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Abstract. Definitions from the theory of point processes are recalled. Models of inten-
sity function parametrization and maximum likelihood estimation from data are explored.
Closed-form log-likelihood expressions are given for the (exponential) Hawkes (univariate
andmultivariate)process, Autoregressive Conditional Duration(ACD), with both exponential
and Weibull distributed errors, and a hybrid model combining the ACD and the exponential
Hawkes models. Formulas are also derived, however without the elegant recursions of the
exponential kernels, for kernels of the Weibull and Gamma type and comparison of the
Weibullfit vs exponential kernel fits via QQand probability plots are provided. The additional
complexity of the Hawkes-Weibull or the ACD-Hawkes appears to not be worth the tradeoff.
Diurnal, or daily, adjustment of the deterministic predictable part of the intensity variation
via piecewise polynomial splines is discussed. Data from the symbol SPY on three different
electronic markets is used to estimate model parameters and generate illustrative plots.
The parameters were estimated without diurnal adjustments, a repeat of the analysis with
adjustments is due in a future version of this article. The connection of the Hawkes process
to quantum theory is briefly mentioned.
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1. Defintions

1.1. Point Processes and Intensities.

Consider a K dimensional multivariate point process. Let Nt
k denote the counting process

associated with the k-th point process which is simply the number of events which have occured by
time t. Let Ft denote the filtration of the pooled process Nt of K point processes consisting of the
set t0

k<t1
k<t2

k<	 <ti
k<	 denoting the history of arrival times of each event type associated with

the k=1	K point processes. At time t, the most recent arrival time will be denoted tNtk
k . A process

is said to be simple if no points occur at the same time, that is, there are no zero-length durations.

The counting process can be represented as a sum of Heaviside step functions θ(t) =
{

0 t < 0
1 t> 0

Nt
k=

∑

ti
k6t

θ(t− ti
k) (1)

The conditional intensity function gives the conditional probability per unit time that an event of
type k occurs in the next instant.

λk(t|Ft)= lim
∆t→0

Pr (Nt+∆t
k −Nt

k> 0|Ft)

∆t
(2)

For small values of ∆t we have

λk(t|Ft)∆t=E(Nt+∆t
k −Nt

k|Ft) + o(∆t) (3)

so that

E((Nt+∆t
k −Nt

k)−λk(t|Ft)∆t) = o(∆t) (4)

and (4) will be uncorrelated with the past of Ft as ∆t→ 0. Next consider

lim
∆t→0

∑

j=1

(s1−s0)

∆t
(

Ns0+j∆t
k −Ns0+(j−1)∆t

k
)

−λk(s0+ j∆t|Ft)∆t

= lim
∆t→0

(Ns0
k −Ns1

k )−
∑

j=1

(s1−s0)

∆t

λk(j∆t|Ft)∆t

=(Ns0
k −Ns1

k )−

∫

s0

s1

λk(t|Ft)dt

(5)

which will be uncorrelated with Fs0, that is

E

(
∫

s0

s1

λk(t|Ft)dt

)

=Ns0
k −Ns1

k (6)

The integrated intensity function is known as the compensator , or more precisely, the Ft-compen-

sator and will be denoted by

Λk(s0, s1)=

∫

s0

s1

λk(t|Ft)dt (7)
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Let xk = ti
k − ti−1

k denote the time interval, or duration, between the i-th and (i − 1)-th arrival
times. The Ft-conditional survivor function for the k-th process is given by

Sk(xi
k)=Pk(ti

k>xi
k|Fti−1+τ) (8)

Let

Ẽi
k=

∫

ti−1

ti

λk(t|Ft)dt=Λk(ti−1, ti)

then provided the survivor function is absolutely continuous with respect to Lebesgue mea-
sure(which is an assumption that needs to be verified, usually by graphical tests) we have

Sk(xi
k) = e

−
∫

ti−1

ti λk(t|Ft)dt
= e−Ẽi

k

(9)

and ẼN(t) is an i.i.d. exponential random variable with unit mean and variance. Since E
(

ẼN(t)

)

=1

the random variable

EN(t)
k =1− ẼN(t) (10)

has zero mean and unit variance. Positive values of EN(t) indicate that the path of conditional

intensity function λk(t|Ft) under-predicted the number of events in the time interval and negative

values of EN(t) indicate that λk(t|Ft) over-predicted the number of events in the interval. In this

way, (8) can be interpreated as a generalized residual. The backwards recurrence time given by

U (k)(t) = t− tNk(t) (11)

increases linearly with jumps back to 0 at each new point.

1.1.1. Stochastic Integrals.

The stochastic Stieltjes integral [1, 2.1][9, 2.2] of a measurable process, having either locally
bounded or nonnegative sample paths, X(t) with respect to Nk exists and for each t we have

∫

(0,t]

X(s)dNs
k=
∑

i>1

θ(t− ti
k)X(ti

k) (12)

1.2. The Exponential Autoregressive Conditional Duration(EACD) Model.

Letting pi be the family of conditional probability density functions for arrival time ti, the log
likelihood of the (exponential) ACD model can be expressed in terms of the conditional densities
or intensities as [12]

lnL({ti}i=0	 n) =
∑

i=0

n

log pi(ti|t0,	 , ti−1)

=

(

∑

i=1

n

log λ(ti|i− 1, t0,	 , ti−1)

)

−

∫

t0

tn

λ(u|n, t0,	 , tNu)du

=

(

∑

i=1

n

log λ(ti|i− 1, t0,	 , ti−1)−

∫

ti−1

ti

λ(u|n, t0,	 , tNu)du

)

=

(

∑

i=1

n

log λ(ti|i− 1, t0,	 , ti−1)− Ẽi

)

=

∫

t0

tn

lnλ(t)dNt−

∫

t0

tn

λ(t)dt

(13)
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We will see that λ can be parameterized in terms of

λ(t|Nt, t1,	 , tNt)=ω+
∑

i=1

Nt

πi(tNt+1−i− tNt−i) (14)

so that the impact of a duration between successive events depends upon the number of intervening
events. Let xi= ti − ti−1 be the interval between consecutive arrival times; then xi is a sequence
of durations or “waiting times”. The conditional density of xi given its past is then given directly by

E(xi|xi−1,	 , x1)= ψi(xi−1,	 , x1; θ)= ψi (15)

Then the ACD models are those that consist of the assumption

xi= ψi εi (16)

where εi is independently and identically distributed with density p(ε; φ) where θ and φ are
variation free. ACD processes are limited to the univariate setting but later we will see that this
model can be combined with a Hawkes process in a multivariate framework. [6] The conditional
intensity of an ACD model can be expressed in general as

λ(t|Nt, t1,	 , tNt)=λ0

(

t− tNt
ψNt+1

)

1

ψNt+1
(17)

where λ0(t) is a deterministic baseline hazard, so that the past history influences the conditional
intensity by both a multiplicative effect and a shift in the baseline hazard. This is called an
accelerated failure time model since past information influences the rate at which time passes.
The simplest model is the exponential ACD which assumes that the durations are conditionally
exponential so that the baseline hazard λ0(t)= 1 and the conditional intensity is

λ(t|xNt,	 , x1) =
1

ψNt+1
(18)

The compensator for consecutive events of the ACD model in the case of constant baseline intensity
λ0(t) = 1 is simply

Ẽi =Λk(ti−1, ti)

=

∫

ti−1

ti

λ(t|xi,	 , x1)dt

=

∫

ti−1

ti 1

ψNt+1
dt

=

∫

ti−1

ti 1

ψi

dt

=
ti−1− ti
ψi

=
xi
ψi

(19)

where xi= ti− ti−1. A general model without limited memory is referred to as ACD(m, q) where
m and q refer to the order of the lags so that there are (m+ q+1) parameters.

