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Abstract

A method for dealing with the product of step discontinuous and delta
functions is proposed. A standard method for applying the above defined
product of distributions to polyhedron vertices is analysed and the method
is applied to a special case where the well known angle defect formula, for
the discrete curvature of polyhedra, is derived using the tools of tensor
calculus. The angle defect formula is the discrete version of the curvature
for vertices of polyhedra. Among other things, this paper is basically the
formal proof of the above statement.

1 Introduction

Products of distributions are quite common in several fields of both mathematics
and physics. Examples arise naturally in quantum field theory, gravitation and
in partial differential equations (e.g shock wave solutions in hydrodynamics) see
[1]. An important issue, related to product of distributions, is the fact that the
product, in the general case, is not well defined in D′. This issue is known as
the Schwartz impossibility result (see [1] §1.3). In the Schwartz classical theory,
only the product between a smooth function and a distribution is well defined.
Historically, products of distributions are addressed by means of algebras of
generalised functions developed initially by J. F. Colombeau (see [1] and [2]).

Discrete differential geometry is a rather new field of mathematics which
borrows concepts and ideas from both differential geometry and discrete math-
ematics. Main applications are concerned with the discrete version of several
classical concepts of differential geometry such as discrete curvature, minimal
surfaces, geodesics coordinates, minimal paths, surfaces of constant curvature,
curvature line parametrisation and the discrete version of continuous function-
als (see [3]). At the moment, discrete differential geometry uses many tools of
discrete mathematics while the classical tools of differential geometry (e.g. ten-
sors and coordinate free exterior calculus) are difficult to be applied. This leads
to an ambiguous definition of the various operators (see [4]) which are instead
well defined in the continuous counterpart of the theory.
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In this paper, we propose a method for evaluating the product of step discon-
tinuous functions and Dirac delta functions, related each other by an integrable
function. Moreover, the method is applied to a special class of non differentiable
varieties for which, the classical idea of curvature, together with all tools of dif-
ferential geometry, needs to be redefined in terms of distribution functions. In
particular, the class of varieties analysed is the one composed of a collection of
several Riemannian varieties glued in such a way the final surface is not differ-
entiable on the resulting edges and vertices. In this case, it is possible to show
that vertices and edges carry a concentrated discrete curvature which gives a
contribution to the total curvature of the surface, contribution that has to be
taken into account in order for the Gauss-Bonnet theorem to work.

For vertices, an important result was already known since the time of Descartes
which proved, in the first half of the 17th century, its angle defect theorem for
polyhedra. That idea, using the modern concept of curvature and applied to
the class of surfaces defined above, can be stated by saying that the discrete
total curvature of a vertex is equal to 2π minus the sum of the angles between
edges.

For edges, using the Gauss-Bonnet theorem, it is easy to see that the discrete
curvature carried by an edge Lij is given by:

kLij
=

∫
Lij

(kgi + kgj )ds (1)

where kgi and kgj are the geodesic curvatures, evaluated on the edge Lij , of the
two faces Si and Sj for which Lij is the boundary. If the surface is differen-
tiable on Lij , then kgi and kgj are opposite and the integral vanishes. If the
surface is not differentiable, the integral (1) gives in general a finite result witch
corresponds to the discrete curvature concentrated on Lij and (kgi + kgj ) is the
discrete curvature for unit length of the surface on Lij .

This kind of surfaces, characterised by a step discontinuous metric, are typi-
cal of problems ranging from theoretical physics up to computer graphics, where
the usual way to proceed is to brake down the problem and to define boundary
conditions (with conserved quantities) in order to keep the whole problem def-
inition consistent (see [5]) or to use methods of discrete mathematics to define
the relevant operators (see [4]). The approach proposed in this paper is to use
a more direct method derived from the classical differential geometry.

In Paragraphs 2 and 3, we derive a method for evaluating products of step
discontinuous and Dirac delta functions of the type

f(g1(x1), . . . , gn(xn))δ(x1, . . . , xn) (2)

where gi(xi) are step discontinuous functions and f is a locally integrable func-
tion. This result is partially known in the literature (compare with [6]).

In Paragraphs 4 and 5, we use the product of step discontinuous and Dirac
delta functions, mentioned above, to evaluate the discrete curvature of a poly-
hedron vertex. In order to do that, we define the step discontinuous metric
of polyhedron vertices and we evaluate their Riemann tensors by applying the
classical rules of the differential geometry but taking the derivatives in D’. By
using this approach, the final result is, as expected, the angle defect formula for
the total curvature of a polyhedron vertex.
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2 Product of steps and delta functions

Proposition 0. Let u(x) be the Heaviside function, δ(x) its derivative and f(x)
a function which is locally integrable in A ⊇ [0, 1]. Given the above, it follows
that f(u(x)) is a step discontinuous function in 0 and:

f(u(x))δ(x) =

(∫ 1

0

f(x)dx

)
δ(x) (3)

Proof. Let h(x) be a continuous function which image is contained in A,
limx→−∞ h(x) = 0 and limx→∞ h(x) = 1. It follows that limx→−∞ h′(x) = 0,
limx→∞ h′(x) = 0.

