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only invalided but in multiple distinct ways. Such systems exist extensively

in the world, particularly, in our daily life. In this paper, we discuss such a

kind of Smarandache system, i.e., non-solvable ordinary differential equation

systems by a combinatorial approach, classify these systems and characterize

their behaviors, particularly, the sum-stability and prod-stability of such lin-

ear and non-linear differential equations. Some applications of such systems

to other sciences, such as those of globally controlling of infectious diseases,

establishing dynamical equations of instable structure, particularly, the n-

body problem and understanding global stability of matters with multilateral

properties can be also found.
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§1. Introduction

Finding the exact solution of an equation system is a main but a difficult objective

unless some special cases in classical mathematics. Contrary to this fact, what

is about the non-solvable case for an equation system? In fact, such an equation

system is nothing but a contradictory system, and characterized only by having no
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solution as a conclusion. But our world is overlap and hybrid. The number of non-

solvable equations is much more than that of the solvable and such equation systems

can be also applied for characterizing the behavior of things, which reflect the real

appearances of things by that their complexity in our world. It should be noted that

such non-solvable linear algebraic equation systems have been characterized recently

by the author in the reference [7]. The main purpose of this paper is to characterize

the behavior of such non-solvable ordinary differential equation systems.

Assume m, n ≥ 1 to be integers in this paper. Let

Ẋ = F (X) (DES1)

be an autonomous differential equation with F : Rn → Rn and F (0) = 0, particu-

larly, let

Ẋ = AX (LDES1)

be a linear differential equation system and

x(n) + a1x
(n−1) + · · ·+ anx = 0 (LDEn)

a linear differential equation of order n with

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann




X =




x1(t)

x2(t)

· · ·
xn(t)




and F (t, X) =




f1(t, X)

f2(t, X)

· · ·
fn(t, X)




,

where all ai, aij , 1 ≤ i, j ≤ n are real numbers with

Ẋ = (ẋ1, ẋ2, · · · , ẋn)T

and fi(t) is a continuous function on an interval [a, b] for integers 0 ≤ i ≤ n.

The following result is well-known for the solutions of (LDES1) and (LDEn) in

references.

Theorem 1.1([13]) If F (X) is continuous in

U(X0) : |t − t0| ≤ a, ‖X − X0‖ ≤ b (a > 0, b > 0)

then there exists a solution X(t) of differential equation (DES1) in the interval

|t − t0| ≤ h, where h = min{a, b/M}, M = max
(t,X)∈U(t0 ,X0)

‖F (t, X)‖.
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Theorem 1.2([13]) Let λi be the ki-fold zero of the characteristic equation

det(A − λIn×n) = |A − λIn×n| = 0

or the characteristic equation

λn + a1λ
n−1 + · · · + an−1λ + an = 0

with k1 + k2 + · · ·+ ks = n. Then the general solution of (LDES1) is

n∑

i=1

ciβi(t)e
αit,

where, ci is a constant, βi(t) is an n-dimensional vector consisting of polynomials

in t determined as follows

β1(t) =




t11

t21

· · ·
tn1




β2(t) =




t11t + t12

t21t + t22

· · · · · · · · ·
tn1t + tn2




· · · · · · · · · · · · · · · · · · · · · · · · · · ·

βk1
(t) =




t11
(k1−1)!

tk1−1 + t12
(k1−2)!

tk1−2 + · · ·+ t1k1

t21
(k1−1)!

tk1−1 + t22
(k1−2)!

tk1−2 + · · ·+ t2k1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
tn1

(k1−1)!
tk1−1 + tn2

(k1−2)!
tk1−2 + · · ·+ tnk1




βk1+1(t) =




t1(k1+1)

t2(k1+1)

· · · · · ·
tn(k1+1)




βk1+2(t) =




t11t + t12

t21t + t22

· · · · · · · · ·
tn1t + tn2



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· · · · · · · · · · · · · · · · · · · · · · · · · · ·

βn(t) =




t1(n−ks+1)

(ks−1)!
tks−1 +

t1(n−ks+2)

