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Abstract. Definitions from the theory of point processes are recalled. Models of inten-
sity function paramaterization and maximum likelihood estimation from data are explored.
Closed-form log-likelihood expressions are given for the Hawkes process, Autoregressive Con-
ditional Duration(ACD), and Log-ACD models. The Autoregressive Conditional Intensity
model is also discussed. Data from the symbol SPY on the Nasdaq stock market on Oct
22nd, 2012 is used to estimate model parameters and generate illustrative plots.
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1. Defintions

1.1. Point Processses and Intensities.

Consider a K dimensional multivariate point process. Let Nk(t) denote the counting process

associated with the k-th point process which is simply the number of events which have occured by
time t. Let Ft denote the filtration of the pooled process N(t) of K point processes consisting of
the set t0

k<t1
k<t2

k<	 <ti
k<	 denoting the history of arrival times of each event type associated

with the k=1	K point processes. At time t, the most recent arrival time will be denoted tNk(t)
k .

A process is said to be simple if no points occur at the same time, that is, there are no zero-
length durations. The counting process can be represented as a sum of Heaviside step functions

θ(t)=
{

0 t < 0
1 t> 0

Nk(t)=
∑

ti
k6t

θ(t− ti
k) (1)
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The conditional intensity function gives the conditional probability per unit time that an event of
type k occurs in the next instant.

λk(t|Ft) = lim
∆t→0

Pr (Nk(t+∆t)−Nk(t)> 0|Ft)

∆t
(2)

For small values of ∆t we have

λk(t|Ft)∆t=E(Nk(t+∆t)−Nk(t)|Ft)+ o(∆t) (3)

so that

E((Nk(t+∆t)−Nk(t))−λk(t|Ft)∆t) = o(∆t) (4)

and (4) will be uncorrelated with the past of Ft as ∆t→ 0. Next consider

lim
∆t→0

∑

j=1

(s1−s0)

∆t

(Nk(s0+ j∆t)−Nk(s0+(j − 1)∆t))−λk(s0+ j∆t|Ft)∆t

= lim
∆t→0

(Nk(s0)−Nk(s1))−
∑

j=1

(s1−s0)

∆t

λk(j∆t|Ft)∆t

=(Nk(s0)−Nk(s1))−

∫

s0

s1

λk(t|Ft)dt

(5)

which will be uncorrelated with Fs0, that is

E

(
∫

s0

s1

λk(t|Ft)dt

)

=Nk(s0)−Nk(s1) (6)

The integrated intensity function is known as the compensator , or more precisely, the Ft-compen-

sator and will be denoted by

Λk(s0, s1)=

∫

s0

s1

λk(t|Ft)dt (7)

Let τk = ti
k − ti−1

k denote the time interval, or duration, between the i-th and (i − 1)-th arrival
times. The Ft-conditional survivor function for the k-th process is given by

Sk(τi
k)=Pk(Ti

k>τi
k|Fti−1+τ) (8)

Let

ẼN(t)
k =

∫

ti−1

ti

λk(t|Ft)dt

then provided the survivor function is absolutely continuous with respect to Lebesgue measure we
have

Sk(τi
k) = e

−
∫

ti−1

ti λk(t|Ft)dt
= e

−ẼN(t)
k

(9)

and ẼN(t) is an i.i.d. exponential random variable with unit mean and variance. Since E
(

ẼN(t)

)

=1
the random variable

EN(t)
k =1− ẼN(t) (10)

has zero mean and unit variance. Positive values of EN(t) indicate that the path of conditional
intensity function λk(t|Ft) under-predicted the number of events in the time interval and negative

values of EN(t) indicate that λk(t|Ft) over-predicted the number of events in the interval. In this

way, (8) can be interpreated as a generalized residual. The backwards recurrence time given by

U (k)(t) = t− tNk(t) (11)
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increases linearly with jumps back to 0 at each new point.

