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We show that the energy and the momentum of the standing waves formed by
trapping electromagnetic waves between two reflecting surfaces transform exactly like
those of a point particle. When such a standing wave system is given translational
motion, it is observed that its time-dependent part transforms into a plane wave while
its space dependent part becomes the amplitude wave which gets compacted into the
internal coordinates. Using the idea that the electromagnetic waves can have spatial
amplitude, we show that if such a wave is confined after imparting spinning motion, a
system of two confined helical waves is formed with the one travelling forward in time
forming electron and the one travelling backward in time forming positron. The
confined helical wave picture of the particle gives a simple explanation of Pauli’s
exclusion principle.
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1 Introduction

We know that in the standard model all elementary particles are treated as point particles
in spite of the fact that such an assumption can at best be a convenient mathematical
abstraction. A new insight into the structure of particles like electron at this stage will offer a
new perspective to the problems of the physics of the ultra small. The new solutions of
Maxwell’s equation proposed by us attributing spatial amplitude to the electromagnetic waves
offer a lot of promise in this regard [1]. In this paper we shall show that the standing waves
formed by the electromagnetic waves acquire mass and takes the form of a modified plane
wave when it is given translational velocity. Such a standing wave system is seen to be ideally
suited to represent the half integer spin of a particle like electron.

Although we propose to confine the electromagnetic waves by the artificial construct of
two perfectly reflecting surfaces kept facing each other at a distance of half the wave length of
the wave, the actual process may involve vacuum fluctuations. However, we do not propose to

Fig.1- The figure represents a standing half wave formed by reflections on two mirrors
kept facing each other. Note that the maximum amplitude is at the origin of coordinates

go into the interactions involved in the confinement of the electromagnetic waves in this paper.
We shall initially study the standing wave formed by the confinement of plane progressive
electromagnetic waves between two perfectly reflecting mirrors and then impart translational
velocity to it. We may treat the standing wave having nodes at the ends as a linear combination
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of forward and reverse waves. Here we shall use the complex form of the wave representation
for convenience which in the stationary frame of reference can be expressed as

4 = &, (e*i(Eoto*poZo)/h + e*i(EotowoZo)/h) = 2, COS( P, Z, /h) e Edlo 1)

On imparting translational velocity v = Bc to the standing wave, the forward and the reverse
components will undergo Doppler shift and ¢, will transform to

¢ = é(efi(Eﬂfpﬂ)/h_’_efi(Ethrpzz)/h), "
where E =/EQ+p) : E, = /EQ-p):y=@-p)" 3)

Here we have assumed that &, transforms to & on account of the relativistic transformation in
the electric field. If we denote the average of the energy and momentum of the forward and the
reverse waves taken together as E and p respectively, where p; = E;/c and p, = E,/c, then we
have

E = {E+E,) = yE, ; b = ip-p) = /EV/C @)

Note that this is exactly how the energy and the momentum of a particle behave under
relativistic transformation. Therefore, the standing wave appears to be a quite promising
representation of a particle. We may now express (2) as

- —in H(Et-b2) [ o-il(E-E)t=(P-D)2))/h | o-il(E;~E)~(p,-P)el/ 7
= e e +€e
$=5 ( ) ©)
On simplifying the equation keeping in mind that that (p;-p)/(E;-E) = (po+p)/(E-E,) = Liv
and (E;-E) = (E-E,) = pc = Ev/c, we obtain

¢ = 2&cos[E(z—wvt)/nc]e ™ (EPD ®)

This moving standing wave with Doppler shifted components is mathematically equivalent to a
modified plane wave whose amplitude is a wave propagating with the translational velocity.
Here we may attach the electric vector & either to the amplitude wave or to the plane wave.
Later in we shall show that the electric vector belongs to the amplitude wave and it will
determine the inner structure of the particle. If we now take z = vt + NA, where N is an integer,
the cosine function in (6) will become unity and ¢ will acquire the exact form of the plane
wave. However as the amplitude of ¢ has a series of maxima it is ill-suited to represent a
localized particle. But then we should note that the well accepted plane wave representation of
a particle also suffers from the same debility. A comparison of (6) with (1) reveals that the
amplitude wave and the plane wave are respectively the space and the time dependent
components of the standing wave as viewed from a moving frame of reference.

It is interesting to note that the De Broglie wave has the same form as the exponential
function in (6). De Broglie derived such a wave [2] based on the assumption that a particle is
represented by a vibration of the form, ¢, = B exp[-ih™‘Eqt,]. Such a vibration on gaining
translational velocity would acquire the form of the plane wave or the de Broglie wave. This
can be shown by applying relativistic transformations on E, and t, to obtain

¢ — B efihfl(Etbe)

[2]



Note that while de Broglie had to introduce the artificial concept of a vibration which has no
spatial spread, the same form of the wave is obtained in (6) by the confinement of a physical
wave like the electromagnetic wave. We shall show that the amplitude wave which comes in
the way of identifying ¢ in (6) with the plane wave actually represents the spin aspect of the
particle.