(ks−2)!
tks−2 + · · ·+ t1n

t2(n−ks+1)

(ks−1)!
tks−1 +

t2(n−ks+2)

(ks−2)!
tks−2 + · · ·+ t2n

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
tn(n−ks+1)

(ks−1)!
tks−1 +

tn(n−ks+2)

(ks−2)!
tks−2 + · · · + tnn




with each tij a real number for 1 ≤ i, j ≤ n such that det([tij ]n×n) 6= 0,

αi =





λ1, if 1 ≤ i ≤ k1;

λ2, if k1 + 1 ≤ i ≤ k2;

· · · · · · · · · · · · · · · · · · · · · ;
λs, if k1 + k2 + · · · + ks−1 + 1 ≤ i ≤ n.

The general solution of linear differential equation (LDEn) is

s∑

i=1

(ci1t
ki−1 + ci2t

ki−2 + · · ·+ ci(ki−1)t + ciki
)eλit,

with constants cij , 1 ≤ i ≤ s, 1 ≤ j ≤ ki.

Such a vector family βi(t)e
αit, 1 ≤ i ≤ n of the differential equation system

(LDES1) and a family tleλit, 1 ≤ l ≤ ki, 1 ≤ i ≤ s of the linear differential equation

(LDEn) are called the solution basis, denoted by

B = { βi(t)e
αit | 1 ≤ i ≤ n } or C = { tleλit | 1 ≤ i ≤ s, 1 ≤ l ≤ ki }.

We only consider autonomous differential systems in this paper. Theorem 1.2

implies that any linear differential equation system (LDES1) of first order and any

differential equation (LDEn) of order n with real coefficients are solvable. Thus a

linear differential equation system of first order is non-solvable only if the number of

equations is more than that of variables, and a differential equation system of order

n ≥ 2 is non-solvable only if the number of equations is more than 2. Generally,

such a contradictory system, i.e., a Smarandache system [4]-[6] is defined following.

Definition 1.3([4]-[6]) A rule R in a mathematical system (Σ;R) is said to be

Smarandachely denied if it behaves in at least two different ways within the same set

Σ, i.e., validated and invalided, or only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one

Smarandachely denied rule R.
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Generally, let (Σ1;R1) (Σ2;R2), · · · , (Σm;Rm) be mathematical systems, where

Ri is a rule on Σi for integers 1 ≤ i ≤ m. If for two integers i, j, 1 ≤ i, j ≤ m, Σi 6=
Σj or Σi = Σj but Ri 6= Rj, then they are said to be different, otherwise, identical.

We also know the conception of Smarandache multi-space defined following.

Definition 1.4([4]-[6]) Let (Σ1;R1), (Σ2;R2), · · ·, (Σm;Rm) be m ≥ 2 mathematical

spaces, different two by two. A Smarandache multi-space Σ̃ is a union
m⋃

i=1

Σi with

rules R̃ =
m⋃

i=1

Ri on Σ̃, i.e., the rule Ri on Σi for integers 1 ≤ i ≤ m, denoted by
(
Σ̃; R̃

)
.

A Smarandache multi-space
(
Σ̃; R̃

)
inherits a combinatorial structure, i.e., a

vertex-edge labeled graph defined following.

Definition 1.5([4]-[6]) Let
(
Σ̃; R̃

)
be a Smarandache multi-space with Σ̃ =

m⋃
i=1

Σi

and R̃ =
m⋃

i=1

Ri. Its underlying graph G
[
Σ̃, R̃

]
is a labeled simple graph defined by

V
(
G
[
Σ̃, R̃

])
= {Σ1, Σ2, · · · , Σm},

E
(
G
[
Σ̃, R̃

])
= { (Σi, Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}

with an edge labeling

lE : (Σi, Σj) ∈ E
(
G
[
S̃, R̃

])
→ lE(Σi, Σj) = ̟

(
Σi

⋂
Σj

)
,

where ̟ is a characteristic on Σi

⋂
Σj such that Σi

⋂
Σj is isomorphic to Σk

⋂
Σl

if and only if ̟(Σi

⋂
Σj) = ̟ (Σk

⋂
Σl) for integers 1 ≤ i, j, k, l ≤ m.