ψi=ω+
∑

j=1

m

αjxi−j+
∑

j=1

q

βjψi−j (20)
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where ω> 0, αj> 0, βj> 0 and ψi=
ω

1−
∑

j=q
q βj

for i=1	max(m, q) so the conditional intensity is

then written

λ(t|xNt,	 , x1) =
1

ω+
∑

j=1
m αjxNt+1−j+

∑

j=1
q βjψNt+1−j

(21)

The log-likelihood for the ACD(m,q) model is then written in terms of the durations xi= ti− ti−1

lnL({xi}i=1,	 ,n) =

(

∑

i=1

n

ln λ(ti|i− 1, t0,	 , ti−1)− Ẽi

)

=
∑

i=1

n

ln

(

S(xi)

ψi

)

=
∑

i=1

n

ln

(

e−Ẽi

ψi

)

=
∑

i=1

n

ln





e
−
xi
ψi

ψi





=
∑

i=1

n

ln

(

1

ψi

)

−
xi
ψi

(22)

An ACD process is stationary if

∑

i=1

m

αj+
∑

i=1

q

βj< 1 (23)

in which case the unconditional mean exists and is given by

µ=E[xi] =
ω

1− (
∑

i=1
m αj+

∑

i=1
q βj)

(24)

The goodness of fit can be checked by testing that residuals Ẽi have mean and variance equal to 1
and no autocorrelation.

1.2.1. The Weibull-ACD Model.

The WACD(Weibull-ACD) model extends the EACD model by assuming a Weibull distribution
for the residuals εi in (16) instead of an exponential. We have the intensity given by

λ(t|xNt,	 , x1)=





Γ
(

1+
1

γ

)

ψNt+1





γ

(t− tNt)
γ−1 γ (25)

and log-likelihood by

lnL({xi}i=1,	 ,n) =
∑

i=1

n

ln

(

γ

xi

)

+ γln





Γ
(

1+
1

γ

)

xi

ψi



−





Γ
(

1+
1

γ

)

xi

ψi





γ

(26)

The goodness of fit can be checked by testing that the mean of Ẽi is equal to 1 and graphically
checking what is known as a weibull plot. If it is a good fit, the empirical curve will be near the
straight line. In the example shown below, the weibull does better than the exponential but it is
still not a great fit.
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Figure 1. Weibull plot for WACD(1,1) model fit to SPY INET on 2012-11-30

1.3. The Hawkes Process.

1.3.1. Linear Self-Exciting Processes.

A (univariate) linear self-exciting (counting) process Nt is one that can be expressed as
[18][7][17][3][8, 11.3]

λ(t) =λ0(t)κ+

∫

−∞

t

ν(t− s)dNs

=λ0(t)κ+
∑

tk6t

ν(t− tk)
(27)

where λ0(t) is a deterministic base intensity, see (104), ν:R+→R+ expresses the positive influence
of past events ti on the current value of the intensity process, and κ takes the place of the λ0
constant in the referenced papers. The (exponential) Hawkes process of order P is a linear self-
exciting process defined by the exponential kernel

ν(t)=
∑

j=1

P

αj e
−βj t (28)

which has the survivor function

S(t) =

∫

t

∞

ν(s)ds

=

∫

t

∞
∑

j=1

P

αj e
−βj sds

=

∑

j=1
P

αj e
−βjt

∏

k=1,k� j

P
βk

∏

j=1
P βj

(29)
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where the product
∏

k=1,k� j

P denotes that k= j is excluded so that the hazard function is written

ν̄ (t) =
ν(t)

S(t)

=

∑

j=1
P

αj e
−βj t

∑

j=1
P

αj e
−βjt

∏

k=1,k� j
P

βk
∏

j=1
P βj

=

∑

j=1
P

αj e
−βj t

∏

j=1
P

βj
∑

j=1
P αj e

−βjt
∏

k=1,k� j
P βk

(30)

so that the “instantaneous” hazard rate is

lim
t→0

ν̄ (t) =

∑

j=1
P

αj

∏

j=1
P

βj
∑

j=1
P αj

∏

k=1,k� j
P βk

(31)

The intensity of the exponential Hawkes process is written as

λ(t) =λ0(t)κ+

∫

0

t
∑

j=1

P

αj e
−βj(t−s)dNs

=λ0(t)κ+
∑

k=0

Nt−1
∑

j=1

P

αj e
−βj(t−tk)

=λ0(t)κ+
∑

j=1

P
∑

k=0

Nt−1

αj e
−βj(t−tk)

=λ0(t)κ+
∑

j=1

P

αj

∑

k=0

Nt−1

e−βj(t−tk)

=λ0(t)κ+
∑

j=1

P

αjBj(Nt) ∀t∈ ti

(32)

where Bj(i) is given recursively by

Bj(i) =
∑

k=1

i−1

e−βj(ti−tk)

=e
−βj(ti−ti−1)

∑

k=1

i−1

e−βj(ti−1−tk)

=e
−βj(ti−ti−1)

(

1+
∑

k=1

i−2

e−βj(ti−1−tk)

)

=e
−βj

(

t−ti−1

)

(1+Bj(i− 1))

(33)

since e−βj(ti−1−ti−1)= e−βj0= e−0=1. A univariate Hawkes process is stationary if the branching
ratio is less than one.

∑

j=1

P
αj

βj
< 1 (34)

If a Hawkes process is stationary then the unconditional mean is

µ=E[λ(t)] =
λ0

1−
∫

0

∞
ν(t)dt

=
λ0

1−
∫

0

∞ ∑

j=1
P αj e

−βj tdt

=
λ0

1−
∑

j=1
P αj

βj

(35)
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For consecutive events, we have the compensator (7)

Λ(ti−1, ti) =

∫

ti−1

ti

λ(t)dt

=

∫

ti−1

ti



λ0(t)+
∑

j=1

P

αjBj(Nt)



dt

=

∫

ti−1

ti

λ0(s)ds+

∫

ti−1

ti ∑

j=1

P

αj

∑

k=0

i−1

e−βj(t−tk)dt

=

∫

ti−1

ti

λ0(s)ds+
∑

j=1

P

αj

∑

k=0

i−1 ∫

ti−1

ti

e−βj(t−tk)dt

=

∫

ti−1

ti

λ0(s)ds+
∑

k=0

i−1 ∫

ti−1

ti

ν(t− tk)dt

=

∫

ti−1

ti

λ0(s)ds+
∑

k=0

i−1
∑

j=1

P
αj

βj

(

e−βj(ti−1−tk)− e−βj(ti−tk)
)