2 More on the Amplitude wave and the Plane Wave

Let us now modify (6) and express it as

é = é:(eiE(z—vt)/hc n e—iE(z—vt)/hc) a i (Ebz) %

Of the two terms in the bracket representing the amplitude, we shall confine ourselves with
only the first term and express it as

¢ _ cfeiE(Z_Vt)/hc e—irrl(Et—pz) — ¢A¢P ’ (8)
where ¢, represents the amplitude wave while ¢p stands for the plane wave. It can be easily
shown that the wavelength A, of the amplitude wave and A» of the plane wave are given by

A = AJa-v?/c?) . a4, = v _ (c/v)A, )

w/2rx
where A, is the wavelength of the standing wave in the rest frame of reference. Note that the
amplitude wave has got the same wave length as the trapped wave as the factor, /(1 — v%/c?)
represents the relativistic contraction in length. Since v < ¢, we have Ap > Aa. The plane wave
has the phase velocity c?v which is superluminal and therefore it cannot represent the
movement of any physical entity. Besides, we saw that the amplitude of the modified plane
wave given in (6) has a series of maxima at

z = vt+Nhc/E = wvt+Na, . (10)

Therefore, it is not possible to localize the particle at any particular point. Surprisingly, in spite
of the fact that the velocity and the wave length of the confined electromagnetic wave and the
plane wave are different, it is observed from (9) that their periods are equal.

le; T = A/€/V) = Y(w/27) = 2z2lyw) = y T,

where T, is the period of the confined electromagnetic wave in its proper reference frame. The
factor y* on the right hand side of the above equation will account for the relativistic time
dilation.

Although a particle may be represented by the confined wave as discussed above, this is
true only at one level. The plane wave represents particle at a different level. This is so because
if we trap the moving particle within a larger box with totally reflecting walls, then the
standing wave will be formed based on the wave length of the plane wave, and not that of the
original electromagnetic wave. In other words, where the internal structure of a particle does
not come into play (this is equivalent to treating it as a point particle), it could be well defined
by the plane wave.

3 Compacting and the Creation of the Inner Spaces

We shall now show how the concept of the internal coordinates emerges when the
electromagnetic wave is confined between two mirrors. To elucidate the concept, let us

(3]



a

consider a point on the surface of a sphere with centre at P located at a distance Z  from the

origin of axes. Let P’ be a point on the surface of the sphere which is at a distance z', from its
centre. If we now treat the spherical body as a point particle, it is obvious that P’ will coincide
with P and therefore z’, will have to be taken as zero. But such an assumption will cause
problems if P' were revolving around P. If P' is made to coincide with P, then it will become
impossible to account for the spin angular momentum of the sphere unless it is treated as an
intrinsic property of the particle. This is another way of stating that the point P’ and the spin of

Fig.2 - P’ is a point on the surface of a sphere centered at P at a distance Z, from O. If
the sphere is taken as a point particle, P’ will coincide with P and its angular momentum
can be accounted for only by assuming existence of the internal space to the point particle.

¥

the sphere are defined in the internal space of the sphere. Note that the internal space
introduced here is just a mathematical construct which enables us to treat the sphere as a point
particle while simultaneously accounting for its spin.

We shall now apply this concept of the internal space in the case of the standing wave.
We may take 2, and £, as the spatial and time coordinates of the standing wave assuming it to
be compacted to a point (say P). In that case, z’, and t', may be taken as the coordinates of a
point (say P’) defined in the internal space of the standing wave. If we denote by z, and t, the
space and time coordinates of the point P’ from the origin of the coordinates, then we have

and t, = t, +t, (11)

’
+Z o (e]

z, = 2 :

o o]

Let us now express the standing wave given in (1) in a more general way using the internal
coordinates, z', and t',. Note that here z', occupies values in the range 0 < 7', < o as the
wave is confined between two mirrors separated by a distance 3. Similarly, t" occupies values
in the range 0 < t', < T,, where T, is the period of the oscillations. Taking “NT,” as the
rounded off external time coordinate denoted by £, , and t,’ as the corresponding internal time
coordinate, we have

z, = z, and t, = NT, +t, (12)

o o

and

AT'Et, = ot, = @AN+wt) = h'Ef, +a'ELt,

o"o

We may now express (1) as
¢ = 2&,cos[E z,/hc]le ™ B . (13)

When the system is given a translational velocity, (1) gets transformed to (6) and (z-vt) in that
equation can be written using (10) and the internal coordinates discussed above as

(z—wvt) = @E-VO)+(@ —wt) = NA, +z —wt’ (14)

Therefore, (6) can be written as
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¢ = 2&cos[E(z' —vt')/nc]le ™ (ErP) (15)

Note that by virtue of (14) we may switch from external spatial coordinates to internal spatial
coordinates whenever the need arises. The interesting property of ¢ here is that the spatial part
of the standing wave gets defined entirely in the internal coordinates while the time dependent
part gets defined in the laboratory coordinates. Had we defined the plane wave entirely by Z,,
then it would not have been possible to bring out the periodic structure of the wave. Therefore,
the plane wave has to be defined in t, and not £, so that the wave nature gets fully expressed
by it.