Now for integers m, n ≥ 1, let

Ẋ = F1(X), Ẋ = F2(X), · · · , Ẋ = Fm(X) (DES1
m)

be a differential equation system with continuous Fi : Rn → Rn such that Fi(0) = 0,

particularly, let

Ẋ = A1X, · · · , Ẋ = AkX, · · · , Ẋ = AmX (LDES1
m)

be a linear ordinary differential equation system of first order and
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



x(n) + a
[0]
11x

(n−1) + · · ·+ a
[0]
1nx = 0

x(n) + a
[0]
21x

(n−1) + · · ·+ a
[0]
2nx = 0

· · · · · · · · · · · ·
x(n) + a

[0]
m1x

(n−1) + · · · + a
[0]
mnx = 0

(LDEn
m)

a linear differential equation system of order n with

Ak =




a
[k]
11 a

[k]
12 · · · a

[k]
1n

a
[k]
21 a

[k]
22 · · · a

[k]
2n

· · · · · · · · · · · ·
a

[k]
n1 a

[k]
n2 · · · a

[k]
nn




and X =




x1(t)

x2(t)

· · ·
xn(t)




where each a
[k]
ij is a real number for integers 0 ≤ k ≤ m, 1 ≤ i, j ≤ n.

Definition 1.6 An ordinary differential equation system (DES1
m) or (LDES1

m) (or

(LDEn
m)) are called non-solvable if there are no function X(t) (or x(t)) hold with

(DES1
m) or (LDES1

m) (or (LDEn
m)) unless the constants.

The main purpose of this paper is to find contradictory ordinary differential

equation systems, characterize the non-solvable spaces of such differential equation

systems. For such objective, we are needed to extend the conception of solution of

linear differential equations in classical mathematics following.

Definition 1.7 Let S0
i be the solution basis of the ith equation in (DES1

m). The ∨-

solvable, ∧-solvable and non-solvable spaces of differential equation system (DES1
m)

are respectively defined by

m⋃

i=1

S0
i ,

m⋂

i=1

S0
i and

m⋃

i=1

S0
i −

m⋂

i=1

S0
i ,

where S0
i is the solution space of the ith equation in (DES1

m).

According to Theorem 1.2, the general solution of the ith differential equation

in (LDES1
m) or the ith differential equation system in (LDEn

m) is a linear space

spanned by the elements in the solution basis Bi or Ci for integers 1 ≤ i ≤ m. Thus

we can simplify the vertex-edge labeled graph G
[∑̃

, R̃
]

replaced each
∑

i by the

solution basis Bi (or Ci) and
∑

i

⋂∑
j by Bi

⋂
Bj (or Ci

⋂
Cj) if Bi

⋂
Bj 6= ∅

(or Ci

⋂
Cj 6= ∅) for integers 1 ≤ i, j ≤ m. Such a vertex-edge labeled graph is
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called the basis graph of (LDES1
m) ((LDEn

m)), denoted respectively by G[LDES1
m]

or G[LDEn
m] and the underlying graph of G[LDES1

m] or G[LDEn
m], i.e., cleared away

all labels on G[LDES1
m] or G[LDEn

m] are denoted by Ĝ[LDES1
m] or Ĝ[LDEn

m].

Notice that
m⋂

i=1

S0
i =

m⋃
i=1

S0
i , i.e., the non-solvable space is empty only if m = 1

in (LDEq). Thus G[LDES1] ≃ K1 or G[LDEn] ≃ K1 only if m = 1. But in

general, the basis graph G[LDES1
m] or G[LDEn

m] is not trivial. For example, let

m = 4 and B0
1 = {eλ1t, eλ2t, eλ3t}, B0

2 = {eλ3t, eλ4t, eλ5t}, B0
3 = {eλ1t, eλ3t, eλ5t} and

B0
4 = {eλ4t, eλ5t, eλ6t}, where λi, 1 ≤ i ≤ 6 are real numbers different two by two.