Figure 1: Function h(x)

and: ∫ +∞

−∞
f(h(x))h′(x)dx =

∫ +∞

−∞
F ′(h(x))dx

= F (h(∞))− F (h(−∞)) (4)

= F (1)− F (0) =

∫ 1

0

f(x)dx

where F (x) is the primitive of f(x) and the value of the integral (4) is indepen-
dent from h(x). This is the key point of the proof!

If h(x) goes continuously to u(x), then we have that the integrand of the
right side of the (4) goes to f(u(x))δ(x) which is a product of a step and a delta
function. This product is a delta function itself since it vanishes everywhere
apart from the point x = 0 where it is infinite and its integrand has finite value.
This product converges therefore to a delta function αδ(x), where the amplitude
α of the delta is given by the the right side of the (4) which, regardless the the
shape of h, will be always equal to:

α =

∫ 1

0

f(x)dx (5)
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Proposition 1. Let g(x) be a function defined as follows:

g(x) =

{
a for x < 0
b for x > 0

(6)

Also let (b− a)δ(x) be the derivative of g(x). Then:

f(g(x))δ(x) =

(
1

b− a

∫ b

a

f(x)dx

)
δ(x) (7)

with a, b ∈ R, and f(x) any locally integrable function in A ⊇ [a, b] (or [b, a] if
b < a).

Proof. To prove the (7) we can proceed exactly on the same steps of the proof
for (3) or we can notice that any function g(x) can be related to the Heaviside
function by means an an auxiliary function t = χ(x) = (b − a)x + k such that
g(x) = χ(u(x)). For example the function sign(x) (which is −1 for x < 0 and 1
for x > 0) can be written as:

sign(x) = 2u(x)− 1 with χ = 2x− 1 (8)

We have t = (b− a)x+ k, dt = (b− a)dx and by a simple change of variable we
have:

f(χ(u(x)))δ(x) =

∫ 1

0

f(χ(x))dx =

(
1

b− a

∫ b

a

f(t)dt

)
δ(x) (9)

which is the (7).

A more formal prove can be found in Appendix A.2. The above result
is already present in the literature (compare with [6]). With respect of the
theory developed in [6], in this paper, we have derived the (7) by means of a
completely different approach, we require f to be integrable (in [6] f is required
to be continuous) and we have generalised the equation to the multidimensional
case (see next paragraph).

Note that, even in the case where f(a) = f(b) and therefore there is no step
in the discontinuity, proposition 1 is essential to evaluate the product of the
discontinuity with a related delta function. For example, is easy to show that
sign2(x)δ(x) = 1

3δ(x).
We finish this paragraph with a general remark on product of distributions

and the way they are addressed in this paper. Every time we define the product
in a point x0, where the distributions are discontinuous, we always want the
discontinuities to have each other structure related by a well known law (in this
case, one to be the derivatives of the other) so that, if the structure of one
distribution in x0, which is unknown to us, changes, the structure of all other
distributions in the same point will change accordingly.

3 The multidimensional case

Proposition 2. Let g1(x) and g2(y) be two functions defined as follows:

g1(x) =

{
a for x < 0
b for x > 0

(10)
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g2(y) =

{
c for y < 0
d for y > 0

(11)

with a, b, c, d ∈ R and let f(x, y) be any function locally integrable in A ⊇
[a, b] × [c, d] (if b < a and/or d < c the definition of A has to be changed
accordingly). Also let (b − a)(d − c)δ(x, y) be the product of the derivatives of
g1(x) and g2(y). Then:

f(g1(x), g2(y))δ(x, y) =

(
1

(b− a)(d− c)

∫ d

c

dy

∫ b

a

f(x, y)dx

)
δ(x, y) (12)

This proposition can be proved by following the same steps of Proposition
1 and by using functions h1 and h2 having the same property of the function
h defined in the paragraph above. For the proof we also need the following
identity: ∫ +∞

−∞
dy

∫ +∞

−∞
f(h1(x), h2(y))h′1(x)h′2(y)dx

=

∫ +∞

−∞
dy

∂

∂y

∫ +∞

−∞

∂

∂x
F (h1(x), h2(y))dx

= F (1, 1)− F (0, 1)− F (1, 0) + F (0, 0) (13)

where F (x, y) is a function such that Fxy = Fyx = f(x, y) and the result is
independent from the functions h1 and h2. A more formal prove of Proposition
2 is sketched in Appendix A.4.

Obviously, we can interchange the roles of x and y since we may integrate
first with respect of y and then with respect of x. Note that the discontinu-
ity f(g1(x), g2(y)) addressed by this proposition is not the most general step
discontinuity we may have in two dimensions.

Note that proposition 2 gives a clear path on the possible way to generalise
the idea of products of step discontinuities and delta functions to the case with
as many dimensions as we like.