Observe that although we started with the assumption that a particle is represented by a
localized electromagnetic wave, ultimately the particle gets represented by an altogether
different wave which is no more localized in space. This new wave has the form of the plane
wave. The amplitude wave “2§ cos[E(z -vt)hc]” is defined in the internal coordinates and
later we shall show that it determines the spin and the internal structure of the particle. In the
external coordinates, ¢ represents a plane wave whose amplitude is a dimensionless number
(unity). This means that the plane wave does not represent the oscillations of any particular
field or any spatial displacement. Since we are dealing with a given state of the particle, we
may take the amplitude to be unity. It is now very easy to make the generalization to case
where the state of the particle is not given. This would lead us to the quantum mechanical
representation of the wave function where the amplitude denotes the probability amplitude.

It is obvious that ¢ in (15) satisfies the Klein Gordon equation (note that the energy and
momentum operators do not operate on the amplitude wave as it is now defined in the internal
coordinates) and not the wave equation for the electromagnetic waves although ¢ is taken as a
linear combination of these waves. This confirms that the confinement of the electromagnetic
wave has resulted in the generation of mass [3]. We now observe that the standing wave
picture is compatible with the plane wave representation of a particle in quantum mechanics.

4 Helical Structure of the Confined wave

In the above discussion we saw that a standing wave formed by the confinement of the
electromagnetic wave acquires mass and takes on the form of a modified plane wave. But on
detailed scrutiny of the standing wave, we observe that it cannot possess half integer spin. This
is because the projection of the spin of the forward and the reverse waves along z-axis can take
values of only + h. Therefore, the system of the confined wave cannot possess half integer
spin. Another problem is that the confinement of such a wave creates only particle and no
antiparticle. This goes against the basic conservation principles. We shall resolve these issues
now.

Till now we have treated the electromagnetic wave in the conventional manner without
attributing any spatial amplitude to the wave. We shall now examine the issue based on the
concept of the spatial amplitude [1]. Let us start with a plane polarized spatial wave travelling
along z-axis. The first plane polarized wave may constructed by taking a linear combination of
two circularly polarized helical waves, one travelling forward in time and the other travelling
reverse in time and space with the opposite helicity. Note that for the wave travelling reverse
in time, the direction of the electric (and magnetic) vector will be reversed. We should keep in
mind that both these waves satisfy Maxwell’s equations in vacuum and there is no way to
distinguish which is moving forward in time and which is moving reverse in time. The
property that photon is its own antiparticle arises from this behavior. Since these two waves
have opposite helicity, we end up having a plane polarized wave both in spatial and
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electromagnetic oscillations. We may consider another plane polarized wave constructed
similarly, but with its electric vector pointing in the opposite direction. A plane polarized
spatial wave may be constructed by a linear combination of these two plane polarized waves
and for such a system the electric and magnetic fields of the component waves get cancelled.
Assuming the plane of spatial oscillations to be along the y-z plane, let us represent such a
plane polarized spatial wave by

¢0' = 2.] 7o COS[%(Eoto - pozo)/h]
= &+ (16)

—i3 - * - il _
where ¢0 _ j770 e i15(Eoto—PoZo) /7t and ¢0 _ J770 e|2(E0to Pozo)/ 1t

Here we have intentionally used the cosine function, instead of the complex function to
represent the electromagnetic wave because the particle and the antiparticle state of photon are
the same. Therefore, it is impossible to say whether the electromagnetic wave is to be
represented by ¢ or ¢ . The best option is to take the linear combination of both states. We
shall now assume that in the presence of an interacting field, ¢ and ¢’; undergo spinning
motion in the opposite directions with angular velocity 3o, = 3E./h. In the next section we
shall show that such a spin angular velocity will result in the system acquiring spin of zh. Note

Fig.3 - The figure is the projection on the transverse plane of helical wave formed by gaining
spin angular velocity Z w, (in the anticlockwise direction) to a plane polarized spatial wave
propagating along the z-axis. The wave travelling in the reverse time is not shown here.

that the net spin angular momentum gained will be zero as the angular velocities of ¢, and ¢
are in the opposite directions. While the spin angular velocity of ¢ is imparted in the
anticlockwise direction, that of qﬁ’; will be imparted in the clockwise direction as it is travelling

backward in time. In other words, the spin angular momentum imparted to the two waves will
have opposite signs.

We should keep in mind that such a helical wave formed by acquiring angular velocity
as shown in figure 3 will not possess electromagnetic field. This cancellation of the electric
and the magnetic fields may occur only for a very short duration allowed by the uncertainty
principle and the same field will reappear shortly in the final configuration. We may now
express the helical wave as a linear combination of the two waves, one moving forward in time
and the other moving reverse in time. We may now imagine that the wave in the forward time
acquires electric field (and also magnetic field) in one direction while the wave in the reverse
time acquires it in the opposite direction with the result that the resultant field at any point
remains zero. We shall shortly show that the wave in the forward time and the reverse time
occupy the same spatial region. The helical waves so formed may not be resolvable in to two
plane-polarized spatial waves orthogonal to each other because in that case it would be no
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different from the electromagnetic wave as far as its spin is concerned which we know is unity.
In other words, if the property of the half spin is to be retained, the confined helical wave has
to be taken as a fundamental state which cannot be resolved in terms of plane polarized states.
In a separate paper we shall show that unlike the electromagnetic wave such a wave cannot
progress freely in space as vacuum fluctuations may confine it forming a standing wave
system. This means that the full frequency wave constituting the particle state can be treated as
a half frequency wave that possesses half integer spin.