=

∫

ti−1

ti

λ0(s)ds+
∑

j=1

P
αj

βj

(

1− e−βj(ti−ti−1)
)

Aj(i− 1)

(36)

where there is the recursion

Aj(i) =
∑

tk6ti

e−βj(ti−tk)

=
∑

k=0

i−1

e−βj(ti−tk)

=1+ e−βj(ti−ti−1)Aj(i− 1)

(37)

with Aj(0)=0 since the integral of the exponential kernel (28) is

∫

ti−1

ti

ν(t)dt =

∫

ti−1

ti ∑

j=1

P

αj e
−βj (t−tk)dt

=
∑

j=1

P
αj

βj
(e−βj ti− e−βjti−1)

(38)

If λ0(t)=λ0 then (36) simplifies to

Λ(ti−1, ti) =(ti− ti−1)λ0+
∑

k=0

i−1
∑

j=1

P
αj

βj

(

e−βj(ti−1−tk)− e−βj(ti−tk)
)

=(ti− ti−1)λ0+
∑

j=1

P
αj

βj

(

1− e−βj(ti−ti−1)
)

Aj(i− 1)

(39)

Similiarly, another parameterization is given by

Λ(ti−1, ti) =

∫

ti−1

ti

κλ0(s)ds+
∑

j=1

P
αj

βj

(

1− e−βj(ti−ti−1)
)

Aj(i− 1)

=κ

∫

ti−1

ti

λ0(s)ds+
∑

j=1

P
αj

βj

(

1− e−βj(ti−ti−1)
)

Aj(i− 1)

=κΛ0(ti−1, ti)+
∑

j=1

P
αj

βj

(

1− e−βj(ti−ti−1)
)

Aj(i− 1)

(40)
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where κ scales the predetermined baseline intensity λ0(s). In this parameterization the intensity
is also scaled by κ

λ(t) =κλ0(t) +
∑

j=1

P

αjBj(Nt) (41)

this allows to precompute the deterministic part of the compensator Λ0(ti−1, ti)=
∫

ti−1

ti
λ0(s)ds.

1.3.2. The Hawkes(1) Model.

The simplest case occurs when the baseline intensity λ0(t) is constant and P =1 where we have

λ(t)=λ0+
∑

ti<t

αe−β (t−ti) (42)

which has the unconditional mean

E[λ(t)] =
λ0

1−
α

β

(43)

1.3.3. Maximum Likelihood Estimation.

The log-likelihood of a simple point process is written as

lnL(N(t)t∈[0,T ]) =

∫

0

T

(1−λ(s))ds+

∫

0

T

lnλ(s)dNs

=T −

∫

0

T

λ(s)ds+

∫

0

T

lnλ(s)dNs

(44)

which in the case of the Hawkes model of order P can be explicitly written [14] as

lnL({ti}i=1	 n) =T −Λ(0, T ) +
∑

i=1

n

lnλ(ti)

=T +
∑

i=1

n

lnλ(ti)−Λ(ti−1, ti)

=T −Λ(0, T ) +
∑

i=1

n

lnλ(ti)

=T −Λ(0, T ) +
∑

i=1

n

ln



κλ0(ti) +
∑

j=1

P
∑

k=1

i−1

αj e
−βj(ti−tk)





=T −Λ(0, T ) +
∑

i=1

n

ln



κλ0(ti) +
∑

j=1

P

αjRj(i)





=T −

∫

0

T

κλ0(s)ds−
∑

i=1

n
∑

j=1

P
αj

βj

(

1− e−βj(tn−ti)
)

+
∑

i=1

n

ln



κλ0(ti)+
∑

j=1

P

αjRj(i)





(45)

where T = tn and we have the recursion[13]

Rj(i) =
∑

k=1

i−1

e−βj(ti−tk)

=e−βj(ti−ti−1)(1+Rj(i− 1))

(46)
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If we have constant baseline intensity λ0(t) = 1 then the log-likelihood can be written

lnL({ti}i=1	 n) =T − κT −
∑

i=1

n
∑

j=1

P
αj

βj

(

1− e−βj(tn−ti)
)

+
∑

i=1

n

ln



λ0+
∑

j=1

P

αjRj(i)





(47)

Note that it was necessary to shift each ti by t1 so that t1=0 and tn=T . Also note that T is just
an additive constant which does not vary with the parameters so for the purposes of estimation
can be removed from the equation.

1.3.4. The Hawkes Process in Quantum Theory.
The Hawkes process arises in quantum theory by considering feedback via continuous measure-

ments where the quantum analog of a self-exciting point process is a source of irreversibility whose
strength is controlled by the rate of detections from that source. [19].

1.4. Alternative Kernels for the Hawkes Process.

1.4.1. A Subtly Different Exponential Kernel.
In the paper of [14] there is made a reference to [15] which appears to not be available online, but

nevertheless [14] contains the necessary information. Here, the expontial kernel changes from (28)

ν(t)=
∑

j=1

P

αj e
−βj t (48)

to

ν(t)=
∑

j=1

P

αj t
j−1 e−βj t (49)

with a recursive structure that involves binomial coefficients.

1.4.2. The Hawkes Process Having a Weibull Kernel.
The exponential kernel of the Hawkes process can be replaced with that of a Weibull kernel.

[11, 6.3] Recall that the intensity of a Hawkes process is defined by (27)

λ(t) =λ0(t)κ+

∫

−∞

t

ψ(t− s)dNs

=λ0(t)κ+
∑

ti6t

ψ(t− ti)
(50)

where the exponential kernel ψ(t)=
∑

j=1
P

αj e
−βj t is replaced by the Weibull kernel

ψ(t)=
∑

j=1

P

αj

(

υj
ωj

)(

t

ωj

)

υj−1

e
−

(

t

ωj

)υj

(51)

with parameter vectors αj , υj , ωj so the Hawkes-Weibull intensity is written as

λ(t) =λ0(t)κ+

∫

0

t
∑

j=1

P

αj

(

υj
ωj

)(

t− s

ωj

)

υj−1

e
−

(

t−s

ωj

)υj

dNs

=λ0(t)κ+
∑

k=0

Nt−1
∑

j=1

P

αj

(

κj

ωj

)(

t− tk
ωj

)

υj−1

e
−

(

t−tk
ωj

)υj

=λ0(t)κ+
∑

j=1

P
∑

k=0

Nt−1

αj

(

υj
ωj

)(

t− tk
ωj

)

υj−1

e
−

(

t−tk
ωj

)υj

=λ0(t)κ+
∑

j=1

P

αj

(

υj
ωj

)

∑

k=0

Nt−1 (
t− tk
ωj

)

υj−1

e
−

(

t−tk
ωj

)υj

=λ0(t)κ+
∑

j=1

P

αj

(

υj
ωj

)

Cj(Nt)

(52)
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and Cj(n) is given by

Cj(n) =
∑

k=0

n−1 (
t− tk
ωj

)

υj−1

e
−

(

t−tk
ωj

)υj

(53)

where the branching ratio is

∫

0

∞

ψ(t)dt =

∫

0

∞
∑

j=1

P

αj

(

υj
ωj

)(

t

ωj

)

υj−1

e
−

(

t

ωj

)υj

dt

=
∑

j=1

P

αj

(54)