Then its edge-labeled graph G[LDES1
m] or G[LDEn

m] is shown in Fig.1.1.

B0
1 B0

2

B0
3 B0

4

{eλ3t}

{eλ4t, eλ5t}

{eλ5t}

{eλ3t, eλ5t}{eλ1t, eλ3t}

Fig.1.1

If some functions Fi(X), 1 ≤ i ≤ m are non-linear in (DES1
m), we can linearize

these non-linear equations Ẋ = Fi(X) at the point 0, i.e., if

Fi(X) = F ′
i (0)X + Ri(X),

where F ′
i (0) is an n × n matrix, we replace the ith equation Ẋ = Fi(X) by a linear

differential equation

Ẋ = F ′
i (0)X

in (DES1
m). Whence, we get a uniquely linear differential equation system (LDES1

m)

from (DES1
m) and its basis graph G[LDES1

m]. Such a basis graph G[LDES1
m] of

linearized differential equation system (DES1
m) is defined to be the linearized basis

graph of (DES1
m) and denoted by G[DES1

m].

All of these notions will contribute to the characterizing of non-solvable differ-

ential equation systems. For terminologies and notations not mentioned here, we

follow the [13] for differential equations, [2] for linear algebra, [3]-[6], [11]-[12] for

graphs and Smarandache systems, and [1], [12] for mechanics.
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§2. Non-Solvable Spaces of Linear Differential Equations

2.1 A Condition for Non-Solvable Linear Differential Equations

First, we know the following conclusion for non-solvable linear differential equation

systems (LDES1
m) or (LDEn

m).

Theorem 2.1 The differential equation system (LDES1
m) is solvable if and only if

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) 6= 1

i.e., (LDEq) is non-solvable if and only if

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) = 1.

Similarly, the differential equation system (LDEn
m) is solvable if and only if

(P1(λ), P2(λ), · · · , Pm(λ)) 6= 1,

i.e., (LDEn
m) is non-solvable if and only if

(P1(λ), P2(λ), · · · , Pm(λ)) = 1,

where Pi(λ) = λn + a
[0]
i1 λn−1 + · · ·+ a

[0]
i(n−1)λ + a

[0]
in for integers 1 ≤ i ≤ m.

Proof Let λi1, λi2, · · · , λin be the n solutions of equation |Ai − λIn×n| = 0 and

Bi the solution basis of ith differential equation in (LDES1
m) or (LDEn

m) for integers

1 ≤ i ≤ m. Clearly, if (LDES1
m) ((LDEn

m)) is solvable, then

m⋂

i=1

Bi 6= ∅, i.e.,
m⋂

i=1

{λi1, λi2, · · · , λin} 6= ∅

by Definition 1.5 and Theorem 1.2. Choose λ0 ∈
m⋂

i=1

{λi1, λi2, · · · , λin}. Then (λ−λ0)

is a common divisor of these polynomials |A1−λIn×n, |A2−λIn×n|, · · · , |Am−λIn×n|.
Thus

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) 6= 1.

Conversely, if

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) 6= 1,
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let (λ − λ01), (λ − λ02), · · · , (λ − λ0l) be all the common divisors of polynomials

|A1 −λIn×n, |A2 −λIn×n|, · · · , |Am −λIn×n|, where λ0i 6= λ0j if i 6= j for 1 ≤ i, j ≤ l.

Then it is clear that

C1e
λ01 + C2e

λ02 + · · · + Cle
λ0l

is a solution of (LEDq) ((LDEn
m)) for constants C1, C2, · · · , Cl. �

For discussing the non-solvable space of a linear differential equation system

(LEDS1
m) or (LDEn

m) in details, we introduce the following conception.

Definition 2.2 For two integers 1 ≤ i, j ≤ m, the differential equations





dXi

dt
= AiX

dXj

dt
= AjX

(LDES1
ij)

in (LDES1
m) or {

x(n) + a
[0]
i1 x(n−1) + · · · + a

[0]
inx = 0

x(n) + a
[0]
j1x

(n−1) + · · · + a
[0]
jnx = 0

(LDEn
ij)

in (LDEn
m) are parallel if Bi

⋂
Bj = ∅.