Right now we shall not worry about the details of the vacuum interactions which confine
it as it will be taken up in a separate paper. When confined, such a helical wave will have its
plane of incidence always perpendicular to the spatial displacement at any point on it in normal
incidence. This means that the reflected wave will not undergo any phase change. However, to
form a standing wave one more condition has to be satisfied. The reflections should take place
at such a point that when it comes back to original starting point the wave should be in phase
again. The simplest case for such a condition to be satisfied is when the helical wave gets
reflected at the half wavelength mark. The situation will be clear from figure 4. The closed
helical wave formed by the reflection could be seen as forming a path on the surface of an
imaginary cylinder as shown in figure 4(c). Note that the successive helical loops undergo
precession on the surface of this imaginary cylinder. Here we should keep in mind that as per

(b) (©)

Fig.4 - (a) denotes one full helical wave moving towards the right with the first half of the wave
shown in full line while the second half is shown in dotted lines. (b) shows the helical wave that is
reflected at the half-wavelength mark to get back to the starting point to be in phase for the next
cycle. (c) shows that the closed helical wave is located on the surface of an imaginary cylinder.

convention while the forward wave is left handed, the reverse wave will be right handed. This
will mean that for the system of the confined helical wave, the net spin will not be zero as the
spin of the forward and the reverse waves will be pointing in the same direction. We may
express the forward and the reverse waves as

4 = 7 (i o I EL o) | j oI Bt zo>)
0
17
4 = 7 (i e T EL ) | o T, zu))
o
Here we should keep in mind that there is no interference between the forward and the reverse
waves and for the same reason it is meaningless to take the linear combination of ¢; and ¢.
We should also assume that the formation of the particle antiparticle pair takes place when the
plane polarized wave is near an interacting field so that the requirement of the momentum
conservation is taken care of by it.
Note that the helical wave obtained by imparting spin to ¢ is a wave travelling backward
in time and the spin angular momentum of such a system would be in the opposite direction.
Such a confined helical wave travelling backward in time can be identified with the antiparticle
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state. It becomes obvious that these two confined waves (one spinning counterclockwise and
the other spinning clockwise or vice versa) represent the particle and the antiparticle states.

In section 1 we showed that the standing (electromagnetic) wave can represent a particle
as it acquires mass on confinement and also its average energy and momentum behave just like
the energy and momentum of a particle under relativistic transformations. It can be easily seen
that these properties will equally well apply to the case of the confined helical waves
introduced in this section. Let us now compare the properties of the standing electromagnetic
wave and the confined helical wave discussed above. Let us take the case of the circularly
polarized electromagnetic wave forming the standing wave. The spatial displacement of the
forward and the reverse waves can be expressed as the real part of the complex functions given

by
4 = 1 (i e—ih’%Eatn—pozD)+ije—ih’1(EOto+poza>)
0o
(18)
4 = n (i e—ih’l(Eoro—poza_ije—ih*(Eotwpozo))
2 o

Since the forward and the reverse waves undergo interference, we may re-express (18) as
b = in ( o1 (EdoPoze) 4 g i (Eqty+p zo>)
X o
4 = iijn (e—ih’l(Eoto—pozu) _ e it pe zo>)
y o

Note that the phase of the wave does not undergo any change on reflection in the z-x plane
while in the y-z plane there is a phase shift of @ on reflection. Because of this phase shift, the
reflected wave also has the same helicity as the forward wave. The standing wave formed as a
result will be one in which each point on it will be oscillating in the transverse direction. Since
the helicity of the forward wave and the reverse wave are the same, the net spin of the standing
wave system as a whole will be zero. Here we should keep in mind that since we are dealing
with luminal waves, the helicity can be taken as an intrinsic property which is observer
independent.

5 More on the Confined Helical Wave

Let us take the function ¢, in the range —A, < z, < A,. Note that since ¢, represents a half
frequency wave, the range specified above covers only one wave length. Let us now denote by

¢OL1' the spatial displacement of the forward wave belonging to ¢, and introduce a spin angular

velocity of 3, = 3E,/h in the counterclockwise direction on its spatial amplitude as discussed
in the previous section to obtain

¢0L Y= fincoslE(E, - poz,)/H]-in. sinf2(E,t, — p,z,)/ AT} o2 (Edlo=Poto) (19)

Note that only the amplitude gets transformed and is given by the two terms within the curly
brackets. The right hand side of the above equation could be simplified to give

Ly _1(i_ii U A (Boto—PoZo)h 1 (5 i '
¢0 - 2 (J ")770 € + 2 (J+ ”)770 (20)

Note that (19) and (20) do not represent the electromagnetic waves. They can be termed as a
new type of helical waves created out of the plane polarized spatial electromagnetic waves by
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imparting spin motion to them. Now shifting the origin of the coordinate axes to 3(j+ii)n’, and
taking 1, = 31", We obtain

¢0|—1 _ (j—ii)ﬂo e*i(Eoto*DoZo)/fl
— 770 (j _ ") eih’lpoz‘oe—ih’lEoto . (21)

Here we have introduced the internal coordinate z' based on the discussion in section 3.