As a final remark, the fact that proposition 1 and 2 are valid for f locally
integrable is an important feature. An example, where we use this feature, is
given in paragraph 4 and 5 of this paper.

4 Metrics for a polyhedron vertex

The product of step and delta functions, developed in paragraphs 2 and 3, may
be applied to a number of fields of both physics and mathematics where the
product of step discontinuity and Dirac delta function arise naturally from the
theory. Among all, we have decided to focus our attention to applications related
to differential geometry and, in particular, to the evaluation of the curvature for
those varieties, described in the introduction, having step discontinuous metric.

As mentioned in the introduction, this kind of variety may have discrete
curvature concentrated on edges and vertices. In both cases, Christoffel sym-
bols, Riemann and Ricci tensors, curvature as well as a number of different
differential operators, may only be expressed by means of product of step and
delta functions. In this case, the relationship between the structures of the
step discontinuities and the delta functions codify the geometrical aspects of
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the non-differentiable point of the surface and proposition 1 (for edges) and
proposition 2 (for vertices) turn up to be very useful in finding an expression
for the differential quantity of interest

As an example, in this paragraph we will show a convenient and standard
way to define a step discontinuous metric for vertices of polyhedra with 3 or 4
concurrent edges, which are very common in many applications, and in para-
graph 5 we will show how to use these metrics to evaluate the curvature of
that polyhedron in the vertices. Even thought this paragraph is focused on
curvatures, the same method can be applied to evaluate any kind of differential
parameters and operators (e.g. Laplace-Beltrami operators).

Before we proceed, we need to introduce a definition. For the purpose of
this paper, we will call a 2d-step function any function defined as follows:

s(x1, x2) =


r1 for x1 > 0, x2 > 0
r2 for x1 < 0, x2 > 0
r3 for x1 < 0, x2 < 0
r4 for x1 > 0, x2 < 0

(14)

where ri ∈ R and s(x1, x2) is not defined on the axis (x1, x2). Any function of
the kind (14) can always be expressed in the form:

s(x1, x2) = s0 + s1(x1)s2(x2) (15)

where s0 ∈ R and s1, s2 are defined as follows:

s1(x1) =

{
a for x1 < 0
b for x1 > 0

(16)

s2(x2) =

{
c for x2 < 0
d for x2 > 0

(17)

and where there is always one degree of freedom in the parameters (s0, a, b, c, d).
Conversely any function of the form (15) is always a 2d-step function.

Now, let V be a vertex of a polyhedron whit 4 edges and angles between
edges α, β, γ and θ. Let also S be the surface composed of the vertex, the 4
edges and the relevant 4 faces. We can always open S on a (x1, x2) plane by
stretching each face by a different amount so that each of the 4 edges lies on
one of the semi-axes of the plane. By doing so, we basically map each face of S
to a specific sector of the plane (x1, x2). It is easy to see that the metric of S is:

gij =

(
1 s(x1, x2)

s(x1, x2) 1

)
(18)

where s(x1, x2) is a 2d-step function for which the amplitude, in each sector of
the (x1, x2) plane, is a function of one of the angles α, β, γ, θ and the parameters
(s0, a, b, c, d) are defined as follows:

s(x1, x2) =


cos(α) = s0 + bd for x1 > 0, x2 > 0
−cos(β) = s0 + ad for x1 < 0, x2 > 0
cos(γ) = s0 + ac for x1 < 0, x2 < 0
−cos(θ) = s0 + bc for x1 > 0, x2 < 0

(19)

The (19) define at the same time s(x1, x2) and the equations to determine its
parameters. The minus signs in the (19) is to take into account that we are in a
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sector with one of the two dxi negative and therefore the angle to consider in the
metrics is the one between dx1 and dx2 positive which is equal to π minus the
angle of the relevant polyhedron face for that sector. Since cos(π−x) = −cos(x)
a minus sign is needed.

Figure 2: Step discontinuous metric of a polyhedron vertex

As far as vertices with 3 concurrent edges are concerned, we can apply the
same procedure by adding a 4th face with angle between edges equal to ε and
then take the limit for ε→ 0. This is equivalent to cut the surface along one of
the edges, open the surface on the plane so that each face corresponds to a sector
of the axis (x1, x2) while the 4th sector remains uncovered and, finally, assign
a null metric to that sector (i.e. s(x1, x2) = 1). This obviously will lead to an
infinite inverse metric in the sector. This is not a problem since we are mainly
interested in evaluating the curvature in the vertex (i.e. the discontinuity) and
not the curvature on faces and edges (which we know to vanish).

An infinite inverse metric will lead to a function f(x, y), of proposition 2
above, which is continuous in A =]a, b[×]c, d[ and that goes to infinity in one
of the point of the border of A (the corner related to the null metric). Since
proposition 2 works also for this kind of functions, as long as the function is
integrable, this is not really an issue.