The survivor function of the Weibull kernel is given by

S(t) =

∫

t

∞

ν(s)ds

=

∫

t

∞
∑

j=1

P

αj

(

υj
ωj

)(

s

ωj

)

υj−1

e
−

(

s

ωj

)υj

ds

=
∑

j=1

P

αj e
−t
υjωj

−υj

(55)

which is surprisingly quite a bit less complicated than survivor function of the exponential kernel
(29). The hazard function is the quotient of the kernel over the survivor function

ψ̄ (t) =
ψ(t)

S(t)

=

∑

j=1
P

αj

(

υj

ωj

)(

t

ωj

)

υj−1
e
−

(

t

ωj

)υj

∑

j=1
P αj e

−t
υjωj

−υj

(56)

Now, similiar to (36),the compensator is calculated

Ẽi =Λk(ti−1, ti)

=

∫

ti−1

ti

λ(t)dt

=κ

∫

ti−1

ti

λ0(t)dt+

∫

ti−1

ti ∑

k=0

i−1

ψ(t− tk)dt

=κ

∫

ti−1

ti

λ0(t)dt+
∑

k=0

i−1

ψ(ti− tk)− ψ(ti−1− tk)

=κ

∫

ti−1

ti

λ0(t)dt+

∫

ti−1

ti ∑

k=0

i−1
∑

j=1

P

αj

(

υj
ωj

)(

t− tk
ωj

)

υj−1

e
−

(

t−tk
ωj

)υj

dt

=

∫

ti−1

ti

λ0(t)κ+

∫

ti−1

ti ∑

j=1

P

αj

(

υj
ωj

)

∑

k=0

i−1 (
t− tk
ωj

)

υj−1

e
−

(

t−tk
ωj

)υj

dt

=κ

∫

ti−1

ti

λ0(t)dt+
∑

k=0

i−1
∑

j=1

P

−αj

(

e
−

(

ti−tk
ωj

)νj

− e
−

(

ti−1−tk

ωj

)νj
)

(57)
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where the integral of the Weibull kernel over consecutive events is given by an application of the
first fundamental theorem of calculus

∫

ti−1

ti

ψ(t)dt =

∫

ti−1

ti ∑

j=1

P

αj

(

υj
ωj

)(

t

ωj

)

υj−1

e
−

(

t

ωj

)υj

dt

=ψ̂(ti)− ψ̂(ti−1)

=
∑

j=1

P

−αj

(

e
−

(

ti
ωj

)νj

− e
−

(

ti−1

ωj

)νj
)

(58)

where ψ̂(t) is the antiderivative of the kernel ψ(t) given by

ψ̂(t) =

∫

ψ(t)dt

=

∫

∑

j=1

P

αj

(

υj
ωj

)(

t

ωj

)

υj−1

e
−

(

t

ωj

)υj

dt

=
∑

j=1

P

−αj e
−

(

t

ωj

)νj

(59)

The change-of-variables in (57) can be made, let

s=−

(

t− tk
ωj

)υj

(60)

then

dsk=−ds

(

υj
ωj

)(

t− tk
ωj

)

υj−1

(61)

so (57) can be written as

Ẽi =Λk(ti−1, ti)

=κ

∫

ti−1

ti

λ0(t)dt+
∑

j=1

P
∑

k=0

i−1

αj

∫

(

ti−1−tk

ωj

)υj

(

ti−tk
ωj

)υj

e−sds
(62)

When υj = 1, ωj = 1 the Hawkes-Weibull process reduces to the standard exponential Hawkes
process.

1.4.3. The Hawkes Process Having a Gamma Kernel.

Another parametrization we can try is having a kernel given by a mixture of gamma distribu-
tions

λ(t) =λ0(t)κ+

∫

−∞

t

ν(t− s)dNs

=λ0(t)κ+
∑

tk6t

ν(t− tk)
(63)

with

ν(t) =
∑

j=1

P
αj

bj Γ(cj)

(

t

bj

)

cj−1

e
−
t

bj (64)
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having parameter vectors αj , bj , cj so that the intensity is written

λ(t) =λ0(t)κ+

∫

0

t
∑

j=1

P
αj

bj Γ(cj)

(

t− s

bj

)

cj−1

e
−
t−s

bj dNs

=λ0(t)κ+
∑

i=0

Nt−1
∑

j=1

P
αj

bj Γ(cj)

(

t− ti
bj

)

cj−1

e
−
t−ti
bj

=λ0(t)κ+
∑

j=1

P
∑

i=0

Nt−1
αj

bj Γ(cj)

(

t− ti
bj

)

cj−1

e
−
t−ti
bj

=λ0(t)κ+
∑

j=1

P
αj

bjΓ(cj)

∑

i=0

Nt−1 (
t− ti
bj

)

cj−1

e
−
t−ti
bj

=λ0(t)κ+
∑

j=1

P
αj

bjΓ(cj)
Ej(Nt)

(65)

with

Ej(n) =
∑

i=0

n−1 (
t− ti
bj

)

cj−1

e
−
t−ti
bj (66)

where the branching ratio is

∫

0

∞

ν(t)dt =

∫

0

∞
∑

j=1

P
αj

bj Γ(cj)

(

t

bj

)

cj−1

e
−
t

bjdt

=
∑

j=1

P

αj

(67)

The compensator is given by

Ẽi =Λk(ti−1, ti)

=

∫

ti−1

ti

λ(t)dt

=κ

∫

ti−1

ti

λ0(t)dt+
∑

k=0

i−1 ∫

ti−1

ti

ν(t− tk)dt

=κ

∫

ti−1

ti

λ0(t)dt+

∫

ti−1

ti ∑

k=0

i−1

ν(t− tk)dt

=

∫

ti−1

ti

λ0(t)κ+
∑

j=1

P
αj

bjΓ(cj)

∑

k=0

i−1 (
t− tk
bj

)

cj−1

e
−
t−tk
bj dt

=κ

∫

ti−1

ti

λ0(t)dt+

∫

ti−1

ti ∑

j=1

P
αj

bjΓ(cj)

∑

k=0

i−1 (
t− tk
bj

)

cj−1

e
−
t−tk
bj dt

=κ

∫

ti−1

ti

λ0(t)dt+
∑

k=0

i−1 ∫

ti−1

ti ∑

j=1

P
αj

bjΓ(cj)

(

t− tk
bj

)

cj−1

e
−
t−tk
bj dt

=κ

∫

ti−1

ti

λ0(t)dt+
∑

k=0

i−1

ν̂ (ti− tk)− ν̂ (ti−1− tk)

=κ

∫

ti−1

ti

λ
0
(t)dt+

∑

k=0

i−1
∑

j=1

P

−α
j

(cj+1)

Γ(cj+2)
	

	

(

Γ

(

c
j
+1,

(ti− tk)

bj

)

−Γ

(

c
j
+1,

(ti−1 − tk)

bj

)

− e
−

(ti−tk)

bj
(

t
i
− t

k

)cjb
j

−cj + e
−

(

ti−1−tk
)

bj

(

t
i−1

− t
k

)cj

b
j

−cj

)

(68)

