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Abstract: - The paper deals with the problems of characterization of simple graphical partitions belonging to the 
solid graphs, i.e. graphs, in which there are no four of vertices such that it is possible some shift of edges 
incidental to them and with characterization of the one class of steady graphs too. The necessary and sufficient 
conditions for the partition belonging to the solid graph have been established.  
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1 Introduction 
Study of the properties of simple graphs linked to 
their partitions is one of interesting and perspective 
directions of the graph theory [1]. The present work 
is devoted to characterization of the one class of 
simple graphic partitions. Here we use concepts of 
simple graphic partitions [1], shifts of edges of the 
graph [2], and besides, two definitions are 
introduced.  

1) If in the graph there are no four of vertices 
such that some shift of edges incidental to them is 
possible, that we name such graph as solid. 

2) The graph which has simple partition we name 
steady. 
 
 
2 Characterization of Solid Graphs 
Theorem 1. If  ( )11,UXG =  and ( )22 ,UXH =  - 
two graphs with identical partitions then it is 
possible to obtain H  from G  by means of finite 
number of shifts of graph edges.  
Proof. The proof is similar to the proof of the 
theorem of "demi-degrees" for the oriented graphs 
[2]. From theorem 1 it follows that solid graphs are 
steady.  

Let us consider in detail the structure of solid 
graphs. Lemma 1 follows from the first definition 
directly.  
Lemma 1. Graph G  is solid if and only if the sub-
graph formed by any of its four vertices and edges 
connecting them, contains either a triangle, or three 
vertices not adjacent in pairs.   
Lemma 2. The solid graph contains no more than 
one connected component.  

Proof. Indeed, if the graph contains two connected 
components, that, taking in each of them in twos 
adjacent vertices, we will obtain the four of vertices 
forbidden by Lemma 1. This contradiction proves 
Lemma 2.  
Lemma 3. If  ( )UXG ,=  is the solid graph without 
isolated vertices then it is connected graph, and also 
the greatest of degrees of its vertices is  1−=Δ X . 
Proof. Connectivity of the graph follows from 
Lemma 2. The second statement will be proved by 
contradiction. We will assume that maximum 
degree 1−<Δ X . Let 1v be the vertex with  
maximum degree, i.e. Δ=1degv , and 12 ,, +Δvv …  
are vertices, adjacent to 1v . Then, as the graph is 
connected, there is the vertex w  such that 
( ) Uvw ∉1,  and   ( ) Uvw k ∈,  for some vertex  kv  
such that ( ) Uvv k ∈,1 . Applying Lemma 1 to the 
four of vertices of graph ik vvvwG ,,,: 1  where iv  is 
any of vertices, adjacent to 1v , but not coinciding 
with kv , we obtain ( ) Uvv ik ∈, . From here it 
follows 1deg +Δ≥kv  that is impossible, since Δ  is 
the greatest degree. This contradiction proves 
Lemma 3.   
    Lemma 4 follows from Lemma 1.  
Lemma 4. After removing any vertex together with 
edges incidental to it from the solid graph we obtain 
the graph that also will be solid.  
    Let us use further two forms of graphic partitions: 
1) Nonincreasing sequence of degrees of vertices 

nddd ,,, 21 …=Π ; 



 

 

2)  The form  121 ,,,~
−=Π naaa … , where ia  is the 

number of vertices having degree i .  
Solid graphs and their partitions are 

characterized by the following theorem.  
Theorem 2. The graphic partition ( )ΠΠ ~  is a 
partition of the connected solid graph ( )UXG ,=  if 
and only if for all jd j ≥  the following relations are 
fulfilled: 
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Proof. Necessity. In the connected solid graph we 
have 11 −= Xd  (lemma 3). Let us remove from 
G  the vertex 1v  of degree 1d  and all edges 
incidental to it. Thus we will receive the solid graph 
G′  (lemma 4) with 1a  isolated vertices. If it 
contains also non-trivial component, then maximum 
degree of its vertices is 111 −−=Δ′ ad  (lemma 3). 
Returning to graph G , we have 111 add −=+Δ′= . 
Deleting, thus, the vertices of degrees jddd ,,, 21 …  
from graph G  until the graph consisting of isolated 
vertices will turn up, we receive at each stage 
equalities 11 −− −= iii add  for all  jd j ≥ .  