5 Vertex curvature and angle defect formula

Given the metric of a vertex defined as for the previous paragraph, we will see
now how to evaluate its curvature by means of proposition 2. To do that, we will
evaluate all the classical differential parameters, and eventually the curvature,
as distributions. First of all we evaluate the gi,j . From the (18) we have:

gij =
1

1− s2

(
1 −s
−s 1

)
(20)

The derivatives of the metric are:

∆1 =
∂g12
∂x1

=
∂g21
∂x1

= (b− a)δ(x1)s2(x2) (21)

∆2 =
∂g12
∂x2

=
∂g21
∂x2

= (d− c)s1(x1)δ(x2) (22)
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all other derivatives vanish. We proceed by evaluating the Christoffel symbol of
the first kind. We have (see Eq. (62) in Appendix A.5):

Γ112 =
1

2
(−0 + ∆1 + ∆1) = (b− a)δ(x1)s2(x2) (23)

Γ221 =
1

2
(−0 + ∆2 + ∆2) = (d− c)s1(x1)δ(x2) (24)

all other coefficients of the Christoffel symbol of the first kind vanish. For our
purpose we need to evaluate only one of the coefficients of the Christoffel symbol
of the second kind (see Eq. (63) in Appendix A.5):

Γ2
22 = g21Γ221 + g22Γ222 = − (d− c)s

1− s2
s1(x1)δ(x2) (25)

We have now all the elements we need to evaluate the Riemann tensor (see Eq.
(64) in Appendix A.5):

R1212 =
(b− a)(d− c)

1− s2
(1− s2 + s s1s2)δ(x1, x2) (26)

for surfaces and given the Riemann tensor, a classical formula for evaluating the
curvature is the following (see Eq. (65) in Appendix A.5):

k =
R1212

g11g22 − g12g21
=
R1212

1− s2
(27)

as expected the curvature is a Dirac delta function in (0,0). This means that
the vertex carries a discrete curvature while the curvature on edges and faces
vanishes. The total curvature can be evaluated by integrating the curvature on
S:

kT =

∫∫
S

k
√

1− s2dx1dx2 =

∫∫
S

R1212

√
1− s2

1− s2
dx1dx2 (28)

= (b− a)(d− c)
∫∫
S

(1− s2 + s s1s2)(1− s2)−
3
2 δ(x1, x2)dx1dx2

since the integrand is impulsive, it is clear that the total curvature is equal to the
amplitude of the impulse, which can be evaluated using proposition 2. Before
we proceed, we need to justify the fact that proposition 2 works in this case.
As long as the metric (18) (i.e. the polyhedron vertex) is the limit of metrics
having components s1 and s2, defined by the (15), with characteristics (59) (i.e.
the limit of differentiable varieties), then proposition 2 can be used. We have:

s1(x1) = x; s2(x2) = y; s(x1, x2) = s0 + xy; (29)

by using the (29) in the (12) we get the final expression for the total curvature:

kT =

∫ b

a

dy

∫ d

c

(1− s20 − s0xy)
[
1− s20 − 2s0xy − x2y2

]− 3
2 dx (30)

integrating, first with respect of x and then with respect of y, we obtain the
primitive F (x, y):

F (x, y) = arctan

(
s0 + xy√

1− (s0 + xy)2

)
(31)
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Let us see how to use the (31) by checking, for example, the value of F (x, y) in
(b, d). Given the (19) we have:

F (b, d) = arctan

(
s0 + bd√

1− (s0 + bd)2

)
= arctan

(cosα

sinα

)
=
π

2
− α (32)

where we have used the plus sign of the square root. The minus sign corresponds
to the case where we swap all the signs in the (19). This is equivalent to choosing
a different mapping, between faces and sectors, of the surface on (x1, x2). From
the (30) we evaluate our final results:

kT = F (b, d)− F (a, d)− F (b, c) + F (a, c) = 2π − α− β − γ − θ (33)

which is, as expected, the angle defect formula. It is remarkable that, by means
of proposition 2, we have derived the angle defect formula, in a non-differentiable
point, by using the tools of differential geometry.

Taking the limit for one of the angles going to zero, we get the example,
mentioned at the end of the previous paragraph, of a null metric and an infinite
inverse metric in a sector. As anticipated above, in this case the function f(x, y)
of proposition 2 goes to infinity (compare with the integrand of (30) above) in
a point of the integration set. However, the function is still integrable as clearly
shown by the (31) where the primitive is finite in the same point.

Appendix

A.1 Relationship between the (7) and Colombeau theory

We show now the relationship between the (7) and the Colombeau theory. What
follows cannot be taken as a formal proof of the (7) for two main reasons:

• The relation (34) below is not true with equality in the Colombeau algebra,
but only in the sense of association.

• It is not possible to find a well defined notion of convergence for the series
(35) below.

For simplicity, we will use g(x) = u(x), the Heaviside function, and f ∈ C∞.