If we now keep in mind that in (21) the exponential function “exp[-ihEqt,]” represents
the wave aspect of the particle, the remaining amplitude part defined in the internal coordinates
can be shown to represent the spin. Note that the vector properties are confined to the
amplitude part of the function which is defined in the internal coordinates. Therefore, to
understand the internal structure of the particle we have to study the amplitude part in
isolation. Now in (21) taking only the real part of the function representing the amplitude, we
obtain

s = 1olic0S(p,zy /) +i sin(p,z; /)] (22)
Needless to say, ¢j}) stands for a helical wave which is independent of time.
Let us now examine how the reverse wave will transform when spin is introduced. Let us

denote itby .2 given by

8 = {in]cos[3(E,t, + pyz,)/ h]—in, SN[ (Et, + p,z,)/ Alye HE P (23)

o

= 3(—ii)ny, e ST 4 5 (jrii)

Shifting the origin to 3(j+ii) n’, and taking n = 21", , We obtain
$* = m(j—ii)e " Pre SR (24)

Taking the real part of the amplitude of the above wave in isolation and replacing 1, by 1o,
we obtain

o = molicos(p,z',/n)—isin(p,z', /)] (25)

Note that the forward wave given in (21) and the reverse wave given in (25) together will form
a closed helical half wave or a closed loop.

Let us now examine the confined wave formed by ¢’ given in (16). Since ¢ is moving
in the reverse time, the spatial displacement of the corresponding confined wave which has
clockwise rotation could be attributed to the antiparticle state denoted by ¢§* and following the
steps similar to the ones taken for ¢51 we obtain

g = iy cosl (Egt, — oz, 1+ 7, SN[ (Et, — pyz,) /Ty "

= 3(j—ii)n, &R L1 (j1ii)n) (26)

Shifting the origin to 3(j+ii)n’, and replacing 3n, by 1., We obtain

[°]



Ry

¢o _ 7, (j N ”) e—ih’lpoz‘oeih’lEoto (27)

The real part of the amplitude of the above wave taken in isolation gives us

Ry

Ao = 770[j COS( pozlo /h) + i Sin( pozlo /h)] (28)

Similarly we may express the reverse wave in the reverse time as

R;
Ao

= 7n,licos(p,z',/n)—isin(p,z',/7)] (29)

Note that (22) and (25) pertains to the particle state while (28) and (29) pertains to the anti-
particle state.

An interesting aspect one may observe in the above analysis is that the confinrd helical
wave representing both particle and antiparticle states the origin is being shifted to the same
point. This means at the instant of creation of the particle-antiparticle pair the net electric (also
magnetic) field is zero at all points on the confined helical waves. However electric field of &,
can reappear on the confined helical wave representing the particle state in such a way that it
gets compensated by the electric field -&, that reappears on the corresponding wave
representing the antiparticle state. Remember that the electric field on the wave travelling
forward in time was having electric field &, while that on the wave travelling reverse in time
was having electric field -&,.

Till now we have studied the forward and reverse waves constituting the confined
helical waves in their proper reference frame. If a translational velocity is given along z-
direction, then, based on the discussions in section 1, (19) and (22) will transform to

¢|_1 _ (j_ii)ﬂl iE(z-wt)/ne ¢ ¢Lz _ (j_ii)nze—iE(z—vt')/hc¢ (30)

—in Y (Et—pz)

where ¢ = € . Since n, may undergo relativistic transformation on acquiring

translational motion we denote the amplitude of the forward wave by n; and that of the reverse
wave by 1,. Using (4), (30) can be re-expressed (see appendix) as

Lo i i0 o-in(Et-pi2) . Lo _ i —i0 i (Et+p,2)
¢ = (-ii)n,ee ;P (j—i)n,e e 31)

where 0 is given by sin 6 = -iyB, y = (1-p?)?, B being equal to v/c.