Sufficiency. Let ( )ΠΠ ~  be the partition satisfying to 
conditions (1). The algorithm for constructing the 
graph belonging to this partition consists of the 
following steps.  
1. We build the star with the partition 

1,,1,1 …−=Π X . 
2.  We choose any of vertices of degree 1 and 
connect it with ( )21 −− aX  vertices of the same 
degree. Then we repeat this procedure with vertices 
of degree 2 etc., backward to how it was done at the 
proof of the necessity of condition (1), yet we will 
receive the vertex of degree jd j ≥  such that 

jd j ≤+1 . The constructed graph belongs to the set 
partition evidently.  
Sample 1. Graphic partition 1,1,2,2,3,4,4,5,7,9=Π  
is given. Let us show that it is a partition of the solid 
graph. We check performance of conditions (1): 
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The graph is depicted on Fig. 1 
 

 
 
Fig.2- The sample of solid graph 
 
 
3 One Class of Steady Graphs 
The problem of characterization of steady graphs 
(and simple graphic partitions) can be formulated in 
the matrix form [3, 4].   
    Let A  be a matrix of contiguities of some graph 

( )UXG ,= . We form the sum ∑
=

X

i
ii CAC

1

2 , where 

iC  is the square matrix of order X  in which the 
element iic  is equal to 1, and other elements are 
equal to 0. Let ( )Π   be the matrix  in which the 
diagonal elements are degrees of vertices of the 
graph, and other elements are equal to zero. Then it 
is clear that at corresponding enumerating of 
vertices of the graph we obtain 
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If 1A  and 2A  are matrixes of contiguities of two 
isomorphic graphs then they are connected among 
themselves by relations of the type:  
 

( )112 1111
AIIAIIA jijijiji kkkk

π== …… , 
 
where ijI  is the matrix obtained from a single 
matrix by the permutation of i -th and j -th lines [3].   

As IIij =
2  then ( )2

1
2
2 AA π= .  

    If now we designate YA =2  and will consider 
expression (2) as the matrix equation at the given 
Π  then its solution can be given by matrixes of 
steady graphs in following two cases. 
1. There exists unique solution 2AY =  of equation 
(2), where Y  is the square of a symmetric matrix of 
order X  with a zero diagonal.  
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2. All solutions of equation (2) are connected among 
themselves by relations (3), but ( ) 2

1
2
1

2
2 AAA ≠= π .  

    It is obvious that any transformation of type (3) of 
the matrix of contiguities of graph G , keeping 
equality (2), will be equivalent to remarks of 
vertices of the graph G , consisting of cycles of the 
vertices having equal degrees.  
    Let us investigate case 1 in detail.  
Theorem 3.  If A  is the matrix of contiguities of 
solid graph G , and ( )Aπ  is the remark of type (3) 

keeping relation (2), then ( ) 22 AA =π .  
Proof. Let the vertices iv  and jv   have equal 
degrees ddd ji ==  in the solid graph ( )UXG ,= . 

Further, let iM  be the set of vertices, adjacent to iv , 
and let jM  be the set of vertices, adjacent to jv . 
Then there exist two different vertices lk vv ;  of the 
graph G  such that jik MMv ∈  and ijl MMv ∈ .  
If   ( ) Uvv ji ∉,   then kv  does not coincide with jv , 
and lv - with iv . 
    However, in this case the four-in-hand of vertices 

lkji vvvv ,,,  does not satisfy the conditions of 
lemma 1 and, consequently, it cannot belong to the 
solid graph. From here it follows that in the solid 
graph for any two vertices having equal degrees, 
one of the following two statements is correct: 
 
a) ( ) UvvMM jiji ∉≡ ,& ; 
 
b) jij MMv ∈ & iji MMv ∈ .  
 