Colombeau coefficients are defined as follows (see [1] §3.3):

un(x)δ(x) =
1

n+ 1
δ(x) (34)

we have:

f(u(x))δ(x) =

∞∑
n=0

f (n)(0)

n!
un(x)δ(x) =

∞∑
n=0

f (n)(0)

n!(n+ 1)
δ(x) (35)

where we have used the (34). With the substitution k = n+ 1 we have:

f(u(x))δ(x) =

∞∑
k=1

f (k−1)(0)

k!
δ(x) =

∞∑
k=1

F (k)(0)

k!
δ(x) (36)
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where F is the primitive of f . We have eventually:

f(u(x))δ(x) =

[
−F (0) +

∞∑
k=0

F (k)(0)

k!
(1)k

]
δ(x) = [F (1)− F (0)]δ(x) (37)

A.2 Formal prove of Proposition 1

Proposition 1a. Let g(x) be a function defined as follows:

g(x) =

{
a for x < 0
b for x > 0

(38)

with a, b ∈ R, and let f(x) be any function locally integrable in A ⊇ [a, b] (or
[b, a] if b < a). Also let (b− a)δ(x) be the derivative of g(x). Then:

f(g(x))δ(x) =
1

b− a

(∫ b

a

f(x)dx

)
δ(x) (39)

where the above product has to be intended as:

f(g(x))δ(x) =
1

b− a
lim
n→∞

f(gn(x))g′n(x) (40)

for any sequence gn such that:

1) gn(x) ∈ C1 ∀n ∈ N
2) limn→∞ gn(x) = g(x)
3) limx→−∞ gn(x) = a ∀n ∈ N
4) limx→+∞ gn(x) = b ∀n ∈ N
5) gn(x) is monotonic ∀n ∈ N

(41)

Moreover, we choose each gn(x) such that, if gn(x) is constant in any ]α, β[ and
equal to k, then f(x) is continuous in k.

Proof. The proof is given for a < b only, changes to the proof, for the case b < a,
are trivial. We note immediately that, given the (41), the gn(x) are bounded
and converge to g(x). For the dominated convergence theorem, gn(x) converges
in L1

loc and therefore in D′. Also g′n converges to (b− a)δ(x) in D′.
First, we prove two useful equations. For any f ∈ L1

loc(A), for any gn(x)
having the characteristics (41) and given any α, β ∈ R we have:∫ β

α

f(gn(x))g′n(x)dx =

∫ β

α

d

dx
F (gn(x))dx = F (gn(β))− F (gn(α)) (42)

where F (x) is the primitive of f(x).
Now, limα→−∞ gn(α) = a and limβ→+∞ gn(β) = b and therefore we have:∫ +∞

−∞
f(gn(x))g′n(x)dx =

∫ b

a

f(x)dx (43)

The (43) does not depend from the function gn(x) since it depends only on f(x),
a and b.
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Also, let [α, β] be any interval. Given the (41), g′n ≥ 0. We write
f(x) = f+(x) − f−(x) as the sum of its positive and negative part. Note that
f+(x) and f−(x) are locally integrable on A. We have:∫ β

α

|f(gn(x))g′n(x)|dx =

∫ β

α

f+(gn(x))g′n(x)dx+

∫ β

α

f−(gn(x))g′n(x)dx

=

∫ gn(β)

gn(α)

f+(x)dx+

∫ gn(β)

gn(α)

f−(x)dx

=

∫ gn(β)

gn(α)

|f(x)|dx

≤
∫ b

a

|f(x)|dx = M > 0 (44)

Now we can prove the proposition. Let φ(x) be a test function, taking into
account the (43) it is possible to write:∣∣∣∣∣

∫ +∞

−∞
f(gn(x))g′n(x)φ(x)dx−

(∫ b

a

f(x)dx

)
φ(0)

∣∣∣∣∣
=

∣∣∣∣∫ +∞

−∞
f(gn(x))g′n(x)[φ(x)− φ(0)]dx

∣∣∣∣
≤ Im1 + Im2 + Im3 (45)

where m is any positive integer and:

Im1 =

∫ −1/m
−∞

|f(gn(x))g′n(x)| |φ(x)− φ(0)|dx (46)

Im2 =

∫ +1/m

−1/m
|f(gn(x))g′n(x)| |φ(x)− φ(0)|dx (47)

Im3 =

∫ +∞

+1/m

|f(gn(x))g′n(x)| |φ(x)− φ(0)|dx (48)

Since φ is a test function, it is continuous at x = 0. Given any ε > 0, it is
possible to find δ > 0 such that, whenever |x| < δ, |φ(x)− φ(0)| < ε. So, given
any m > 1

δ , if we choose any n > m, we have:

Im2 =

∫ +1/m

−1/m
|f(gn(x))g′n(x)| |φ(x)− φ(0)|dx

≤ ε

∫ +1/m

−1/m
|f(gn(x))g′n(x)|dx ≤Mε (49)

Where we have used the (44).
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Now, φ is a continuous function with compact support S and therefore it is
bounded. We can find L > 0 such that |φ(x)− φ(0)| < L. We have:

Im1 =

∫ −1/m
−∞

|f(gn(x))g′n(x)| |φ(x)− φ(0)|dx

≤
∫
S

Ldx

∫ −1/m
−∞

|f(gn(x))g′n(x)|dx

= N

∫ gn(−1/m)

a

|f(x)|dx (50)

where we have used the (44) and N > 0 is the integral of the constant  L on
S. Since gn(−1/m) converge to a and given the ε above, it is possible to find
k such that, whenever n > k then Im1 < Nε. Applying the same argument to
Im3 we find that, it is also possible to find k such that, whenever n > k then
Im3 < Nε.