1.1.1. Stochastic Integrals.

The stochastic Stieltjes integral [2, 2.1] of a measurable process, having either locally bounded
or nonnegative sample paths, X(t) with respect to Nk exists and for each t we have

∫

(0,t]

X(s)dNk(s)=
∑

i>1

θ(t− ti
k)X(ti

k) (12)

1.2. The Autoregressive Conditional Duration Model.

Let xi= ti− ti−1 be the interval between two arrival times; then xi is a sequence of durations
or “waiting times”. The conditional density of xi given its past is then given directly by

E(xi|xi−1,	 , x1)= ψi(xi−1,	 , x1; θ)= ψi (13)

Then the ACD models are those that consist of the assumption

xi= ψi εi (14)

where εi is independently and identically distributed with density p(ε; φ) where θ and φ are
variation free. These models are interesting but suffering from the drawback of being limited to
the univariate setting. [5]

1.3. The Autoregressive Conditional Intensity Model.

1.3.1. The ACI(1,1) Model.

Let the conditional intensity function for process k be given by the non-negative function

λk(t|Ft) =ωk e
φN(t)
k

(15)

where ωk> 0 and φN(t)
k is a measurable function of the bivariate filtration of all past arrival times.

[1, 4.2] Since φN(t)
k is time-invariant between arrivals in the pooled process it is therefore indexed

by the associated counting process. Define the vector

φN(t)=

(

φN(t)
a

φN(t)
b

)

(16)

In this bivariate setting, each arrival can be one of two types. Let yi be the indicator variable

yi=

{

0 i− th event is of type a
1 i− th event is of type b

(17)

The parameterization proposed by [8] is

φN(t)=

{

αa EN(t)−1
a +BφN(t)−1 if yN(t)−1=0

αb EN(t)−1
b +BφN(t)−1 if yN(t)−1=1

(18)

or equivalently

φN(t)=(αa+(αb−αa) yN(t)−1)EN(t)−1+BφN(t)−1 (19)

where ω, αa and αb are 2-dimensional parameter vectors, B is a 2× 2 matrix, and EN(t) is an i.i.d.
unit exponential random variable given by

EN(t)=

{

EN(t)
a if yN(t)=1

EN(t)
b if yN(t)=0

(20)
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where the generalized residuals are

Ei
a =1−

∫

ti−1
a

ti
a

λa(t|Ft)dt

=1−

∫

ti−1
a

ti
a

ωa e
φN(t)
a

dt

=1−

∫

ti−1
a

ti
a

ωa e
αa EN(t)−1

a +BφN(t)−1dt

(21)

and

Ei
b=1−

∫

ti−1
b

ti
b

λb(t|Ft)dt=1−

∫

ti−1
b

ti
b

ωb e
φN(t)
b

dt (22)

If the N(t)-th arrival was of type a then EN(t)=ENa(t)
a . We see that φN(t) is a weighted-average of its

most recent value φN(t)−1 and the error term EN(t)−1 and in this way the model has Kalman-filter
like properties. If B is restricted to be diagonal then the model is called a Diagonal Autoregressive
Conditional Intensity model. By rearranging terms (19) can be rewritten as

(I −BL)φN(t)=(αa+(αb−αa)yN(t)−1)EN(t)−1 (23)

If the eigenvalues of B lie inside the unit circle then (19) can be written as infinite moving average

φN(t)=
∑

j=1

∞

Bj−1(αa+αb
∗yN(t)−j)EN(t)−j (24)

The compensator for this parametization is given by

Λk(s0, s1) =

∫

s0

s1

λk(t|Ft)dt

=

∫

s0

s1

ωk e
φN(t)
k

dt
(25)

1.3.2. Maximum Likelihood Estimation.

For a bivariate model that requires joint estimation of both processes the likelihood is expressed
as

L= e−(Λa(0,T )+Λb(0,T ))
∏

i=1

Na(t)

λa(ti
a|Ft)

∏

i=1

Nb(t)

λb(ti
b|Ft) (26)

For a general K-variate model the likelihood is expressed as

L= e−
∑

k=1
K Λk(0,T )

∏

k=1

K
∏

i=1

Nk(t)

λk(ti
k|Ft) (27)

Due to the necessity of numerical integration, likelihood astimation for ACI processes tends to be
complicated and laborious to implement in code.