    Extending our reasoning to some set 

{ }
liii vvN …,

1
=  of vertices having equal degrees in 

the graph  G , we will receive that for this set iN  
one of the following systems of relations  must be 
correct: 
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Thus, in the solid graph each sub-graph formed by 
vertices with equal degrees, is either the complete 
graph, or completely unconnected.  
    As each element ( )2

lma  of the matrix 2A  is equal 
to number of ways of length 2 from the vertex lv  to 

the vertex mv , and remarks of type (3) consist of 
cycles of vertices with equal degrees, the theorem 
statement is easily deduced from conditions (4) and 
(5).  
    From the proved theorem it follows that if Π  is 
the partition of the solid graph, then the equation 

( )Π=∑
i

iiYCC  where 2AY =  has the unique 

solutionY .   
    Let us assume now that equation (2) has the 
unique solutionY , but Π  is not the partition of the 
solid graph. Let 1A   be the matrix of contiguities of 
the graph 1G  belonging to the partitionΠ , and 2A  -
the matrix of contiguities of the graph 2G  obtained 
from 1G  by shifting any pair edges and having the 
same partition Π .  
    Let us admit, for example, that such shift of edges 
is made: ( ) ( )liji vvvv ,, → ; ( ) ( )jllk vvvv ,, → . We 
will put for definiteness that lkji >>> . 
    As a result of this shift the matrix of contiguities 
will change: 
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    Let us investigate, to what requirements the 
elements of matrixes 1A  and 2A  should satisfy that 

condition 2
2

2
1 AA =  was met.   

1. As ( ) ( ) ( ) ( ) 21
2
1

22
2

2 δδ ++= AAAa ijij  then equalities 
0;0 21 == δδ  should be fulfilled.  

2.  For any jm ≠  we get  
( )( ) ( )11
2 AaAa jmim +Σ= & ( ) ( ) ( )12

2 AaAa lmim +Σ= . 
From this it follows that ( ) ( )11 AaAa lmjm = . 
It is similarly proved that 
 ( ) ( )11 AaAa kmim = & ( ) ( )11 AaAa kmjm = .  
Here we consider the shift  



 

 

( ) ( )kiji vvvv ,,, → & ( ) ( )ljlk vvvv ,,, →  which is 
possible, since 021 == δδ . 
3. If lkji MMMM ′′′′ ,,,  are the sets of vertices, 
adjacent to vertices lkji vvvv ,,,  accordingly, and 
these sets do not contain these vertices in 
themselves, then equalities lkji MMMM ′≡′≡′≡′  
follow from the previous consideration.  
If 2≥′ijklM , and for some sr,  we have 

ijklr Mv ′∈ & ijkls Mv ′∈ , then we get  
1=== ksrkjs aaa & 0=jka . 

As ( ) 01 =Aa jk  then at ( ) 01 =Aars   the shift 
( ) ( )jkrk vvvv ,,, → & ( ) ( )srsj vvvv ,,, →  is possible 
in the graph 1G . But from here we will receive 

0=ksa   by repeating point 1. The received 
contradiction proves that ( ) 11 =Aars , i.e. the sub-
graph formed by set of vertices ijklM ′ , is complete.  
4. We will consider now any edge ( )qp vv ,  of the 
graph 1G . The following is obvious: 
a) if the shift of edges ( )qp vv ,  and ( )ljki vv ;; ,  is 
impossible, then at least one of vertices-  pv  or qv  - 
belongs to ijklM ′ ;  
b) if the shift ( )qp vv ,  and ( )ljki vv ;; ,  is possible, 
then ijklqp MMM ′≡′≡′ . 
5. From point 4 it follows that if  ( )fe vv ,  is such 
edge of the graph 1G  that ijkle Mv ′∉ ; ijklf Mv ′∉ ; 

