methodological Background

A Directed Gaussian Graphical Model (DGGM) is appropriate for continuous data, which can be 
modelled with a probability distribution that is the product of factors that conditional models 
according to the d-separation property and Markov condition (Højsgaard et al. 2012, p.13):

f (x)=∏v∈V
f ( xv∣x pa(v))

Each factor is associated with the distribution of a local node xv , which depends only upon the 
joint distribution of the local node's parent nodes x pa(v) .

Assumptions underlying the application of graphical models have been concisely summarised 
(Scutari & Strimmer 2010, pp.8–10). Two important assumptions are that there are no hidden 
(latent) variables and that the relationships between variables are solely conditional independencies. 
The latter assumption implies that the global and local distributions of discrete or categorical 
variables follow a multinomial distribution, the global distributions of continuous variables follow a 
multivariate Gaussian distribution N d (μ ,Σ)  and the local distributions of continuous variables 
follow a univariate or multivariate Gaussian distribution.

Methods to infer the structure of a joint graphical model generally fall into one of low order 
conditional independence tests of edge likelihood or log-likelihood, heuristic search through score 
optimisation such as the hill-climbing algorithm and Bayesian Markov Chain Monte Carlo sampling 
(Højsgaard et al. 2012, p.42). In this investigation two directed acyclic graph (DAG) selection 
methods are applied, consistent with the approach of previous researchers (Højsgaard et al. 2012, 
p.62).

The first selection method for the Static model is the R pcalg PC() function, which is an example of 
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low order conditional independence tests of edge log-likelihood (Spirtes & Glymour 1991; Spirtes 
et al. 1993). A skeleton of undirected edges is detected based on a threshhold p-value for local 
edges of 0.05. Various models that are Markov equivalent have the same undirected graph skeleton 
and same immoralities and so cannot be distinguished in model selection (Frydenberg 1990; Pearl 
& Verma 1991). The PC() algorithm orients edges to determine a complete partially directed acyclic 
graph (cpDAG) equivalence class rather than a specific Directed Gaussian Graphical Model. In 
addition to causal edges in the cpDAG, there are undirected edges and bidirection edges that have 
one orientation in a DAG of the equivalence class and the reverse orientation in another DAG. 

The likelihood of an edge between two variables in the PC() algorithm is function of the empirical 
mutual information between the variables and thereby to the extent to which the variables are 
correlated. The partial correlations between random variables are calculated from the concentration 
matrix Κ , which is the inverse of the covariance matrix Κ=Σ

−1 . A weighted covariance 
matrix Σ  is calculated with the R stats package cov.wgt(), using the S-Plus “ML” method. As the 
covariance matrix Σ  is nearly singular, the concentration matrix Κ  is calculated from Σ  
using the R corpcor package pseudoinverse() function. The partial correlation matrix is then derived 
using the gRbase conc2pcor() function, which calculates the partial correlation between variables u 
and v as follows:

puv∣V /{u , v }=
−k uv

√k uu k vv

The PC algorithm is vulnerable to overfitting and measures are implemented to explicitly penalising 
complexity by regulation and restricting the hypothesis space (Koller 2012). Overfitting arises 
because the sampled u and v may have mutual information greater than zero some of the time, 
notwithstanding that u and v may be independent in the empirical distribution. As more edges lead 
increase the likelihood score, additional edges may be added up to the point where the likelihood 
score is maximised because the network is fully connected.

The second model selection method in the Static case is heuristic search through score optimisation 
using the R bnlearn hc() and mmhc() functions (Scutari 2010; 2012). These functions optimise a 
Bayesian Information Criterion (BIC) goodness-of-fit score across all possible network structures 
generated from the current DAG using perturbations that add, remove and reverse edges. The main 
advantages of using a BIC score across the network are that underfitting data is unlikely because of 
the asymptotic consistency of BIC scoring, and overfitting is minimised by forcing a trade-off 
between fit and complexity that penalises spurious edges.

A hill-climbing algorithm has the potential to become trapped in a local equivalence class where the 
BIC score doesn't change with the perturbations. There are often multiple local equivalence classes 
neighbouring the I-minimum. Therefore methods are implemented to overcome local equivalence 
class plateaus and explore the global space. These methods include techniques such as random 
restarts that tend to exacerbate the already high computational demands of the hill-climbing 
perturbations.