1.4. The Hawkes Process.

1.4.1. Linear Self-Exciting Processes.

A (univariate) linear self-exciting (counting) process N(t) is one that can be expressed as [9]

λ(t) =λ0(t)+

∫

−∞

t

ν(t− s)dN(s)

=λ0(t)+
∑

ti<t

ν(t− ti)
(28)
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where λ0(t) is a deterministic base intensity and ν: R+ → R+ expresses the positive influence of
past events ti on the current value of the intensity process. The Hawkes process of order P is a
linear self-exciting process defined by the exponential kernel

ν(t)=
∑

j=1

P

αj e
−βj t (29)

so that the intensity is written as

λ(t) =λ0(t) +

∫

0

t
∑

j=1

P

αj e
−βj(t−s)dN(s)

=λ0(t) +
∑

ti<t

∑

j=1

P

αj e
−βj(t−ti)

(30)

A univariate Hawkes process is stationary if

∑

j=1

P
αj

βj
< 1 (31)

If a Hawkes process is stationary then the unconditional mean is

E[λ(t)] =
λ0

1−
∫

0

∞
ν(t)dt

=
λ0

1−
∫

0

∞ ∑

j=1
P αj e

−βj tdt

=
λ0

1−
∑

j=1
P αj

βj

(32)

For consecutive events, we have the compensator

Λ(ti−1, ti) =

∫

ti−1

ti

λ0(s)ds+
∑

k=0

i−1
∑

j=1

P
αj

βj

(

e−βj(ti−1−tk)− e−βj(ti−tk)
)

=

∫

ti−1

ti

λ0(s)ds+
∑

j=1

P
αj

βj

(

1− e−βj(ti−ti−1)
)

Aj(i− 1)

(33)

where there is the recursion

Aj(i− 1) =
∑

tk6ti−1

e−βj(ti−1−tk)

=
∑

k=0

i−2

e−βj(ti−1−tk)

=1+ e−βj(ti−1−ti−2)Aj(i− 2)

(34)

with Aj(0)=0. If λ0(t)=λ0 then Equation 33 simplifies to

Λ(ti−1, ti) =(ti− ti−1)λ0+
∑

k=0

i−1
∑

j=1

P
αj

βj

(

e−βj(ti−1−tk)− e−βj(ti−tk)
)

=(ti− ti−1)λ0+
∑

j=1

P
αj

βj

(

1− e−βj(ti−ti−1)
)

Aj(i− 1)

(35)
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1.4.2. The Hawkes(1) Model.

The simplest case occurs when the baseline intensity λ0(t) is constant and P =1 where we have

λ(t)=λ0+
∑

ti<t

αe−β (t−ti) (36)

which has the unconditional mean

E[λ(t)] =
λ0

1−
α

β

(37)

1.4.3. Maximum Likelihood Estimation.

The log-likelihood of a simple point process is written as

lnL(N(t)t∈[0,T ]) =

∫

0

T

(1−λ(s))ds+

∫

0

T

lnλ(s)dN(s) (38)

which in the case of the Hawkes(P) model can be explicitly written [7] as

lnL({ti}i=1	 n) =−Λ(0, tn)+
∑

i=1

n

lnλ(ti)

=−Λ(0, tn)+
∑

i=1

n

ln



λ0(ti)+
∑

j=1

P
∑

k=1

i−1

αj e
−βj(ti−tk)





=−Λ(0, tn)+
∑

i=1

n

ln



λ0(ti)+
∑

j=1

P

αjRj(i)