To conclude, given the (45) and given any ε > 0, it is possible to find first
m and then k such that, whenever we choose n > k > m we have:∣∣∣∣∣

∫ +∞

−∞
f(gn(x))g′n(x)φ(x)dx−

(∫ b

a

f(x)dx

)
φ(0)

∣∣∣∣∣ ≤ (M + 2N)ε (51)

This proves that:

lim
n→∞

∫ +∞

−∞
f(gn(x))g′n(x)φ(x)dx =

(∫ b

a

f(x)dx

)
φ(0) (52)

Now, if we call (b − a)f(g(x))δ(x) the limit of the sequence of distributions
f(gn(x))g′n(x), the (52) proves the following:

• the limit exists

• the limit is a Dirac delta function

• the amplitude of the delta function is given by the (39)

We also note that the constrains (41) used to prove proposition 1 are too
stringent and that, in practical calculations, it is possible to relax them (see
appendix A.3).

A.3 Relaxing the Constrains Given by the (41)

We want to show that the constrains (41) used to prove proposition 1a are too
stringent and that, in practical calculations, it is possible to relax them. In
particular, in the same hypothesis of proposition 1, we want to remove the 5th

constrain of the (41) (i.e. we do not require each element of the sequence gn(x)
to be monotonic). With this new hypothesis, we state that, if

lim
n→∞

f(gn(x))g′n(x) = Aδ(x) (53)

which is f(gn(x))g′n(x) converges to a delta function, then the amplitude of the
delta is given by the (39).
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To prove that, we take the limit of the (43) for n that goes to ∞ and, since
with sequences of distributions the limit of the integrals is equal to the integral
of the limits, we have:

lim
n→∞

∫ +∞

−∞
f(gn(x))gn

′(x)dx =

∫ +∞

−∞
Aδ(x)dx =

∫ b

a

f(x)dx (54)

From which we have the (39).
As a final remark, from what we have said above the (39) and (12) are a very

general way of describing the product of step and delta functions. We may say
that, as long as the sequence gn converges to a step discontinuous function (in
this case condition 3 and 4 are satisfied as a limit on both x and n), propositions
1 and 2 work.

A.4 Formal prove of Proposition 2

Proposition 2a. Let g1(x) and g2(y) be two functions defined as follows:

g1(x) =

{
a for x < 0
b for x > 0

(55)

g2(y) =

{
c for y < 0
d for y > 0

(56)

with a, b, c, d ∈ R and let f(x, y) be any function locally integrable in A ⊇
[a, b] × [c, d] (if b < a and/or d < c the definition of A has to be changed
accordingly). Also let (b − a)(d − c)δ(x, y) be the product of the derivatives of
g1(x) and g2(y). Then:

f(g1(x), g2(y))δ(x, y) =
1

(b− a)(d− c)

(∫ d

c

dy

∫ b

a

f(x, y)dx

)
δ(x, y) (57)

where the above product has to be intended as:

f(g1(x), g2(y))δ(x, y) =
1

(b− a)(d− c)
lim
n→∞

f(g1n, g2n)g′1ng
′
2n (58)

for any pair of sequences g1n, g2n such that:

1) g1n(x), g2n(y) ∈ C1 ∀n ∈ N
2) limn→∞ g1n(x) = g1(x), limn→∞ g2n(y) = g2(y)
3) limx→−∞ g1n(x) = a, limx→+∞ g1n(x) = b ∀n ∈ N
4) limy→−∞ g2n(y) = c, limy→+∞ g2n(y) = d ∀n ∈ N
5) g1n(x), g2n(y) are monotonic ∀n ∈ N

(59)

Moreover, we choose each pair (g1n(x), g2n(y)) such that, if (g1n(x), g2n(y)) are
constant in any ]α1, β1[×]α2, β2[ and equal to (k1, k2), then f(x, y) is continuous
in (k1, k2).

As for proposition 1, in order to prove the above proposition, we first need
to prove some useful equations. As an example, we will prove the equivalent

13



of the (43). Let g1n(x), g2n(y) be two functions having the characteristics (59)
and let F (x, y) be a function such that Fxy = Fyx = f(x, y). We have:∫ +∞

−∞
dy

∫ +∞

−∞
f(g1n(x), g2n(y))g′1n(x)g′2n(y)dx

=

∫ +∞

−∞
dy

∂

∂y

∫ +∞

−∞

∂

∂x
F (g1n(x), g2n(y))dx

= F (b, d)− F (a, d)− F (b, c) + F (a, c) (60)

where, to prove the (60), we have taken the symbol ∂
∂y inside the integral (for

the linearity of integrals) and applied the definition of F (x, y). The (60) is
independent from g1n, g2n and depends only on f(x, y), a, b, c, d. Proposition 2
will not be proven in this paper. However, it is possible to prove it by following
similar steps to the ones used for proving proposition 1.