The mmhc() function was developed as a hybrid algorithm to adapt the hc() function by restricting 
the hypothesis space (Tsamardinos et al. 2003). This first part of the procedure is a “max-min 
parents and children” forward selection of the skeleton based on maximisation of the minimum 
association measure observed with any subset of the nodes selected in the previous iterations 
(Tsamardinos et al. 2006). Markov blankets of variables are detected by restricting the search space 
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using conditional independence tests using a default significance level of 0.05. The second part of 
the procedure is a hill-climbing algorithm that finds the optimal network structure in the restricted 
space using BIC network scores.

 b) Additional Data Preparation

Crosstab results for each country in 2004 and 2007 are normalised by dividing all data for each 
country by the aggregate of all commodity production in that country in the respective year and 
multiplying by 104. The number of observations was maximised by vertically appending the 2007 
rows to the 2004 rows, while retaining the country identifier. This resulted in a file size of 
approximately 1.1Mb excluding Consumption variables and 1.4Mb including Consumption 
variables.

 3.3.Chain Mixed Directed Gaussian Graphical Model

 a) Methodological Background

A chain graph is similar to a DAG in having directed and undirected edges but a chain graph has no 
bidirectional edges or no semi-directed cycles. A chain graph is derived from a forest where nodes 
have at least one parent, edges are undirected and the result may include many disconnected 
components. Minimising the overall BIC score leads to one or more trees and is the preferred 
approach. In contrast minimising edge log-likelihood constrains edges weights to be non-negative 
and results in a single tree.

Structure learning or model selection in chain analysis requires that the search space be restricted to 
the edges of a conditional model between blocks of variables. It is an appropriate technique when it 
is clear that variables can be classed a priori into meaningful blocks. There are two steps needed to 
in this research. First, a model similar to the static case is developed solely for 2004 variables 
specifying the country classifier as a prior. Following this, a model is developed for the whole of the 
data (both 2004 and 2007 variables), specifying the 2004 model as a prior.

Model selection does not assume any order within bocks but respects the mutual order of the 
blocks. Thus the only causal edges derived in this analysis are the directed edges between the 2004 
and 2007 blocks. Causal edges between these blocks result from an accounting effect that has 
become very diluted by factors that mitigate against finding strong support for the hypothesis:

• As in the Static case, dilution of causal asset turnover edges by the presence of large number 
of edges with reverse causality (i.e. the profit causality from “V&U” to “Capital and Land”);

• In regard to the Leontief Dynamic Model highlighted above, production in a period is 
theoretically a function only of average productive assets in that period and not the average 
production assets of previous periods. Use of a chain modelling framework stretches this 
theoretical foundation in three ways. Firstly, returns to Capital and Labour in each period are 
proxies that are one step removed from the average productive assets represented by these 
indicators. Secondly, although average assets in each period are conditionally independent in 
regard to causality of production there is, of accounting necessity, a numerical linkage. The 
closing value of assets in the previous period, which is the same as opening assets in the 
current period, becomes a common component (albeit only one component in each case) in 
the notional calculation of average productive assets in each period. Thirdly, in this research 
data for the immediately preceding periods (2005 and 2006) is unavailable, which imposes a 
significant intervening time period between the 2004 and 2007 class variables;
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• Intertemporal linkages over the period 2004 to 2007 are subject to many exogenous 
influences in the intervening periods, particularly considering that these exogenous factors 
affect different countries across the globe in different ways;

• The chain model selection is challenged by the presence of only one observation per country 
compared to two observations per country in the Static case.

Although the accounting chain effect is very diluted, detection of residual causal edges from 
“Capital & Land 2004” to “V&U 2007” would indicate a strong relationship between these “Capital 
& Land” and the industrial production network “V&U.”

The LWF Markov properties (S. L. Lauritzen & Wermuth 1989; Frydenberg 1990) specify that 
chain graphs factorise similarly to a DAG, where conditional independence is represented by d-
separation. In addition, chain graphs have the property that each factor (or conditional density) 
further factorises according to an undirected graph where conditional independence is represented 
by c-separation. Mixed interaction models may comprise log-linear models for discrete variables, 
such as country classifiers, and Gaussian models for continuous variables.

A structure that can be represented by a mixed-interaction chain model has many advantages 
including elegant mathematics, efficient optimisation for high dimensional problems, such as 
exploiting decomposability and sparse parameterisation. Being tree structures, mixed-interaction 
chain models have a natural resistance to overfitting, which means that models can be generalised 
from a small number of samples (Koller 2012).