, , 13



since the integral of the gamma kernel over consecutive events is given by

∫

ti−1

ti

ν(t)dt =

∫

ti−1

ti ∑

j=1

P
αj

bjΓ(cj)

∑

i=0

Nt−1 (
t− ti
bj

)

cj−1

e
−
t−ti
bj dt

=ν̂ (ti)− ν̂ (ti−1)

=
∑

j=1

P

−
αj(cj +1)

Γ(cj +2)

(

Γ

(

cj +1,
ti
bj

)

−Γ

(

cj +1,
ti−1

bj

)

− e
−

ti

bj t
i

cjb
j

−cj+ e
−

ti−1

bj t
i−1
cj b

j

−cj

)

(69)

where ν̂ (t) is the integral of ν(t) given by

ν̂ (t) =

∫

ν(t)dt

=

∫

∑

j=1

P
αj

bj Γ(cj)

(

t

bj

)

cj−1

e
−
t

bjdt

=
∑

j=1

P
αjbj

cj
e
−

t

2bjbj
−cj

Γ(cj+2)

((

t

bj

)cj

2
Mcj

2
,
cj

2
+

1

2

(

t

bj

)

+

(

t

bj

)cj

e
−

t

2bj(cj+1)

)

=
∑

j=1

P
αj

Γ(cj+2)

(

Γ (cj+2)+

((

t

bj

)cj

e
−
t

bj −Γ

(

cj+1,
t

bj

))

(cj+1)

)

(70)

where

Mµ,ν(z) =e
−
z

2 z
ν+

1

2
1F1





1

2
− µ+ ν

1+ 2ν
; z



 (71)

is the Whittaker M function which solves the equation y ′′+

(

−
1

4
+

µ

z
+

1

4
− ν2

z2

)

y=0 and

1F1

(

a

b
; z

)

=
∑

k=0

∞
Γ(a+ k)Γ(b)zk

Γ(a)Γ(k+1)Γ(b+ k)
(72)

is the confluent hypergeometric function[16] and

Γ(a, z) =Γ(a)−

za 1F1

(

a

1+ a
;−z

)

a

(73)

is the incomplete Gamma function. When bj=1 and cj=1 the Hawkes-Gamma model reduces to
the standard Hawkes model with an exponential kernel.

1.5. Assessing Goodness of Fit with Graphical Methods.

The compensator of a point process, if it is a good fit, will be an i.i.d. exponentially distributed
random variable with mean 1 (and thus variance 1 and skewness 2) and no significant autocor-
relation at any lag. To demonstrate this, the first 5000 points of SPY on the INET exchange on
2012-11-30 were fit with the standard exponential Hawkes kernel of order P = 2 and the Weibull
kernel of order P =2. This limited number of 5000 points (accounting for a little over 59 minutes
of trading time) was chosen due to the lack of recursion available for the Hawkes kernel and thus
increased computational complexity.
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Figure 2. Probability plot for Hawkes-Exp Order 2 fit vs Exponential(1) distribution
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Figure 3. Probability plot for Hawkes-Weibull Order 2 fit vs Exponential(1) distribution
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Figure 4. Quantiles of exponential Distribution vs Hawkes-Exp Order 2 fit
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Figure 5. Quantiles of exponential Distribution vs Hawkes-Weibull Order 2 fit
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Table (1) lists the log-likelihood, mean, variance, and skew of the compensator for the expo-
nential and Weibull fits.

Hawkes−Exp Hawkes−Weibull
lnL 935.8106454999223 972.8236127532505
Mean 1.00000225846881 1.00017927572359

Variance 1.08823532290517 1.08097250910931
Skewness 2.18458483003574 2.33622435438673

Table 1.

As can be seen, the rather meager increase of the log-likehood score gained by switching to the
Weibull model and giving up recursion appears to not be worth it, and note that the skew of the
Weibull fit is a little higher than the exp fit however the Weibull does fit better and goes further
into the tails of the distribution before diverging.

1.6. Combining the ACD and Hawkes Models.

The ACD and Hawkes models can be combined to provide a model for intraday volatility. [2] Let

λ(t) =λ0(t)+
1

ψNt

+

∫

0

t

ν(t− s)dNs (74)

where λ0(t) is the determinstic baseline intensity(104) and where the ACD(20) part is

ψi=ω+
∑

j=1

m

αjxi−j+
∑

j=1

q

βjψi−j (75)

and the Hawkes part has the exponential kernel(28)

ν(t)=
∑

j=1

P

γj e
−ϕj t (76)

so that
∫

0

t

ν(t− s)dNs =

∫

0

t
∑

j=1

P

γj e
−ϕj (t−s)dNs

=
∑

k=0

Nt

ν(t− tk)

=
∑

k=0

Nt
∑

j=1

P

γj e
−ϕj(t−tk)

=
∑

j=1

P

γj
∑

k=0

Nt

e−ϕj(t−tk)

=
∑

j=1

P

γjBj(Nt)

(77)

where we have replaced α= γ and β= ϕ in the Hawkes part so that the parameter names do not
conflict with the ACD part where α and β are also used as parameter names. The Hawkes part of
the intensity has a recursive structure similiar to that of the compensator. Let

Bj(i) =
∑

k=0

i−1

e−ϕj(t−tk)

=(1+Bj(i− 1))e−ϕj(t−ti)

(78)
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where Bj(0)= 0. Then we have

λ(t) =λ0(t) +
1

ω+
∑

j=1
m αjxNt−j+

∑

j=1
q βjψNt−j

+
∑

j=1

P

γjBj(Nt) (79)

The log-likelihood for this hybrid model can be written as

lnL({ti}i=1,..,n) =
∑

i=1

n
(

lnλ(ti)−

∫

ti−1

ti

λ(t)dt

)

=
∑

i=1

n

(lnλ(ti)−Λ(ti−1, ti))

=
∑

i=1

n
(

lnλ(ti)− Ẽi
)

(80)

By direct calculation, combining (19) and (36), and letting xi= ti− ti−1 we have the compensator

Ẽi =Λ(ti−1, ti)

=

∫

ti−1

ti

λ(t)dt

=

∫

ti−1

ti
(

λ0(t)+
1

ψNt+1
+

∫

0

t

ν(t− s)dNs

)

dt

=
xi
ψi

+

∫

ti−1

ti
(

λ0(t)+

∫

0

t

ν(t− s)dNs

)

dt

=

∫

ti−1

ti

λ0(t)dt+
xi
ψi

+
∑

k=0

i−1
∑

j=1

P
γj
ϕj

(

e−ϕj(ti−1−tk)− e−ϕj(ti−tk)
)

=

∫

ti−1

ti

λ0(t)dt+
xi
ψi

+
∑

j=1

P
γj
ϕj

(1− e−ϕjxi)Aj(i− 1)

(81)

where ψi is defined by (75) and

Aj(i) = 1+ e−ϕj xiAj(i− 1) (82)

is given by (37) so that (80) can be wriitten as

lnL({ti}i=0,..,n) =
∑

i=1

n

(ln λ(ti)− Ẽi)

=
∑

i=1

n



 lnλ(ti)−





xi
ψi

+
∑

j=1

P
γj
ϕj

(1− e−ϕj xi)Aj(i− 1)









=
∑

i=1

n

ln





1

ψi
+
∑

k=0

i−1
∑

j=1

P

γj e
−ϕj(ti−tk)



−





xi
ψi

+
∑

j=1

P
γj
ϕj

(1− e−ϕj xi)Aj(i− 1)





=
∑

i=1

n

ln





1
ψi

+
∑

j=1

P

γjBj(i)



−





xi
ψi

+
∑

j=1

P
γj
ϕj

(1− e−ϕj xi)Aj(i− 1)





(83)

1.6.1. Comparison of Hawkes-Exp vs ACD+Hawkes-Exp Model Fits.

Now the Hawkes-Exp model of order 2 fit to the entire days worth of data on 2012-11-30 for
SPY on the INET exchange will be compared against the ACD+Hawkes-Exp hybrid nidek of
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Figure 6. QQ Plot of Hawkes-ACD-2-1-1 compensator vs Exponential(1) Distribution
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From the looks of it, the ACD+Hawkes-Exp model is quite a bit worse than plain Hawkes-Exp,
either that or I have made a mistake in deriving the hybrid model expressions.