Then, the following conclusion is clear.

Theorem 2.3 For two integers 1 ≤ i, j ≤ m, two differential equations (LDES1
ij)

(or (LDEn
ij)) are parallel if and only if

(|Ai| − λIn×n, |Aj| − λIn×n) = 1 (or (Pi(λ), Pj(λ)) = 1),

where (f(x), g(x)) is the least common divisor of f(x) and g(x), Pk(λ) = λn +

a
[0]
k1λ

n−1 + · · · + a
[0]
k(n−1)λ + a

[0]
kn for k = i, j.

Proof By definition, two differential equations (LEDS1
ij) in (LDES1

m) are

parallel if and only if the characteristic equations

|Ai − λIn×n| = 0 and |Aj − λIn×n| = 0

have no same roots. Thus the polynomials |Ai|−λIn×n and |Aj|−λIn×n are coprime,

which means that

(|Ai − λIn×n, |Aj − λIn×n) = 1.
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Similarly, two differential equations (LEDn
ij) in (LDEn

m) are parallel if and

only if the characteristic equations Pi(λ) = 0 and Pj(λ) = 0 have no same roots,

i.e., (Pi(λ), Pj(λ)) = 1. �

Let f(x) = a0x
m+a1x

m−1+· · ·+am−1x+am, g(x) = b0x
n+b1x

n−1+· · ·+bn−1x+

bn with roots x1, x2, · · · , xm and y1, y2, · · · , yn, respectively. A resultant R(f, g) of

f(x) and g(x) is defined by

R(f, g) = am
0 bn

0

∏

i,j

(xi − yj).

The following result is well-known in polynomial algebra.

Theorem 2.4 Let f(x) = a0x
m+a1x

m−1 + · · ·+am−1x+am, g(x) = b0x
n +b1x

n−1+

· · · + bn−1x + bn with roots x1, x2, · · · , xm and y1, y2, · · · , yn, respectively. Define a

matrix

V (f, g) =




a0 a1 · · · am 0 · · · 0 0

0 a0 a1 · · · am 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 a0 a1 · · · am

b0 b1 · · · bn 0 · · · 0 0

0 b0 b1 · · · bn 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 b0 b1 · · · bn




Then

R(f, g) = detV (f, g).

We get the following result immediately by Theorem 2.3.

Corollary 2.5 (1) For two integers 1 ≤ i, j ≤ m, two differential equations

(LDES1
ij) are parallel in (LDES1

m) if and only if

R(|Ai − λIn×n|, |Aj − λIn×n|) 6= 0,

particularly, the homogenous equations

V (|Ai − λIn×n|, |Aj − λIn×n|)X = 0
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have only solution (0, 0, · · · , 0︸ ︷︷ ︸
2n

)T if |Ai − λIn×n| = a0λ
n + a1λ

n−1 + · · ·+ an−1λ + an

and |Aj − λIn×n| = b0λ
n + b1λ

n−1 + · · · + bn−1λ + bn.

(2) For two integers 1 ≤ i, j ≤ m, two differential equations (LDEn
ij) are parallel

in (LDEn
m) if and only if

R(Pi(λ), Pj(λ)) 6= 0,

particularly, the homogenous equations V (Pi(λ), Pj(λ))X = 0 have only solution

(0, 0, · · · , 0︸ ︷︷ ︸
2n

)T .

Proof Clearly, |Ai − λIn×n| and |Aj − λIn×n| have no same roots if and only if

R(|Ai − λIn×n|, |Aj − λIn×n|) 6= 0,

which implies that the two differential equations (LEDS1
ij) are parallel in (LEDS1

m)

and the homogenous equations

V (|Ai − λIn×n|, |Aj − λIn×n|)X = 0

have only solution (0, 0, · · · , 0︸ ︷︷ ︸
2n

)T . That is the conclusion (1). The proof for the

conclusion (2) is similar. �

Applying Corollary 2.5, we can determine that an edge (Bi, Bj) does not exist

in G[LDES1
m] or G[LDEn

m] if and only if the ith differential equation is parallel

with the jth differential equation in (LDES1
m) or (LDEn

m). This fact enables one

to know the following result on linear non-solvable differential equation systems.