Components of a chain graph G are the connected components of the graph after directed edges 
have been removed (Barber 2011, p.68). The components represent distributions over the variables 
of the component, conditioned on the parental components. The conditional distribution is itself a 
product over the cliques of the undirected component and moralised parental components. 
Therefore the joint distribution p (x )  of chain graph G is: 

p(x)=∏i
p(Χi∣paG(Χ i))

p (x)∝∏i ∏c∈C i

Φ(ΧC i
)

where Ci is the union of the cliques in component i, together with the moralised parental 
components of i, and Φ  are the associated functions defined on each clique.

The dependence graph of the Gaussian graphical model is decomposable and model selection can 
exploit the closed form expressions for factor graphs. Furthermore, chain graphs can be more 
expressive than DAGs for marginal distributions such as undirected 4-cycles (Barber 2011, p.69). 

This research applies two chain graph scoring methods in the R gRapHD minForest() function (de 
Abreu et al. 2011; 2010). The first method is BIC scoring, which is the default method for the 
extended Chow-Liu algorithm (Chow & Liu 1968; Edwards et al. 2010; Kirshner et al. 2004). This 
algorithm is an application of the maximum-weight spanning tree that by default optimises the BIC 
score to find the undirected maximum likelihood tree structure closest to the true one in the 
probability space, under the special constraint that each parent has just one parent. Highly efficient 
algorithms are guaranteed to find the maximum spanning tree (Kruskal 1956; Prim 1957). However 
these algorithms are O(n2) in time, which is generally unavoidable when considering pairs of edges, 
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and a minimal forest of undirected edges cannot be guaranteed.

Bayes Dirichlet scoring is the second scoring method used by this research in the R gRapHD 
minForest() function. Bayes Dirichlet scoring is a maximum a posteriori (MAP) estimate using the 
hyper-Dirichlet distribution for conjugate priors of the decomposable graphical model and the 
logarithm of Bayesian independence factors for edge weights (Buntine 1991; Cooper & Herskovits 
1992; Dawid & S. L. Lauritzen 1993; Heckerman et al. 1995; Højsgaard et al. 2012, pp.171–4). As 
the Dirichlet distribution is conjugate to the multinomial distribution, the posterior can be updated 
in closed form using sufficient statistics. This Bayesian scoring approach has sufficient statistics 
both from the data and from additional alpha-hyperparameters. Given a small amount of data, the 
sufficient statistics from the hyperparameter determine the prior beliefs and the strengths of these 
beliefs, which helps to smooth out random fluctuations in the data that can affect maximum 
likelihood estimates (Koller 2012).  at At the asymptotic limit, real data sufficient statistics 
dominate and the same result is observed for both BIC and Bayes Dirichlet scoring.

Following the determination of a BIC minimum forest, a decomposable graph is determined using 
the R gRapHD package stepw() function. The forward selection function stepw() selects edges to be 
added to a triangulated graph that maximises the overall score, which by default is BIC. Identifying 
decomposable graphs from undirected graphs is an NP hard problem in the same way as identifying 
Bayesian Networks (Chickering 1996; Højsgaard et al. 2012, p.166).

 b) Additional Data Preparation

Crosstab query results for each country in 2004 and 2007 are normalised in the same way as for the 
Static dataset, except that both 2004 and 2007 results are divided by the aggregate of all 
commodities produced in that country in the 2004 year. The chain dataset is completed by 
horizontally augmenting the 2004 rows for each country with the 2007 rows for the respective 
country. Variable names relating to 2004 are identified with a “y4” suffix and those for 2007 with a 
“y7” suffix. Chain file sizes are similar to Static file sizes.

 4. Results

 4.1.Static Mixed Directed Gaussian Graphical Model

On a research cluster computer the PC() function is quite fast, taking approximately 1 minute 
whether consumption variables are excluded or included. Computing time for the BIC-scored 
mmhc() function is significantly greater, extending to 54 minutes and 1.6 hours respectively. The 
greedy search hc() function is considerably more expensive. Excluding consumption variables the 
function requires 141 hours to complete and fails to finish within 2 weeks when consumption 
variables are included.