A.5 Tensor Formulas

The tensor calculus formulas used in this article, for evaluating Christoffel Sym-
bols and Riemann Tensors, are not the most standard ones but they are consis-
tent and the most convenient for the calculation in place. A reference to those
formulas can be found in ([7]).

Given the surface:

S =
(
x1(x1, x2), x2(x1, x2), x3(x1, x2)

)
(61)

having metric tensor gij(x
1, x2), we have:

for Christoffel Symbols (see [7] §6.1 Eq. 6.1a pag. 68):

Γijk =
1

2

(
−∂gij
∂xk

+
∂gjk
∂xi

+
∂gki
∂xj

)
(62)

and (see [7] §6.3 Eq. 6.4 pag. 70):

Γijk = girΓjkr (63)

for the Riemann Tensor (see [7] §8.2 Eq. 8.4 pag. 101):

Rijkl =
∂Γjli
∂xk

− ∂Γjki
∂xl

+ ΓilrΓ
r
jk − ΓikrΓ

r
jl (64)

For a two dimensional manifold the curvature k is equal to (see [7] §8.3 Eq. 8.11
pag. 105):

k =
R1212

g
(65)

where g = det(gij).
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A.6 Discrete Curvature on a Line

We will give below an example where we evaluate the discrete curvature carried
by a line. For simplicity we have chosen an example with a continuous metric
which is not differentiable on a line. In this case, product of step and delta
function are not present in the various differential parameters. However, the
same approach can be used for the more general case where the metric is step
discontinuous on a line and therefore the use of proposition 1 is required. Let
us consider the following surface:

We want to evaluate the discrete curvature carried by C. We evaluate the
discrete curvature of the vertex V . To do that, we cut the cone on one side and
we unfold it on a plane so that we can use the angle defect formula. We find
out easily that the total discrete curvature of the vertex V is:

kT (V ) = 2π

(
a− r
a

)
(66)

We know that the curve C carries a negative discrete curvature, per unit
length that compensates exactly the curvature of the vertex:

kT (C) = −kT (V ) = 2πr k(C) (67)

where kT (C) is the total curvature of C and k(C) is the curvature for unit length
on C (constant). We have:

k(C) = −
(
a− r
ar

)
(68)

which completes our calculation.

Figure 3: Cone on a Plane

Now, we want to find the same result by using the methods of differential
geometry. We define a polar coordinate system (ρ, θ) on the surface of fig. 3
with the centre on the vertex V , where the coordinate ρ > 0 is the distance of
the point (ρ, θ) from V evaluated on a minimum distance path (i.e. a ray) and
θ is a pseudo-angle covering the whole surface for θ ∈ [0, 2π]. In this coordinate
system, the metric of the surface is:

ds2 =

{
dρ2 +

(
r
aρ
)2
dθ2 for 0 < ρ < a

dρ2 + (ρ− a+ r)
2
dθ2 for ρ > a

(69)
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which is a continuous but not differentiable function and it is not defined for
ρ = 0.

We define ν(x) to be a continuous function such that ν′(x) = u(x), the
Heaviside function, and ν(0) = 0. By using the following notation:

x1 = ρ
x2 = θ
α0 = r

a
α1 = 1− r

a

m(x1) =
[
α0x

1 + α1ν(x1 − a)
]2

(70)

we have:

gij =

(
1 0
0 m(x1)

)
(71)

gij =

(
1 0
0 1

m(x1)

)
(72)

From now on, we proceed as we did in paragraph 5:

∆ =
∂g22
∂x1

= 2
[
α0x

1 + α1ν(x1 − a)
] [
α0 + α1u(x1 − a)

]
(73)

Γ221 = −1

2
∆ (74)

Γ212 = Γ122 =
1

2
∆ (75)

all other coefficients of the Christoffel symbol of the first kind vanish.

Γ2
21 = g21Γ211 + g22Γ212 =

∆

2m
(76)

and finally, if we do not write the terms that vanish, we have:

R1212 =
∂Γ221

∂x1
+ Γ122Γ2

21 (77)

= −1

2

∂∆

∂x1
+

∆2

4m
(78)

= −α0α1x
1δ(x1 − a)− (α1)2ν(x1 − a)δ(x1 − a) (79)

The curvature of the surface is:

k =
R1212

g11g22 − g12g21
=
R1212

m
(80)

Let ε be any number such that 0 < ε < a, the total curvature of the surface can
be evaluated as:

kT =

∫∫
S

k
√
mdx1dx2 (81)

=

∫ ∞
ε

∫ 2π

0

R1212m
− 1

2 dx1dx2 (82)

= −2πα1

∫ ∞
ε

δ(x1 − a)dx1 (83)

= −2π

(
a− r
a

)
= kT (C) (84)
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as expected. This example is quite trivial. However, the same method can be
extended to generic curves where a direct geometrical approach, as the one used
at the beginning of this paragraph, cannot be used.