1.7. Multivariate Hawkes Models.

Let M ∈N
∗ and {(ti

m)}m=1,	 ,M be an M -dimensional point process. The associated counting

process will be denoted Nt=(Nt
1,	 ,Nt

M). A multivariate Hawkes process[7][5][10] is defined with
intensities λm(t),m=1	M given by

λm(t) =λ0
m(t)κm+

∑

n=1

M ∫

0

t
∑

j=1

P

αj
m,ne

−βj
m,n(t−s)dNs

n

=λ0
m(t)κm+

∑

n=1

M
∑

j=1

P
∑

tk
n<t

αj
m,n

e
−βj

m,n(t−tk
n)

=λ0
m(t)κm+

∑

n=1

M
∑

j=1

P

αj
m,n

∑

tk
n<t

e
−βj

m,n(t−tk
n)

=λ0
m(t)κm+

∑

n=1

M
∑

j=1

P

αj
m,n

∑

tk
n<t

e
−βj

m,n(t−tk
n)

=λ0
m(t)κm+

∑

n=1

M
∑

j=1

P

αj
m,n

∑

k=0

Nt
n
−1

e
−βj

m,n(t−tk
n)

=λ0
m(t)κm+

∑

n=1

M
∑

j=1

P

αj
m,n

Bj
m,n(Nt

n)

(84)

where in this parameterization κ is a vector which scales the baseline intensities, in this case,
specified by piecewise polynomial splines (104). We can write Bj

m,n(i) recursively

Bj
m,n(i) =

∑

k=0

i−1

e
−βj

m,n(t−tk
n)

=(1+Bj
m,n(i− 1))e−βj

m,n(t−ti
n)

(85)

In the simplest version with P =1 and λ0
m(t)= 1 constant we have

λm(t) =κm+
∑

n=1

M ∫

0

t

αm,ne−βm,n(t−s)dNs
n

=κm+
∑

n=1

M
∑

k=0

Nt
n
−1

αm,ne−βm,n(t−tk
n)

=κm+
∑

n=1

M

αm,n
∑

k=0

Nt
n
−1

e−βm,n(t−tk
n)

=κm+
∑

n=1

M

αm,nB1
m,n(Nt

n)

(86)

, , 21



Rewriting (86) in vectorial notion, we have

λ(t)= κ+

∫

0

t

G(t− s)dNs (87)

where

G(t) = (αm,n e−βm,n(t−s))m,n=1	M (88)

Assuming stationarity gives E[λ(t)] = µ a constant vector and thus

µ =
κ

I −
∫

0

∞
G(u)du

=
κ

I − (
αm,n

βm,n
)

=
κ

I −Γ

(89)

A sufficient condition for a multivariate Hawkes process to be stationary is that the spectral radius
of the branching matrix

Γ=

∫

0

∞

G(s)ds=
αm,n

βm,n (90)

be strictly less than 1. The spectral radius of the matrix G is defined as

ρ (G)= max
a∈S(G)

|a| (91)

where S(G) denotes the set of eigenvalues of G.

1.7.1. The Compensator.

The compensator of the m-th coordinate of a multivariate Hawkes process between two con-
secutive events ti−1

m and ti
m of type m is given by

Λm(ti−1
m , ti

m) =

∫

ti−1
m

ti
m

λm(s)ds

+

∫

ti−1
m

ti
m
∑

n=1

M
∑

tk
n<ti

m

∑

j=1

P

αj
m,n

e
−βj

m,n(s−tk
n)ds

=

∫

ti−1
m

ti
m

λm(s)ds

+
∑

n=1

M
∑

tk
n<ti−1

m

∑

j=1

P
αj
m,n

βj
m,n [e

−βj
m,n(ti−1

m
−tk

n)− e
−βj

m,n(ti
m
−tk

n)]

+
∑

n=1

M
∑

ti−1
m 6tk

n<ti
m

∑

j=1

P
αj
m,n

βj
m,n [1− e

−βj
m,n(ti

m
−tk

n)]

(92)
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To save a considerable amount of computational complexity, note that we have the recursion

Aj
m,n(i) =

∑

tk
n<ti

m

e
−βj

m,n(ti
m
−tk

n)

=e−βj
m,n(ti

m
−ti−1

m )
Aj

m,n(i− 1)+
∑

ti−1
m 6tk

n<ti
m

e
−βj

m,n(ti
m
−tk

n)
(93)

and rewrite (92) as

Λm(ti−1
m , ti

m) =κm
∫

ti−1
m

ti
m

λ0
m(s)ds+

∫

ti−1
m

ti
m
∑

n=1

M
∑

j=1

P
∑

tk
n<s

αj
m,n

e
−βj

m,n(s−tk
n)ds

=κm
∫

ti−1
m

ti
m

λ0
m(s)ds

+
∑

n=1

M
∑

j=1

P
αj
m,n

βj
m,n

[

(1− e
−βj

m,n(ti
m
−ti−1

m ))×Aj
m,n(i− 1)+

∑

ti−1
m 6tk

n<ti
m

(1− e
−βj

m,n(ti
m
−tk

n))

]

=κm
∫

ti−1
m

ti
m

λ0
m(s)ds

+
∑

n=1

M
∑

j=1

P
αj
m,n

βj
m,n







(1− e
−βj

m,n(ti
m

−ti−1
m )

)×





∑

tk
n<ti−1

m

e
−βj

m,n(ti−1
m

−tk
n)




+

∑

ti−1
m 6tk

n<ti
m

(1− e
−βj

m,n(ti
m

−tk
n)
)







(94)

where we have the initial conditions Aj
m,n(0)= 0.