The number of causal edges between classes of variables is shown in Figure 3 for three algorithms 
(PC, hc and mmhc). The number of undirected and bidirectional edges for the PC algorithm is also 
shown. For example, from Capital & Land to the industrial production network (“V&U”) there are 
51 direct causalities and 37 undirected or bidirected edges. Indirect causalities are not shown. There 
are a further 36 indirect causal edges from Capital & Land to the industrial production network 
(“V&U”) that are intermediated by another variable and involve an undirected or bidirectional edge.
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Each of the three algorithms 
select models with 
significant causalities 
between variable classes. 
Edge counts approximately 
correspond to the likelihood 
of the variable class 
causalities. However, this 
needs to be interpreted with 
some caution for three 
reasons. Firstly, in general 
selected models with fewer 
edges are preferred. 
Secondly, it may be noted from the last column of Figure 3 that there are significant differences in 
the number of potential edges for each causality. Finally, the three algorithms have different scoring 
approaches (the PC() algorithm is constraint based, the hc() algorithm is BIC score based and 
mmhc() is a combination of both).

In Figure 3 it may also be noted that graphical models found by the hill-climbing algorithms hc() 
and mmhc() have large numbers of causal relationships from the industrial production network 
(“V&U”) to other class variables. For example, in the profit direction where the industrial 
production network (“V&U”) drives Capital & Land. Notwithstanding this issue, thee hc() and 
mmhc() algorithms confirm the PC() result that “Capital and Land” drives the industrial production 
network “V&U.” In each case this relationship ranks fourth after industrial production network 
(“V&U”) sources.

This is remains the situation 
in Figure 4, where 
consumption variables are 
included. As noted above, 
the hc() algorithm did not 
complete. Introducing 
consumption variables 
reduces the number of causal 
edges from Capital & Land 
to the industrial production 
network (“V&U”) from 51 to 
46, placing the relationship 
on equal footing with the in 
the reverse or profit driver 
from “V&U” to Capital & 
Land.

 4.2.Chain Mixed 
Directed Gaussian Graphical Model

The second stage of chain analysis is generally limited by computational resources. While on a 
research cluster computer the combined minForest() and stepw() processing time is just 4 minutes 
for the first stage in 2004 of 247 variables, this rises steeply to 18.3 hours when the secondary stage 
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Figure 3: Causal Edges for Static Model by three algorithms (pcalg PC() with 
p<0.05, and blearn hc() & mmhc() each with edge strength > 0.85 & direction ≥ 
0.5)

Figure 4: Causal Edges for Static Model including Consumption (bnlean hc() did 
not complete)



of 493 variables for 2004 and 2007 is included. The model including consumption variables, which 
has a total of 697 variables (+41%), has an overall processing time of 66.7 hours (+264%). Bayes 
Dirichlet scoring increases the processing time to 22.4 hours (+22%) excluding consumption 
variables and 87.9 hours (+32%) including consumption variables.

Causal edges for the chain graph are shown in Figure 5. These edges are identified with the Chow-
Liu algorithm using two different scoring approaches, default BIC scoring and Bayesian Dirichlet 
scoring. BIC scoring ranks the causal edge from Capital & Land 2004 to V&U 2007 almost equal 
second, on par with the other factor, Labour 2004, as a driver.

There are two issues with the 
results of Bayesian Dirichlet 
scoring. Firstly, it exhibits a 
strong tendency to hub at the 
first variable. With the 
country classifier included 
all edges hub at the country 
classifier and there is a total 
absence of relationships 
between all other variables. 
In Figure 5 the problematic 
country classifier is excluded 
for Bayesian Dirichlet 
scoring on the basis that the Static case and the Chain case with BIC scoring each show the the 
country classifier is not significant. With the exception of edges that hub at the first variable, which 
happens to be “V&U 2004,” it may be noted that the number of causal edges is otherwise similar to 
BIC scoring.

The second issue with the 
results of Bayesian Dirichlet 
scoring is that the results are 
less concise that for default 
BIC scoring. Bayesian 
Dirichelt scoring identifies 
11.3% more intertemporal 
causal edges than BIC 
scoring. In contrast to other 
experience, Bayesian 
Dirichelt scoring does not 
provide a sparser graph than 
the default BIC method in 
this research (Højsgaard et 
al. 2012, pp.171–4).

It may be also be noted that 
the number of causal edges 
between class variables in 
both BIC and Bayesian Dirichlet scoring is significantly greater than in the Static case. This implies 
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Figure 5: Causal Edges for Chain Model by gRapHD ChowLiu Algorithm using 
BIC scoring and Dirichlet scoring excluding country classifier

Figure 6:Causal Edges for Chain Model including Consumption



that the Static model is the more robust although, as outlined above, Chain model selection can be 
regarded as working on residuals and therefore a far more onerous test of the hypothesis.