6 Confined Helical Wave and its Spin

In gquantum mechanics, spin is taken as an intrinsic property of electron. The idea of
electron spinning around its own axis does not make sense as it is taken as a point particle
without any internal structure. This is so different from the macroscopic situation where the
direction of the spin of a body is exactly determined and is observer independent. Therefore, it
was believed that the spin of a particle like electron cannot be understood in terms of the
classical analogues of rotational motion in the three dimensional space. It is treated as a
property defined in the internal space (of the particle) that cannot be analyzed further. But in
our approach, the plane wave representing an electron is attributed an internal structure of the
confined helical wave. This means that spin can also be traced to some property of the
confined helical wave. We shall see how this can be done.
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We know that the accepted practice in quantum mechanics is to represent the angular
momentum component, M, along the z-axis by the relation

M, = ihdy/66  where y = Be"™*, (32)

z

Here 00 represents an infinitesimal rotation around z-axis in the x-y plane and while A
represents the action function. Accordingly we have

M, = —aAdo. (33)

We should keep in mind that if a particle were to have a non-zero value for angular momentum
(with regard to a point in the path) it should progress along a curved path which would be
evident from the variation in the phase of the wave given by -0A/06. But we know that the spin
angular momentum is independent of the path of the particle. This leaves us with only the
rotation of the amplitude of the wave to account for the spin. We shall now take the forward
wave given in (32) and examine if its amplitude can exhibit the spin properties of the particle.
Expressing ¢"1(n) as ¢"! and taking into account the relativistic transformations in n; and n,
(see appendix), we obtain

p" = g (34)
where ¢,IA_ 1 (j _") 7, eiH eiE(z’—vt’)/hc and ¢ _ e—ih_l(Et—bZ) .

The amplitude wave introduced here has got vector properties and is defined in the internal
coordinates. Therefore it appears to be ideally suited to represent spin. The phase of the
amplitude wave can be expressed as

E(z'-vt')ac = n'[L(E +E,)z/c-1(E, ~E,)t]
= —3In'E(t'-2'/c)+ LhE, (t' + 2'/c). (35)
Therefore, the amplitude wave in (34) can be expressed as

Y\ 1; lip—1pr
L, 310 —51h—A,

o= (i e e "y e (36)

Here A and A, are respectively the action of the forward and the reverse waves in terms of

the internal coordinates. These waves represented in (36) should not be confused with the
electromagnetic wave confined between the two mirrors. We shall show later that these
represent spin rotations which created the confined wave that represents a particle out of the
original wave with frequency 3E,/h. Note that these waves undergo a phase change of only ©
when the plane wave undergoes a phase change of 2x. In (36) we should remember that the
vector (j-ii) represents the rotation in the x-y plane in the anti-clockwise direction and for the
same reason it is logical to denote it by the unit vector k in the z-direction. We may now
express ¢," as

L 2% 1
Al — W~ u s (37)
1 i flp-1ar 11 1
where ut = ne g'2%g'2" Aly W2 = n: 70 1712

Here we have suppressed the unit vector k because it is taken for granted that the direction of
the spin could be along the direction of the momentum. Since 0 is imaginary, the function
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“exp(i30)” is a real number and is invariant to the conjugation process. Here the product of u*
and w?" forms the amplitude of the plane wave. It can be easily seen that u’ rotates the original
half frequency wave into a full fledged forward wave.
We may now express the spin angular momentum, S of the forward wave by
L, 1
Sgr = in0% w04 They. (38)
o(at’) o) *

Note that by the time the phase of the forward component of the confined helical wave rotates
by an angle o,t’, u' would have rotated through only half of that. As the operator 6/6(w;t) does
not operate on w”", it is obvious that for the purpose of the spin of the forward wave, we may
ignore its existence completely. This would mean that we may represent the forward wave
givenin (34) as

gt = u'g (39)

Here we have dropped the factor “(j-ii)” from the right hand side as it represents the direction
of the spin which any way can be accounted by suitably defining u® to represent the correct
spin rotation. We should keep in mind that the rotation has been reckoned with regard to
luminal velocity of the wave which for the forward wave is in the z-direction and in the
opposite direction for the reverse wave. This gives the value of the spin as 3h. Note that the
right hand side of the above equation does not bring out the true picture of the inner structure
of the particle. But since we are interested only in the spin of the system that emerges from the
inner structure, u' is adequate for the purpose. In the above discussion we have taken the
helical wave rotating in the counterclockwise direction.

Let us now take the reverse wave ¢L2 from (24) and express it as

g = (j—ii)ni e B0 e Moyt g H0 g H N
o (o]
= (-ijw'u® ¢ (40)
where U = pZe e and w = pfe M

Following the same steps as taken from (34) to (38), we will obtain

L, 2

Sgt = —in9% = i Y _ipgle (41)

a(a)zt') a(C‘)zt,) :

Note that for the reverse wave the spinning will appear right handed which explains the
introduction of the minus sign. This means that the spin of the forward and the reverse waves
will be aligned in the same direction which will be the direction of the translational velocity.
An interesting property that emerges from the above description is that by the time the phase of
the forward wave given in (32) changes by w,t’, u” would have rotated through only half of
that. Since the operator 8/8(w,t") does not operate on the component w'", it is obvious that for
the purpose of the spin of the reverse wave, we may ignore its existence completely. This
would mean that we may represent the reverse wave given in (40) as

¢'—z — u2 ¢ (42)

Since the rotation of the reverse wave is aligned in the same direction as that of the forward
wave, spin of the forward and the reverse waves will be in the same direction with regard to

[12]



the translational velocity of the confined wave or the particle it represents. Therefore, taking
the average of the spin of the forward wave, S; and that of the reverse wave, S,, we obtain

S = %[Sl"'sz] = %[%h"'%h] = 3h . (43)

The above treatment attributing spin of the particle to the amplitude wave defined in the
internal coordinates gives a consistent result.

