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ABsTRACT. Definitions from the theory of point processes are recalled. Models of inten-
sity function paramaterization and maximum likelihood estimation from data are explored.
Closed-form log-likelihood expressions are given for the Hawkes process, Autoregressive Con-
ditional Duration(ACD), and Log-ACD models. The Autoregressive Conditional Intensity
model is also discussed.

TABLE OF CONTENTS

1. Defintions . ... .. .. 1
1.1. Point Processses and Intensities . ... ... .. .. ... .. ... ... . 1
1.1.1. Stochastic Integrals . . . ... .. . .. e 2

1.2. The Autoregressive Conditional Duration Model . . ... .... ... .. ... ...... 2
1.3. The Autoregressive Conditional Intensity Model . . ... .... ... .. ... ...... 3
1.3.1. The ACI(1,1) Model . . ... ... .. .. .. 3

1.3.2. Maximum Likelihood Estimation . ... ... ... ... ... . ... .. .. .. .... 4

1.4. The Hawkes Process . . . . . . . . . 4
1.4.1. Linear Self-Exciting Processes . . . ... ... ... .. .. . ... . . 4

1.4.2. The Hawkes(1) Model . ... .. .. . ... . .. .. ... .. . 5

1.4.3. Maximum Likelihood Estimation . ... ... ... ... .. ... . ... . ..... 5
Bibliography . . . . . ... 6

1. DEFINTIONS

1.1. Point Processses and Intensities.

Consider a K dimensional multivariate point process. Let N*(t) denote the counting process
associated with the k-th point process which is simply the number of events which have occured by
time ¢. Let F; denote the filtration of the pooled process N(t) of K point processes consisting of
the set t§ < t¥ <th < ... <t <... denoting the history of arrival times of each event type associated
with the k=1...K point processes. At time ¢, the most recent arrival time will be denoted tlka(t).
A process is said to be simple if no points occur at the same time, that is, there are no zero-
length durations. The counting process can be represented as a sum of Heaviside step functions

o(t):{o t<0

1¢0

NE() =3 ot — 1) 1)

th<t

The conditional intensity function gives the conditional probability per unit time that an event of
type k occurs in the next instant.

Pr (N*(t+ At) — N*(t) > 0| Fy)

= im, 5 g
For small values of At we have

Ne(t|Fy) At = E(NF(t + At) — NE(t)| Fy) + o( At) (3)
so that

E((N*(t+ At) — N¥(t)) — AF(t|Fy) At) = o(At) (4)
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and (4) will be uncorrelated with the past of F; as At— 0. Next consider

(s1—s0)
At
Alirno (NF(so+ jAt) — N¥(so+ (j — 1)At)) — N¥(so + jAL|Fy) At
t—
=1
’ (s1—s0)
= lim (N¥(sg) — N*(s1)) — i Ne(GAtL|F) At (5)
Pvarey 0 1 p J t

=(N*(s0) — N¥(s1)) 7/81 NE(t|Fy)dt

S0

which will be uncorrelated with Fy, that is

E(/ Ak(t|Ft)dt>Nk(so)Nk(sl) (6)

0

The integrated intensity function is known as the compensator, or more precisely, the F;-compen-
sator and will be denoted by

A¥(s0, 51) = / YRR (1)

0

Let 7 = t¥ — t¥_, denote the time interval, or duration, between the i-th and (i — 1)-th arrival
times. The F}-conditional survivor function for the k-th process is given by

Sk(Tik):Pk(Tik>Tik|Fti71+T) (8)
Let
EN) =/ Nt Fy)dt

ti—1

then provided the survivor function is absolutely continuous with respect to Lebesgue measure we

have

— [ 5 ARt Fy)dt 5
fti—l ( ‘ t) :6751’3(,,) (9)

Se(tF) =e

and 5~N(t) is an i.i.d. exponential random variable with unit mean and variance. Since E(ij(t)) =1
the random variable

ENw=1=Ene (10)
has zero mean and unit variance. Positive values of &y () indicate that the path of conditional
intensity function A\*(¢|F;) under-predicted the number of events in the time interval and negative

values of Ey () indicate that A*(¢|F}) over-predicted the number of events in the interval. In this
way, (8) can be interpreated as a generalized residual. The backwards recurrence time given by

UM(t) =t — tyrg (11)

increases linearly with jumps back to 0 at each new point.

1.1.1. Stochastic Integrals.
The stochastic Stieltjes integral[2, 2.1] of a measurable process, having either locally bounded
or nonnegative sample paths, X (¢) with respect to N* exists and for each ¢ we have

X(s)AN*(s) = 0(t —t5) X (1) (12)

(0,1] i>1

1.2. The Autoregressive Conditional Duration Model.
Let x;=1t; —t; _1 be the interval between two arrival times; then z; is a sequence of durations
or “waiting times”. The conditional density of x; given its past is then given directly by

E(zilzi-1,...;71) = Yi(wi-1, ..., v1;0) =5 (13)
Then the ACD models are those that consist of the assumption
zi=1ig; (14)



where ¢; is independently and identically distributed with density p(e; ¢) where 6 and ¢ are
variation free. These models are interesting but suffering from the drawback of being limited to
the univariate setting. [3]

1.3. The Autoregressive Conditional Intensity Model.
1.3.1. The ACI(1,1) Model.
Let the conditional intensity function for process k be given by the non-negative function
ARt Fy) = wy eV (15)

where wy >0 and (blfv(t) is a measurable function of the bivariate filtration of all past arrival times.