Corollary 2.6 A linear differential equation system (LDES1
m) or (LDEn

m) is non-

solvable if Ĝ(LDES1
m) 6≃ Km or Ĝ(LDEn

m) 6≃ Km for integers m, n > 1.

2.2 Combinatorial Classification of Linear Differential Equations

There is a natural relation between linear differential equations and basis graphs

shown in the following result.

Theorem 2.7 Every linear homogeneous differential equation system (LDES1
m)

(or (LDEn
m)) uniquely determines a basis graph G[LDES1

m] (G[LDEn
m]) inherited
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in (LDES1
m) (or in (LDEn

m)). Conversely, every basis graph G uniquely deter-

mines a homogeneous differential equation system (LDES1
m) ( or (LDEn

m)) such

that G[LDES1
m] ≃ G (or G[LDEn

m] ≃ G).

Proof By Definition 1.4, every linear homogeneous differential equation system

(LDES1
m) or (LDEn

m) inherits a basis graph G[LDES1
m] or G[LDEn

m], which is

uniquely determined by (LDES1
m) or (LDEn

m).

Now let G be a basis graph. For ∀v ∈ V (G), let the basis Bv at the vertex v

be Bv = { βi(t)e
αit | 1 ≤ i ≤ nv} with

αi =





λ1, if 1 ≤ i ≤ k1;

λ2, if k1 + 1 ≤ i ≤ k2;

· · · · · · · · · · · · · · · · · · · · · ;
λs, if k1 + k2 + · · · + ks−1 + 1 ≤ i ≤ nv

We construct a linear homogeneous differential equation (LDES1) associated at the

vertex v. By Theorem 1.2, we know the matrix

T =




t11 t12 · · · t1nv

t21 t22 · · · t2nv

· · · · · · · · · · · ·
tnv1 tnv2 · · · tnvnv




is non-degenerate. For an integer i, 1 ≤ i ≤ s, let

Ji =




λi 1 0 · · · 0 0

0 λi 1 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 λi




be a Jordan black of ki × ki and

A = T




J1 O

J2

. . .

O Js




T−1.

Then we are easily know the solution basis of the linear differential equation system

dX

dt
= AX (LDES1)



2. Non-Solvable Spaces of Linear Differential Equations 13

with X = [x1(t), x2(t), · · · , xnv
(t)]T is nothing but Bv by Theorem 1.2. Notice

that the Jordan black and the matrix T are uniquely determined by Bv. Thus the

linear homogeneous differential equation (LDES1) is uniquely determined by Bv.

It should be noted that this construction can be processed on each vertex v ∈ V (G).

We finally get a linear homogeneous differential equation system (LDES1
m), which

is uniquely determined by the basis graph G.

Similarly, we construct the linear homogeneous differential equation system

(LDEn
m) for the basis graph G. In fact, for ∀u ∈ V (G), let the basis Bu at the

vertex u be Bu = { tleαit | 1 ≤ i ≤ s, 1 ≤ l ≤ ki}. Notice that λi should be a ki-fold

zero of the characteristic equation P (λ) = 0 with k1 + k2 + · · · + ks = n. Thus

P (λi) = P ′(λi) = · · · = P (ki−1)(λi) = 0 but P (ki)(λi) 6= 0 for integers 1 ≤ i ≤ s.

Define a polynomial Pu(λ) following

Pu(λ) =

s∏

i=1

(λ − λi)
ki

associated with the vertex u. Let its expansion be

Pu(λ) = λn + au1λ
n−1 + · · ·+ au(n−1)λ + aun.