7 From the Confined Helical Wave to the Wave Function

In the approach followed till now we have been representing a particle in terms of a
confined helical wave having a specific value for its energy and momentum. We saw that in
external coordinate system the confined helical wave has the form as that of a plane wave. In
fact, it is reasonable to assume that the plane wave representation of particle in quantum
mechanics has its origin in the confined helical structure of particle as described above. In
other words, we are attributing a substructure to the plane wave state. The spin of the particle
emerges from the rotation acquired by the amplitude of the half frequency wave. Using (30)
and (31) let us represent the confined helical wave as

Pt = " +¢ = 2(j—ii)cos[E(z' —wt)/hc+ O] ¢ (44)
Here the amplitude wave represented by the function “2(j-ii) cos[E(z -vt’)/hic+0]” is defined in
the internal coordinates of the particle. Therefore, the amplitude of the plane wave in the
external coordinate has to be taken as unity. Since we were dealing with a given state of the
particle, it is obvious that the probability of finding the particle in that state has to be unity. But
if the plane wave states formed by the confined helical waves are occupied in a virtual manner
by the principle of quantum superposition, then in the place of unity, it becomes logical to
introduce the probability amplitude [4]. Let us now denote the plane wave state by ¢, where
“i” denotes its energy state which may take values from 1 to n. If the i " state is occupied “a;”
number of times in the process of superposition, then we may express it by

y = 2y, = Za g, (49)

Here the function v/ v, = a;a; denotes the probability that the i" state is occupied. Note that
here spin aspect of the particle is not expressed explicitly.

We saw that although the electromagnetic wave exists in real space, the moment it gets
confined it acquires the form of the plane wave which is ho more defined in real space. This is
made possible by compacting the spatial properties of the electromagnetic wave into the inner
coordinates. It is now quite clear that the wave function as defined in quantum mechanics is a
logical extension of the function representing the confined helical wave. De Broglie believed
that ; is defined in the real space [5] and now we know that his intuition was not very far
from the truth. An important property of ¥ as defined in quantum mechanics is that it treats the
eigen state as the fundamental state which is not required to be analyzed any further. Note that
this self imposed restriction emerges from the assumption that the plane wave state is the most
basic state. But we saw that the plane wave state can be attributed a sub-structure in terms of
the confinement of electromagnetic wave. In this paper we have not clarified what happens to
the electric and magnetic fields associated with the confined electromagnetic wave as it gets
compacted to the internal coordinates. It will be shown in a separate paper that in the process
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of confinement the electric field generates the electric charge of the particle while the magnetic
field gets canceled.

The particle state denoted by the confined helical wave has to be either an electron or a
muon as only the electromagnetic field is involved here. It should be possible to treat other
particles like quarks in terms of confinement of a more complex wave which has oscillations
not only in space and electromagnetic field but also in other relevant fields. Note that in the
process of confinement all the properties pertaining to the fields will get compacted into the
internal coordinates while the time dependent part of the wave will get converted into the plane
wave. In other words, in spite of the differences in the internal structures, it will be possible to
represent all particles in terms of plane waves.

8 The Structure of Electron and Pauli’s Exclusion Principle

In the light of the above discussion, it is quite clear that the electron can be represented
by a helical half wave confined between two mirrors. Let us take the case of the electron in the
spin up state which can be represented by ¢“. From (22) and (25) we know that in the rest
frame of reference, the real part of the amplitudes of the forward helical half wave and the
reverse helical half wave can be represented respectively by fl}) and flzo given by

Ly

o = 1Li00s(Pozo /1) +i sin(p,z, /7]
(47)

Ly

o = 1Lic0s(p,z, /) —isin(p,z, /7))

The confined wave formed by these two waves represents a helical half wave defined in the
internal coordinates as shown in figure 5. It should be noted that this closed helical half wave
undergoes precession on the surface of an imaginary cylinder as already discussed in section 4.

(a) (b}

Fig,5 - (a) represents the standing helical half wave formed between two reflecting
mirrors. (b) shows that two such standing waves can be joined only when
their spins are oriented in the opposite directions.

On the basis of this confined helical half wave structure of electron, it is possible to understand
the Pauli’s exclusion principle. It should be noted that two such standing waves can be joined
together only atO as shown in figure 5(b). Joining these waves at Q with another wave is not
possible as the wave gets completed only at O. But to be in phase at the point O, the other
standing waves will have to have the opposite helicity (spin). Once one standing wave couples
with another one with the opposite helicity (spin), then it is obvious that no further connections
could be made with any other standing wave. It should be noted that for the confined helical
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wave structure or two particles of opposite spin to couple, their plane waves should remain in
phase. This, we know, is possible only if the energy and momentum of the particle are equal.
This explains the Pauli’s exclusion principle.