[1, 4.2] Since gbfv(t) is time-invariant between arrivals in the pooled process it is therefore indexed
by the associated counting process. Define the vector

N () ( zgz:; ) (16)

In this bivariate setting, each arrival can be one of two types. Let y; be the indicator variable

_J 0 i—theventisoftypea
yz{ 1 i—theventisoftypebd (17)
The parameterization proposed by [6] is
aaN@y—1t Bonw -1 fyn@w-1=0
ON@) = b . _ (18)
apEXy-1+Bonw -1 Hynw-1=1
or equivalently
On() = (aa+ (ap — aa) YN —1)EN() -1 + Bédn() -1 (19)

where w, o, and ap are 2-dimensional parameter vectors, B is a 2 x 2 matrix, and En (y) is an i.i.d.
unit exponential random variable given by

5%(,5) if yN(t) =1

En(y= . (20)
(t) { g?\/v(t) lf yN(t):O

where the generalized residuals are

goo=1— [ N(t|F)dt

¢ 1

to .
/ wa e?N Ot (21)
ey

a
i—

123
17/ w eaagz%(t)71+B¢N(t)71dt
a
(23

a
i—

|
=
\

and

134 t? b
E=1- / N(t| Fy)dt =1 — / wpe?M Ot (22)
t

b b
i—1 ti_1

If the N (t)-th arrival was of type a then En ()= ERa(r)- We see that ¢ () is a weighted-average of its
most recent value ¢ ;)—1 and the error term & N(t)—1 and in this way the model has Kalman-filter
like properties. If B is restricted to be diagonal then the model is called a Diagonal Autoregressive
Conditional Intensity model. By rearranging terms (19) can be rewritten as

(I =BL)pN @)= (o + (b — aa)Yn(t)—1)EN(H) -1 (23)

If the eigenvalues of B lie inside the unit circle then (19) can be written as infinite moving average

dnw =Y BI7Naa+ abyni—)En—j (24)
i=1
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The compensator for this parametization is given by

A(soos1) = [ AF(E|Fy)at
e =), -

S1 d)k
:/ wg e NOdt
S0

1.3.2. Maximum Likelihood Estimation.
For a bivariate model that requires joint estimation of both processes the likelihood is expressed

as
Na(t) Nb ()

L— e +a0m) T xeee|F) [[ A1) (26)
i=1 i=1

For a general K-variate model the likelihood is expressed as

« K N*(t)
L=e ZeaMODTT T Mk (27)
k=1 =1

Due to the necessity of numerical integration, likelihood astimation for ACI processes tends to be
complicated and laborious to implement in code.

1.4. The Hawkes Process.

1.4.1. Linear Self-Exciting Processes.
A (univariate) linear self-exciting (counting) process N(t) is one that can be expressed as [7]

At =hot) + / V(i — 8)AN(s)
=Xo(t)+ > v(t—t;)

t; <t

(28)

where A\g(t) is a deterministic base intensity and v: R4 — R4 expresses the positive influence of
past events t; on the current value of the intensity process. The Hawkes process of order P is a
linear self-exciting process defined by the exponential kernel

P
H=Y aje (29)
j=1

so that the intensity is written as

A(t) /\O(t)+/0t Z aje Fit=9)dN (s)
=] (30)

:Ao(t) + Z Z a; €_ﬂj(t_ti)

ti<t j=1

A univariate Hawkes process is stationary if

E —J 31
If a Hawkes process is stationary then the unconditional mean is

Ao

1o [ vt

% (32)
YL

E[A®)]



For consecutive events, we have the compensator
_ﬂj(ti_tk))

” i-1 P
Mtint) = [ dals)ds+ 3 37 Gem it -
ti_1 — 0 i J
. kPOj 1 (33)
= [ s+ 30 G1— et A1)
t; 1 j=1 B]
where there is the recursion
Aji—1) = Y ettt
te<ti-a
i—2
_ —Bj(ti—1—tx) (34)
k=0
=14+ _ﬂj(ti—l_ti—Q)Aj(i _ 2)
with A4,(0) =0. If A\o(¢t) =\o then Equation 33 simplifies to
i—-1 P
Alti—it) =(ti—ti—) Ao+ Zﬂ( —Ailti-1imte) _ o= Bilti—te))
k=0 j=1 Bi
(35)
(1 —e B (trtifl))Aj(i —1)

M~
=L 5

Il
-

=(t;—ti—1)Xo+
J

1.4.2. The Hawkes(1) Model.
The simplest case occurs when the baseline intensity Ag(t) is constant and P =1 where we have
(36)

At)=Xo+ Z e A=t
t, <t
(37)

which has the unconditional mean
EN®) =22
B

1.4.3. Maximum Likelihood Estimation
The log-likelihood of a simple point process is written as
(38)

T T
LN Brenn)= [ (=AMt [ mAANG)
0 0
which in the case of the Hawkes(P) model can be explicitly written [5] as

In £({t: }ie1..n) :fA(O,tn)Jriln)\(t

o P i—1
A0, t,) +Z m()\o +Z e Bilti—tk)
j=1 k=1
n P
=—A(0,t,) Jrz In (Ao(tz) Z aj R;(1) (39)
. =1 . B =1

:_/ No(s)ds =30 30 F(1 - e i)

0 i=1 j=1 "7

_l’_
NE
=
g
=
_|_
M~
2
&
&

<.
Il
-
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where we have the recursion[4]

1—1
Ry(i) =) e Piltimin) (40)
k=1

=e Ailtimti-)(1 4 R;(i — 1))

If we have constant baseline intensity Aog(t) = Ao then the log-likelihood can be written

(1]
[2]
(3]
[4]
(5]
6]

(7]

n P

InL({ti}i=1..n) =—Xotn— Z Z O‘_J:(l )

i=1 j=1 "7

. b (41)
+> In( Ao+ > aj Ry(i)
i=1 j=1
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