=−

∫

0

tn

λ0(s)ds−
∑

i=1

n
∑

j=1

P
αj

βj

(

1− e−βj(tn−ti)
)

+
∑

i=1

n

ln



λ0(ti) +
∑

j=1

P

αjRj(i)





(39)

where we have the recursion[6]

Rj(i) =
∑

k=1

i−1

e−βj(ti−tk)

=e−βj(ti−ti−1)(1+Rj(i− 1))

(40)

If we have constant baseline intensity λ0(t) =λ0 then the log-likelihood can be written

lnL({ti}i=1	n) =−λ0 tn−
∑

i=1

n
∑

j=1

P
αj

βj

(

1− e−βj(tn−ti)
)

+
∑

i=1

n

ln



λ0+
∑

j=1

P

αjRj(i)





(41)

1.5. Combining the ACD and Hawkes Models.

The ACD and Hawkes models can be combined to provide a model for intraday volatility. [3]
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2. Numerical Methods

2.1. The Nelder-Mead Algorithm.

The Nelder-Mead simplex algorithm[4] was used to optimize the likelihoods derived above.

2.1.1. Starting Points for the Optimizer.

A starting point with an exact unconditional intensity was chosen as the most reasonable
starting point, but it is by no means claimed to be the best. Let xi= ti− ti−1 be the interval between
two arrival times as in the ACD model (14). Then set the initial value of λ0 to

0.5

E[xi]
, α1	P =

1

P

and β1	P = 2. This gives an unconditional mean of E[xi] as a starting point of the Nelder-Mead
algorithm.

3. Examples

3.1. Millisecond Resolution Trade Sequences.

The source data has resolution of milliseconds but the data is transformed prior to estimation
by dividing each time by 1000 so that the unit of time is seconds.

3.1.1. SPY (SPDR S&P 500 ETF Trust).

Consider these parameter estimates for the symbol SPY traded on the NASDAQ on Oct 22nd,
2012. The unconditional sample mean intensity for this symbol on this day on this exchange was
0.7655998283415355 trades per second. As can be seen, P = 6 provides the best likelihood but a
more rigorous method to choose P would be to use some information criteria perhaps. Estimation
for P = 7 and greater was attempted but the optimizer kept settling on prior solutions by taking
some α parameters to 0 thus essentially reducing the order of the model. Standard deviations are
not provided, but presumably they could be estimated with derivative information.

P λ0 α β lnL({ti}i=1	 n) E[λ(t)]

1 0.4888895840 5.4436229616 15.0588031220 −14606.0079680 0.76567384816

2 0.13718922357
7.2188754084
0.0782472258

25.399826568
0.1454607237

−12733.4619196 0.77131730144

3 0.13163151059
0.0000000003
7.5467174975
0.0677609554

28.852294270
23.166515568
0.1276584845

−12506.0576338 0.917666203197

4 0.13296929140

0.0723686778
1.8881451880
5.1594817028
0.2982510629

0.1349722452
16.637110622
30.626390900
32.490874482

−12716.5362393 0.769984967876

5∗ 0.06084821553

0.0000055317
7.6260052075
0.1866285010
0.0000939392
0.0101541140

0.5138236561
29.316263593
0.7694261263
0.0693359346
0.0241678794

−12505.9421508 0.802736706908

6∗ 0.04014430354

7.6812049064
0.0000040868
0.0282570213
0.1970449132
0.0314334590
0.0027981168

30.467204143
7.5984574690
0.1178289377
1.2119099089
4.7015553402
0.0096010396

−12478.0771035 0.847703217380

*=The exp/ln transform was used to ensure positivity of parameters of the estimate whereas absolute value was
used for the others, this resulted in the search point getting over local minima to achieve better likelihood.
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Figure 1. xi= ti− ti−1 in blue and {Λ(ti−1, ti):P =1} in green
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