If a fermion is accorded the confined helical wave structure, it is obvious that a boson
having unit spin should be attributed the structure of confined helical full wave. On the basis of
such a structure, it is quite clear that a boson could be attached to other bosons on either side,
and a chain of bosons could be formed without limit.

9 Spin and the Symmetry in the Relativistic Transformation

Although spin emerges naturally from the solutions of the Dirac equations, its relation to
the relativity principle is not quite evident from the approach. We shall now show that spin can
be treated as the conserved quantity for the symmetry associated with the relativity principle.
Let us take the equation

(7., N7.X.) = (p.r-Et)-iz-(rxp)-a-(bct—Er/c) - (48)

where v, stands for the Dirac gamma matrices while ¥ and o are the familiar 4x4 matrices
which could be expressed in terms of the Pauli’s spin matrices [6]. The terms on the right hand
side of the above equation can be treated as the sum of the scalar and vector products of the
four-vector momentum and spatial coordinate. The first term on the right hand side of (48)
gives us the action of the particle while the second term gives us the angular momentum. We
saw from section 6 that the third term, which is the “cross product” involving energy and time
( note that [pct - Er/c] = [XoPk - XkPo] ) is actually defined in the internal coordinates, and
represents the spin angular momentum. If the particle is moving along z-axis, then we may
express (48) as

(7.0, Nr.x,) = (b,z-ED)-ix, (rxb), +a, -E(z'~vt)/c - (49)

This takes us to an interesting insight. We know that the invariance of the angular momentum
can be attributed to the directional isotropy of the space. Or in other words, the physical
property of a system will not change whatever be its direction in space. Now a rotation in the
plane containing the time-axis and z-axis can be effected only by introducing a translational
velocity to the system. Therefore, the invariance of the spin of a particle can be attributed to
the invariance of the physical properties of the system on introducing a velocity
transformation. In other words, spin is one of the invariant quantities that emerge out of the
relativity principle which is a fundamental symmetry. This explains why spin is an intrinsic
part of the Dirac equation. Note that the concept of the internal coordinates is essential to show
that last term on the right hand side of (49) represents spin angular momentum of the system.
This explains why it cannot be understood in classical terms.

10 Conclusion

From the above discussion, the representation of electron by a confined helical wave
appears to be a viable proposition. It provides us with a new insight into the spin and the
structure of the elementary particle. Needless to say one important advantage of this approach
is that it gives a simple explanation for Pauli’s exclusion principle and the non-classical
behavior of the spin angular momentum.
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In quantum mechanics the state of a particle is represented by a plane wave which is an
eigen state of the four-momentum in the coordinate representation. Note that the eigen state is
the ultimate level of reality in quantum mechanics, beyond which no measurement is assumed
to be possible. In relativistic quantum mechanics spin is introduced as an internal degree of
freedom and is not directly related to the plane wave representation of the particle. But in the
approach followed in this paper, it is observed that the confinement of the electromagnetic
wave results in its spatial oscillations getting compacted into the inner coordinates where the
spin of the particle is defined while the time dependent component becomes the plane wave.
Therefore, we are effectively assuming that the plane wave representation of a particle is not
the dead end for the investigation into the structure of the particle. Here we are attributing an
inner structure to the eigen state represented by the plane wave.

The confinement of the electromagnetic wave is shown to create mass as well as the spin
of the particle. However, this approach cannot be considered complete unless it is shown that
the electric charge can also created just like mass from the confinement of the helical wave.
This will be attempted in the next paper. The confined helical wave representation of the
electron promises to be an exciting new way of understanding the basic structure of matter
without invoking the existence of strings.
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Appendix

Let us now consider the case where the confined helical wave is formed along z-axis with
its spatial amplitudes in the x-y plane. Let us assume that it has a translational velocity v along
the z-direction. If the spatial amplitude of the helical wave is spinning in the anticlockwise
direction when viewed head on, we may treat it as left handed and represent it by ¢“. We
know from section 4 that ¢* can be represented in terms of the forward wave and the reverse
wave in the more general complex form as

—itn M E -2 ei%h’l(Eth- p,z)

gt = (j-i)n, e g (EHD) (A1)
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& = (j-ii)y, o EL ) JHHEPT) i (Etopa) (A7)

But since the spatial amplitude of the helical wave n; = A1/2n and m, = A,/21 , where A; and A,
are the Doppler shifted wave lengths of the forward and the reverse waves respectively given

by
A = 74LA+B) 0 A = yALA-5) (A3)

we have mo= rn@+p) s o = yn,(A-p) (A4)

where 7,=L,/2n and = v/c. Taking y = cos0 and -ify = sin@ and simplifying further, keeping
in mind that the amplitude wave is defined in the internal coordinates, we may express the
forward wave as

¢|_1 _ (j—ii) 7, eiH eih’lE(z'—vt') e—ih’l(Et—pz) (A5)

where g = e *(E-p2)  Similarly, the reverse wave can be expressed as

p7 = (j-ii)p,e ey (A6)

<>
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