ev  does not coincide with ji vv ∨ , and fv - with 

ji vv ∨  also, then the shift of edges   ( )fe vv ,  and 
( )ji vv ,  is possible, and consequently these 
equalities are correct: ijfe MMM ′≡′≡′ .  
6. If u  and w  are two edges, each of which is 
incidental at least to one vertex from ijklM ′  then the 
shift of edges u  and w  is impossible. It follows 
from points 1 and 3. 
7. From points 1-6 it follows that graph 1G  can be 
realized in the form of superposition of three graphs. 
The first graph 1G′   is formed by a subset of edges 
of the graph 1G  in which each pair of edges is 
allowed for shift. This graph consists of components 
of type 2K . 

    Removing from the graph 1G all vertices and 
edges of the graph  1G′ , and edges incidental to 

vertices of 1G′  too,  we obtain the second graph - 

1G ′′  which is solid. 
    The third graph 1G ′′′   is formed by the edges 
connecting each vertex of the graph 1G′   with all 
vertices of some complete sub-graph G~ of the graph 

1G ′′ ; and other vertices of 1G ′′  form a trivial sub-
graph. (As appears from the proof of theorem 2, in 
the solid graph all vertices of degrees idi ≥  form 
the complete sub-graph, and all vertices of degrees  

idi < - the totally unconnected sub-graph). 
    It is easy to show now that the constructed graph 

1G   is steady. From the reasoning spent in points 1-
7, and theorems 2 and 3 we obtain the following 
theorem.  
Theorem 4. If G is the steady graph such that for 
any remark π  of its vertices keeping equality (2), 
the square of the matrix of contiguities of G  does 
not change, then partitions ( )ΠΠ ~  of this graph 
satisfy to following conditions: 
1) 11 −= nd ; 
2) for all idi >  it is true: 11 −− −= iii add ; 
3) if there exists the term idi =  then the subset 
consisting of even number of terms of the partition 
such that iddd siii ==== −++ 121 …  exists also.       
Thus the changed partition  

nsii ddsdsdsd ,,,2,,2,2 2121 …… +− −−−=Π′ , 
consisting of ( )sn 2−  terms, is the partition of the 
solid graph. 
The return to Theorem 4 statement is also correct. 
Sample 2. The graphic partition  

1,2,3,4,4,5,5,5,5,9,10,11,12=Π  is given. We check 
the first and second conditions of Theorem 4: 

9;10
;11;121
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addnd
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    In the partition Π  there exists the subset 
consisting of four terms: 58765 ==== dddd . 
Changed partition 1,2,3,4,4,5,6,7,8=Π′  is the 
partition of the solid graph, as it is easy to check up. 
From this it follows that partition Π  is simple, and 
for steady graph belonging to it by any π  the 
equality ( ) 22 AA =π  is carried out. This graph is 
represented on Fig. 2. Two edges, allowed for shift, 
are led round. 
 



 

 

 
 
Fig. 2- The sample of steady graph 
 
 
4 Interesting Problem 
The following problem is very interesting and 
important in my opinion [5, 6, 7, 8]. What is the 
criterion (or algorithm) for defining graphic 
partitions such that graphs belonging to them: 
1) are planar without fail (strongly planar); 
2) are non-planar without fail (strongly non-planar);  
3) can be planar or non-planar. 
For example, Kuratowski’s graph 5K  (4,4,4,4,4) is 
strongly non-planar; however Kuratowski’s graph 

3,3K  (3,3,3,3,3,3) is neither strongly non-planar nor 
strongly planar. Samples of the first case are 
obvious.  
    We know the work of Chvátal [9], where the 
conditions for planarity of graphs belonging to the 
given partitions were found. But we do not know if 
the mentioned above problem is solved. 
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