The number of intertemporal causal edges for the Chain Model including Consumption variables is 
shown in Figure 6. The default BIC scoring 
method elevates the rank of the number of 
causal edges from Capital and Land 2004 to 
the industrial production network “V&U” 
2007 well above the Labour driver.

 5. Discussion of Results
Causal edges resulting from model selection in 
both the Static and Chain models showed that 
“Capital and Land” is a strong driver of the 
industrial production network “V&U.” 
However a test of the hypothesis needs to limit 
the analysis of causal edges to single 
commodities by eliminating inter-commodity 
effects where assets in one commodity may be causal to production of a different commodity.

The percentage of potential single commodity causal edges from Capital and Land to the industrial 
production network (V or U) is shown in Figure 7. These 
percentages are based on a maximum of 57 edges from Capital to 
V or U, and a maximum of 18 edges from Land to  V or U.

There are two issues to be noted. Firstly, double counting has been 
eliminated in these results. For example, if a commodity has a 
causal edge to both V and U then the causality to the network is 
counted once only.

Secondly, the results for the Static case include both direct and 
indirect causal edges. However, the latter are few in number. With 
consumption variables excluded there is only one additional 
propagated edge in each of the PC(), mmhc() and hc() algorithms. 
Including consumption variables results in three propagated edges 
with the PC() algorithm and one propagated edge with the mmhc() 
algorithm.

Causal edges are mapped in Figure 8 to indicate the commonality 
in model selection. It may be noted that the algorithms generally 
detect similar edges, and even across both the Static and Chain 
models.

It may be noted in Figure 7 that for the Static network, excluding 
Consumption variables, Capital drives the industrial production 
network (V or U) in almost half of cases and approximately one-
third of cases in the more onerous intertemporal Chain network. 
Land is also a significant driver in both models, albeit the 
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Figure 7: Percentage of Single Commodity Causal Edges 
identified by Model Selection Algorithms from Capital & Land 
to the Industrial Production Network (V or U) 

Figure 8: Map of Single Commodity 
Causal Edges by Algorithm
Algorithm key: PC(), HC (bnlearn 
hc()), MM (bnlearn mmhc()), CL 
(Chow Liu BIC scored) and CD (Chow 
Liu Bayesian Dirichlet scored)



algorithms demonstrate greater volatility with regard to this causality. In each case the percentage of 
detected single commodity causalities is marginally reduced by the inclusion of consumption 
variables.

Notwithstanding potential masking of the hypothesis of a causal edge from Capital and Land to the 
industrial production network (V or U) by the reverse causality of profit, which removes such edges 
from consideration, it is possible to conclude that model selection across a number of algorithms 
confirms a large percentage of significant single commodity causal edges from the productive assets 
of a commodity to production of the commodity.

 6. Conclusion
The use of asset turnover, which is the ratio of assets to sales, in RONA (DuPont) Analysis has been 
outlined. Asset turnover has also been applied in the Leontief Dynamic Model, in the form of 
capital expansion coefficients, and as an external constraint to regulate intertemporal production in 
benchmarking Computable General Equilibrium. The question addressed in this research is whether 
the use of asset turnover in regulating growth in CGE models is an inherent feature to be found 
empirically from data.

The hypothesis that there is a causal link between the productive assets for a commodity and the 
production of that commodity has been tested in global economic data derived from a fully 
disaggregated Global Trade Analysis Project (GTAP8) Social Accountability Matrix. The GTAP8 
database contains consistent data for the 2004 and 2007 years.

Factor returns to Capital and Land were been selected as a proxy for industry assets. Model 
selection techniques for mixed Gaussian probabilistic graphical models were used to detect the 
presence of causal edges from Capital and Land to the industrial production network. The presence 
of the causal edges from assets to production is masked by the presence of edges with reverse 
causality representing profit.

Static and Chain model selection cases were investigated. The PC, hill-climing and max-min hill 
climbing algorithms were applied to a Static case of a notional single year by combining normalised 
2004 and 2007 SAMs. The Chow-Liu algorithm with BIC and Bayesian Dirichlet scoring was 
applied to a dynamic case of Chain causality from 2004 to 2007, where a 2004 graphical model was 
the Bayesian prior for a 2007 graphical model.

Model selection from data in both the Static and Chain cases confirms that for a significant number 
of commodities, Capital and Land is a causal driver of the corresponding industrial production 
network for the commodity. It is concluded that the hypothesis of a causal relationship between 
productive assets and production is supported. This answers the research question confirming that 
production to assets ratios for commodities are endogenous regulators of production growth.
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