Now we construct a linear homogeneous differential equation

x(n) + au1x
(n−1) + · · · + au(n−1)x

′ + aunx = 0 (LhDEn)

associated with the vertex u. Then by Theorem 1.2 we know that the basis solution

of (LDEn) is just Cu. Notices that such a linear homogeneous differential equation

(LDEn) is uniquely constructed. Processing this construction for every vertex u ∈
V (G), we get a linear homogeneous differential equation system (LDEn

m). This

completes the proof. �

Example 2.8 Let (LDEn
m) be the following linear homogeneous differential equation

system




ẍ − 3ẋ + 2x = 0 (1)

ẍ − 5ẋ + 6x = 0 (2)

ẍ − 7ẋ + 12x = 0 (3)

ẍ − 9ẋ + 20x = 0 (4)

ẍ − 11ẋ + 30x = 0 (5)

ẍ − 7ẋ + 6x = 0 (6)
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where ẍ =
d2x

dt2
and ẋ =

dx

dt
. Then the solution basis of equations (1) − (6) are

respectively {et, e2t}, {e2t, e3t}, {e3t, e4t}, {e4t, e5t}, {e5t, e6t}, {e6t, et} and its basis

graph is shown in Fig.2.1.

{et, e2t} {e2t, e3t}

{e3t, e4t}

{e4t, e5t}{e5t, e6t}

{e6t, et}

{e2t}

{e3t}

{e4t}
{e5t}

{e6t}

{et}

Fig.2.1 The basis graph H

Theorem 2.7 enables one to extend the conception of solution of linear differ-

ential equation to the following.

Definition 2.9 A basis graph G[LDES1
m] (or G[LDEn

m]) is called the graph solu-

tion of the linear homogeneous differential equation system (LDES1
m) (or (LDEn

m)),

abbreviated to G-solution.

The following result is an immediately conclusion of Theorem 3.1 by definition.

Theorem 2.10 Every linear homogeneous differential equation system (LDES1
m)

(or (LDEn
m)) has a unique G-solution, and for every basis graph H, there is a unique

linear homogeneous differential equation system (LDES1
m) (or (LDEn

m)) with G-

solution H.

Theorem 2.10 implies that one can classifies the linear homogeneous differential

equation systems by those of basis graphs.

Definition 2.11 Let (LDES1
m), (LDES1

m)′ (or (LDEn
m), (LDEn

m)′) be two linear

homogeneous differential equation systems with G-solutions H, H ′. They are called

combinatorially equivalent if there is an isomorphism ϕ : H → H ′, thus there is an

isomorphism ϕ : H → H ′ of graph and labelings θ, τ on H and H ′ respectively such

that ϕθ(x) = τϕ(x) for ∀x ∈ V (H)
⋃

E(H), denoted by (LDES1
m)

ϕ≃ (LDES1
m)′ (or

(LDEn
m)

ϕ≃ (LDEn
m)′).
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Example 2.12 Let (LDEn
m)′ be the following linear homogeneous differential equa-

tion system




ẍ + 3ẋ + 2x = 0 (1)

ẍ + 5ẋ + 6x = 0 (2)

ẍ + 7ẋ + 12x = 0 (3)

ẍ + 9ẋ + 20x = 0 (4)

ẍ + 11ẋ + 30x = 0 (5)

ẍ + 7ẋ + 6x = 0 (6)

Then its basis graph is shown in Fig.2.2 following.

{e−t, e−2t} {e−2t, e−3t}

{e−3t, e−4t}

{e−4t, e−5t}{e−5t, e−6t}

{−e6t, e−t}

{e−2t}

{e−3t}

{e−4t}
{e−5t}

{e−6t}

{e−t}

Fig.2.2 The basis graph H’

Let ϕ : H → H ′ be determined by ϕ({eλit, eλjt}) = {e−λit, e−λjt} and

ϕ({eλit, eλjt}
⋂

{eλkt, eλlt}) = {e−λit, e−λjt}
⋂

{e−λkt, e−λlt}

for integers 1 ≤ i, k ≤ 6 and j = i + 1 ≡ 6(mod6), l = k + 1 ≡ 6(mod6). Then

it is clear that H
ϕ≃ H ′. Thus (LDEn

m)′ is combinatorially equivalent to the linear

homogeneous differential equation system (LDEn
m) appeared in Example 2.8.