1.7.2. Log-Likelihood.

The log-likelihood of the multivariate Hawkes process can be computed as the sum of the log-
likelihoods for each coordinate. Let

lnL({ti}i=1,	 ,NT)=
∑

m=1

M

lnLm({ti}) (95)

where each term is defined by

lnLm({ti})=

∫

0

T

(1−λm(s))ds+

∫

0

T

lnλm(s)dNs
m (96)

which in this case can be written as

lnLm({ti}) =T −Λm(0, T )+
∑

i=1

NT

zi
m ln



λ0
m(ti)κ

m+
∑

n=1

M
∑

j=1

P
∑

tk
n<ti

αj
m,n

e
−βj

m,n(ti−tk
n)





=T −Λm(0, T )+
∑

i=1

NT
m

ln



λ0
m(ti

m)κm+
∑

n=1

M
∑

j=1

P
∑

tk
n<ti

m

αj
m,n

e
−βj

m,n(ti
m
−tk

n)





(97)

where again tNT =T and

zi
m=

{

1 event ti of typem
0 otherwise

(98)

and

Λm(0, T )=

∫

0

T

λm(t)dt=
∑

i=1

NT
m

Λm(ti−1
m , ti

m) (99)
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where Λm(ti−1
m , ti

m) is given by (94). Similiar to to the one-dimensional case, we have the recursion

Rj
m,n(i) =

∑

tk
n<tj

m

e
−βj

m,n(ti
m
−tk

n)

=







e
−βj

m,n(ti
m
−ti−1

m )
Rj

m,n(i− 1)+
∑

ti−1
m 6tk

n<ti
m e

−βj
m,n(ti

m
−tk

n) ifm� n

e
−βj

m,n(ti
m
−ti−1

m ) (1+Rj
m,n(i− 1)) ifm=n

(100)

so that (97) can be rewritten as

lnLm({ti}) =T − κm
∫

0

T

λ0
m(t)dt−	

	 −

∑

i=1

NT
m

∑

n=1

M
∑

j=1

P
αj
m,n

βj
m,n





(1− e
−βj

m,n(ti
m

−ti−1
m )

)×A
j

m,n
(i− 1)+

∑

ti−1
m 6tk

n<ti
m

(1− e
−βj

m,n(ti
m

−tk
n)
)





+	

	 +
∑

i=1

NT
m

ln



λ0
m(ti

m)κm+
∑

n=1

M
∑

j=1

P

αj
m,n

Rj
m,n(i)





(101)

with initial conditions Rj
m,n(0) = 0 and Aj

m,n(0) = 0 where T = tN where N is the number of

observations, M is the number of dimensions, and P is the order of the model. Again, T can be
dropped from the equation for the purposes of optimization.

2. Numerical Methods

2.1. The Nelder-Mead Algorithm.
The Nelder-Mead simplex algorithm[4] was used to optimize the likelihood expressions given

above.

2.1.1. Starting Points for Optimizing the Hawkes Process of Order P .
A starting point for the optimization of a Hawkes process of order P with an “exact” uncondi-

tional intensity was chosen as the most reasonable starting point, but it is by no means claimed to
be the best. Let xi= ti− ti−1 be the interval between consecutive arrival times as in the ACD model
(16). Then set the initial value of λ0 to

0.5

E[xi]
, α1	 P =

1

P
and β1	 P =2. This gives an unconditional

mean of E[xi] for these parameters used as a starting point for the Nelder-Mead algorithm.

3. Examples

3.1. Millisecond Resolution Trade Sequences.
The source data has resolution of milliseconds but the data is transformed prior to estimation

by dividing each time by 1000 so that the unit of time is seconds. Also, trades occuring at the
same price within 2ms of each other are dropped from the analysis. Further work will be done to
find the optimal level of time aggregation, ideally the data would be timestamped with nanosecond
resolution and this will be done in the future.

3.1.1. Adjusting for the Deterministic Daily Intensity Variation.
It is a well known fact that arrival rates(and the closely related volatility) have daily “seasonal”

or “diurnal” patterns where trading activity peaks after open and before close and has a low around
the middle of the day known as the “lunchtime effect”. In order to account for this we will fit a
cubic spline with 14 knot points spaced every 30 minutes, including the opening and closing times
of t= 0 and t= 6.5× 60× 60= 23400 respectively since t has units of seconds. Let the adjusted
durations be defined

x̃i= φ(ti)xi (102)

where xi= ti− ti−1 is the unadjusted duration and φ(ti) is a (piecewise polynomial) cubic spline
with knot points at t(zj) with values given by Pj

Pj=
1

(Nt(zj)+w−Nt(zj)−w)

∑

i=Nt(zj)−w

Nt(zj)+w
1

xi
for j=0	 13 (103)
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where z= 60× 30= 1800 is the number of seconds in a half-hour and j=0	 (6.5×2). The first and
last knots have a “window” of 30-minutes whereas the interior knot points have a window of 1 hour
looking forward and backward in time 30-minutes, the first knot point only looks forward and the
last knot point only looks backward. This gives us the “deterministic baseline intensity” which is a
piecewise polynomial cubic spline function whose exact form is not mentioned here since it is not
the focus of the paper.

λ0(t)= f(t , P0,	 , Pj) (104)

The following figure shows the “deterministic part” of the intensity estimated for SPY on 2012-11-
30 for INET, BATS, and ARCA.
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Figure 10. Interpolatingspline φ(t) for SPY on 2012-11-30

3.1.2. Univarate Hawkes model fit to SPY (SPDR S&P 500 ETF Trust).

Consider these parameter estimates for the (univariate) Hawkes model of various orders fitted
to data generated by trades of the symbol SPY traded on the NASDAQ on Nov 30th, 2012.
The unconditional sample mean intensity for this symbol on this day on this exchange was
0.8882491159065832 trades per second where the number of samples is n = 20787. The data
presented here has not been “deseasonalized’, the analysis with deterministic diurnal variation
accounted for will be presented in the next section. As can be seen, P = 6 provides the best
likelihood but a more rigorous method to choose P would be to use some information crite-
rion like Bayes or Akaike to decide the order P . Error bars are not provided, but presumably they
could be estimated with derivative information. Note that the closer E[λ(t)] to 0.8882491159065832
and E[Λ] and Var[Λ] to 1.0 the better, since Λ should be exponentially distributed with mean
1 by design and for a Poisson process the mean and variance are equal. The next thing to check
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is that the Λ series is not autocorrelated.

P κ α1	P β1	P lnL({ti}) E[λ(t)] E[Λ] Var[Λ]

1 0.502711246 19.66948678 45.315830024 −3504.24543 0.88826610 0.9999990 1.8638729

2 0.179395347
23.8186109
0.09959041

61.07892017
0.243158578

−1288.3557 0.89489310 0.9999972 1.1880598

3 0.179558266
0.08621919
0.22766134
28.5616786

0.219020402
45.23233626
55.87754150

−1586.7082 1.99153298 1.11040384 1.24678422

4 0.178874698

0.09893214
0.18481509
11.0305006
12.5980362

0.241418546
50.59817301
66.99771955
57.05863369

−1283.76240 0.88938728 0.99874524 1.1871400

5 0.153072454

8.017991269
0.000000005
18.28544127
1.615965008
0.060456987

68.68917670
79.55782766
83.46583667
14.45235850
0.151551338

−1051.97938 0.99747221 1.01670503 1.16016527

6 0.132054503

0.532479235
0.034373403
13.04953708
4.208599107
7.090279453
2.291178834

4.108969054
0.092093459
84.86207394
81.71142685
67.23003519
56.20297618

−991.14436 0.90660986 1.00006670 1.12981528

Table 2. Parameters and statistics for model fitted to data without diurnal adjustments