A.7 Structure of a Discontinuity

We want to give a new interpretation of the theory developed in paragraph 2
and 3 above. Since any discontinuous point of a distribution can be defined by
the limit of a sequence of function, we define the structure of a discontinuity
to be the specific sequence of functions used to define it. Products of distri-
butions strongly depend from the structure of the various discontinuities which
are multiplied and in the particular case of the (7) and (12), the structure of
the discontinuity is fully represented by the function f .

Equations (7) and (12) focus their attention only on the structure of step
discontinuities and the way they are modified (by composition with a locally
integrable function f). When it comes to Dirac delta functions, it is possible to
show that they change their own structure by means of multiplication by step
discontinuous functions.

Let us consider the function f(g(x)) where g is a step discontinuous function,
jumping from a to b in 0, and f ∈ L1

loc([a, b]). Since we may define our function
as the limit of a sequence of functions f(gn(x)) with gn(x) ∈ C1, and since the
Leibniz rule may be applied to each term of the sequence, we will suppose that
we can apply the Leibniz rule also to its limit. This point should be further
justified but we give it for true in this informal discussion. We have:

Df(g(x)) = (b− a)f ′(g(x))δ(x) (85)

from which we see that the structure of the delta function f ′(g(x))δ(x) is related
(and changes with it) to the structure of the step discontinuous function f(g(x))
just by being its derivative. So, given the structure of u(x), a suitable function
f can be used to describe the structure of any step or delta function.

We have seen that with products of distributions, if we change the structure
of a term we get a different result. In order to overcame this limitation, we
want now to extend the space of distributions D′ by adding to it, as separate
generalised functions, additional elements representing any possible discontinu-
ity structure needed for describing products of step and delta functions. Let us
call this space Gu ⊃ D′.
We will use the following notation:

u[f(x)] = f(u(x)) ∈ Gu step function having structure f
δ[f ′(x)] = f ′(u(x))δ(x) ∈ Gu delta function having structure f

(86)

where u[f(x)] and δ[f(x)] are not normalised (i.e they may have amplitude differ-
ent from 1). We have:

u[x] = u(x) ∈ D′
δ[1] = δ(x) ∈ D′ (87)

We will show, with an example at the end of this paragraph, that the above
defined generalised functions have components outside D′ and therefore there
is a need for defining a larger space of generalised functions including D′.
Using the (86), we define the multiplication as follows:

u[f1]u[f2] · . . . · u[fn]δ[fn+1] = δ[f1f2· ... ·fnfn+1] (88)
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This product is commutative and associative since commutative and associative
is the product of the fi functions used in the definition of the (88).

Finally we define a projector operator PD′ , which projects any generalised
function in Gu, on the space D′. For step discontinuous functions the way PD′

works is trivial (e.g. u2(x) goes to u(x) ). For delta functions, we apply the (7),
we have:

PD′
(
δ[f1f2· ... ·fnfn+1]

)
=

(∫ 1

0

f1f2 · . . . · fnfn+1dx

)
δ(x) ∈ D′ (89)

where the integration is performed between 0 and 1, which is the jump of our
reference step discontinuity u(x).

Let us make an example. Consider the product of distributions sign2(x)δ(x)
(compare with [2] §1.1 ex. iii). By using proposition 1 we find easily that:

sign2(x)δ(x) =
1

3
δ(x) (90)

Let us check associativity by using, once again, proposition 1:

sign2(x)δ(x) = sign(x)[sign(x)δ(x)] = sign(x) · 0 = 0 (91)

we conclude that, in D′, our product is not associative. Let us see what happen
in Gu:

sign(x)[sign(x)δ(x)] = sign(x)δ[(2x−1)·1] = sign(x)[δ[2x] − δ[1]] (92)

In D′, δ[1] = δ and PD′(δ[2x]) = δ. However, in Gu they are separate objects
and they do not cancel each other. We have eventually:

sign2(x)δ(x) = PD′
(
δ[(2x−1)2]

)
=

1

3
δ(x) (93)

A.8 Examples of Products of Steps and Delta Functions

Example 1:

∫ +∞

−∞

d

dx
u2(x)dx =

[
u2(x)

]+∞
−∞ = 1 = 2

∫ +∞

−∞
u(x)δ(x)dx (94)

from which we have:

u(x)δ(x) =
1

2
δ(x) (95)

in agreement with proposition 1.

Example 2:

Given

δ(x) =
1

2

d

dx
sign(x) (96)

and

1(x) = −1 +
1

1− 1
2sign

2(x)
(97)
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by using proposition 1 we have:

1(x)δ(x) =
1

2

[∫ +1

−1

x2

2− x2
dx

]
δ(x) =

[√
2

2
ln

(
2 +
√

2

2−
√

2

)
− 1

]
δ(x) (98)

Note that 1(x) in D′ is the constant function 1 and therefore it has not even a
step discontinuity.
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