P κ α1	 P β1	 P lnL({ti}) E[λ(t)] E[Λ] Var[Λ]

1 0.5796428053 20.7816860009 49.181292797 −2565.16186 1.000005090 1.64713115

2 0.2972951255
24.336309087
0.1366737439

63.30799040
0.426958321

−1147.38872 1.000002078 1.15682329

3 0.3105850108
29.625207375
0.0000000101
0.1200815585

58.78427931
32.16156796
0.405484625

−1422.551267 1.108843464 1.23286963

4 0.5627834858

0.0000000264
6.4766935751
14.656872968
1.8317154168

40.62190533
49.10661802
60.00475526
21.39853548

−2364.699597 1.022407180 1.59177967

5 0.5506638255

0.0725319843
0.0507855259
6.8528913938
15.032951777
2.0993068921

26.86479506
81.58572968
81.58572968
60.25583954
17.30297034

−2152.462512 1.011487836 1.53515842

6 0.5362685399

12.459351335
8.2747228669
0.0000000201
2.7582137937
0.0041661767
1.9821090294

77.72815398
69.01934786
53.74869710
47.94942161
42.42839207
13.72571940

−1997.336098 1.016450670 1.48640060

Table 3. Parameters and statistics for model fitted to data with diurnal adjustments

26 Point Process Models for Multivariate High-Frequency Irregularly Spaced Data



0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Autocorrelation of Λ for P=1

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Autocorrelation of Λ for P=2

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Autocorrelation of Λ for P=3

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Autocorrelation of Λ for P=4

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Autocorrelation of Λ for P=5

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Autocorrelation of Λ for P=6

Figure 11. Autocorrelations of Λ(ti−1, ti) for P =1	 6 without diurnal adjustments
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Figure 12. Autocorrelations of Λ(ti−1, ti) for P =1	 6 with diurnal adjustments

As can be seen by visually inspecting the autocorrelations, all of the residual series are pretty-
much acceptable *without* diurnal adjustments except for P =1 with still had significant leftover
autocorrelation. Strangely, it seems that inclusion of the diurnal adjustment significantly worsens
the model fit in nearly all cases. I am tempted to suspect something wrong with the code.
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Figure 13. Price history for SPY traded on INET on Oct 22nd, 2012
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Figure 14. xi= ti− ti−1 in blue and {Λ(ti−1, ti):P =1} in green
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Figure 15. xi= ti− ti−1 in blue and {Λ(ti−1, ti):P =6} in green
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Figure 16. Zoomed in view of xi= ti− ti−1 in blue and {Λ(ti−1, ti):P =6} in green

3.1.3. Multivariate SPY Data for 2012-08-14.

Consider a 5-dimensional multivariate Hawkes model of order P =1 fit to data for SPY from 3
exchanges, INET, BATS, and ARCA on 2012-08-14. Both INET and BATS distinguish buys from
sells whereas ARCA does not, hence 5 dimensional, 2 dimensions each for INET and BATS and
1 dimension for ARCA which will naturally have twice as high a rate as that for buys and sells
considered seperately. The 5 dimensions are organized as follows:

BATSBuys BATSSells INETBuys INETSells ARCATrades (105)
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Figure 17.

We say trades for ARCA because the type sent from the data broker is Unknown, indiciating
that it is unknown whether it is a buyer or seller initiated trade. We have the following parameter
estimates where “large” values of α (>0.1) are highlighted in bold.

λ=













0.25380789517348
0.269289236349466
0.221292886522613
0.158954542395839
0.371572853723448













(106)

α=















4.3514× 10−9 0.011879 0.2648 1.917× 10−8 0.10771

0.021881 2.6164× 10−8 2.5725× 10−8 0.024946 0.25138

0.29092 0.51715 1.1254× 10−8 0.0029919 0.004607

0.0041449 0.52852 0.018077 3.2535× 10−9 0.0237

0.021501 0.71358 1.0954 0.15264 4.1222× 10−9















(107)

β=













1.0954 10.803 16.665 20.188 9.6059
5.6238 11.558 16.721 18.304 7.9016
7.8125 15.299 16.431 14.702 6.6458
8.3083 15.758 17.749 12.953 3.1621
9.4264 16.369 19.303 11.071 2.8302













(108)

with a log-likelihood score of 39714.1497.

3.1.4. Multivariate SPY Data for 2012-11-19.

32 Point Process Models for Multivariate High-Frequency Irregularly Spaced Data



Consider the same symbol, SPY, as a 5-dimensional Hawkes process as in 3.1.3, for a different
day, on 2012-11-19, estimated with order P = 2 for a total of 105 parameters. αj coefficients
that are >0.1 are highlighted in bold. The parameters listed below resulted in a log-likelihood
value of 36543.8529. An interesting pattern emerges in the β coefficients where it takes on some
approximate stair-step pattern ranging from 2 to 22. This might be indicitative of some fixed-
frequency algorithms operating across the different exchanges at approximate 1-second intervals.

λ=













0.113371928486215301
0.116069526955243113
0.120010488406567112
0.140864383337674315
0.236370243964866722













(109)

α1=













0.000000400520039 0.000743243048280 0.0730760324025721 0.0235425002925593 0.14994903109
0.000836306407254 0.000048087752871 0.0009983197029208 0.36091325418001 0.0303494022034
0.000007657273830 0.008293393618634 0.0000346485386433 0.55279157046563 0.0303324666473
0.000000051209296 0.044218944305554 0.0165858723488658 0.0002898699267899 0.12041188377
0.000343063367497 0.019728025120072 0.22664219457110 0.20883023885464 0.0002187148763













(110)

α2 =












0.0247169438667 0.045938324942878493 0.52035195378729 0.0015976654768 0.0219865625857849
0.10369500283 0.000000961851428240 0.0058603752158104 0.17159388407 0.0001956826269151
0.0619247685514 0.005680420895898976 0.0000041940337011 0.0009132788022 0.0161550464515489
0.0073308612563 0.3760898786954499 0.0078995090167169 0.0000971358022 0.0022020712790430
0.37860663035 0.8648532461379836 0.0096939577784123 0.23909856627 0.0000001318796171













(111)

β1=













2.02691486662775 4.58853278669795 9.21516653991608 14.2039223554899 17.7230908440328108
2.30228990848878 5.70815142794409 9.75920981324501 15.0047495693597 17.1640776964259771
2.71360844613891 6.97390906252072 10.9112224210093 16.3935104902520 17.3801721025480269
3.18861359927744 6.93702281997507 12.0261860231254 17.5228876305459 17.8876296984556440
3.95262799649030 7.76155541730819 13.5039942724633 17.3549525971848 18.0730780733303966













(112)

β2=













19.6811983441165 20.56326127197891 18.53440853276660 11.10183435325997 5.955287687038747
20.2253306600591 21.39051471260508 16.97184115533537 9.548598696946248 5.459761230875715
20.2208259457254 22.20704300748698 17.88989095276187 8.724870367131993 4.215302773261564
19.7356631996375 21.67330389603866 15.76838788843381 7.534795006501931 3.517163899772246
20.2972304557004 19.06667927692781 13.19618799557176 6.812943703872132 2.825437512911523













(113)
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