Definition 2.13 Let G be a simple graph. A vertex-edge labeled graph θ : G → Z
+

is called integral if θ(uv) ≤ min{θ(u), θ(v)} for ∀uv ∈ E(G), denoted by GIθ .

Let GIθ

1 and GIτ

2 be two integral labeled graphs. They are called identical if G1

ϕ≃
G2 and θ(x) = τ(ϕ(x)) for any graph isomorphism ϕ and ∀x ∈ V (G1)

⋃
E(G1),

denoted by GIθ

1 = GIτ

2 .

For example, these labeled graphs shown in Fig.2.3 are all integral on K4 − e,

but GIθ

1 = GIτ

2 , GIθ

1 6= GIσ

3 .
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3 4

4 3

1

2

2

1 2 2 1 1

4 2

2 4

3

3

3 3

4 4

2

GIθ

1 GIτ

2

2 2

1

1

GIσ

3

Fig.2.3

Let G[LDES1
m] (G[LDEn

m]) be a basis graph of the linear homogeneous differ-

ential equation system (LDES1
m) (or (LDEn

m)) labeled each v ∈ V (G[LDES1
m]) (or

v ∈ V (G[LDEn
m])) by Bv. We are easily get a vertex-edge labeled graph by relabel-

ing v ∈ V (G[LDES1
m]) (or v ∈ V (G[LDEn

m])) by |Bv| and uv ∈ E(G[LDES1
m]) (or

uv ∈ E(G[LDEn
m])) by |Bu

⋂
Bv|. Obviously, such a vertex-edge labeled graph is in-

tegral, and denoted by GI [LDES1
m] (or GI [LDEn

m]). The following result completely

characterizes combinatorially equivalent linear homogeneous differential equation

systems.

Theorem 2.14 Let (LDES1
m), (LDES1

m)′ (or (LDEn
m), (LDEn

m)′) be two linear

homogeneous differential equation systems with integral labeled graphs H, H ′. Then

(LDES1
m)

ϕ≃ (LDES1
m)′ (or (LDEn

m)
ϕ≃ (LDEn

m)′) if and only if H = H ′.

Proof Clearly, H = H ′ if (LDES1
m)

ϕ≃ (LDES1
m)′ (or (LDEn

m)
ϕ≃ (LDEn

m)′) by

definition. We prove the converse, i.e., if H = H ′ then there must be (LDES1
m)

ϕ≃
(LDES1

m)′ (or (LDEn
m)

ϕ≃ (LDEn
m)′).

Notice that there is an objection between two finite sets S1, S2 if and only if

|S1| = |S2|. Let τ be a 1− 1 mapping from Bv on basis graph G[LDES1
m] (or basis

graph G[LDEn
m]) to Bv′ on basis graph G[LDES1

m]′ (or basis graph G[LDEn
m]′)

for v, v′ ∈ V (H ′). Now if H = H ′, we can easily extend the identical isomor-

phism idH on graph H to a 1 − 1 mapping id∗
H : G[LDES1

m] → G[LDES1
m]′ (or

id∗
H : G[LDEn

m] → G[LDEn
m]′) with labelings θ : v → Bv and θ′v′ : v′ → Bv′ on

G[LDES1
m], G[LDES1

m]′ (or basis graphs G[LDEn
m], G[LDEn

m]′). Then it is an im-

mediately to check that id∗
Hθ(x) = θ′τ(x) for ∀x ∈ V (G[LDES1

m])
⋃

E(G[LDES1
m])

(or for ∀x ∈ V (G[LDEn
m])
⋃

E(G[LDEn
m])). Thus id∗

H is an isomorphism between
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basis graphs G[LDES1
m] and G[LDES1

m]′ (or G[LDEn
m] and G[LDEn

m]′). Thus

(LDES1
m)

id∗H≃ (LDES1
m)′ (or (LDEn

m)
id∗H≃ (LDEn

m)′). This completes the proof. �

According to Theorem 2.14, all linear homogeneous differential equation sys-

tems (LDES1
m) or (LDEn

m) can be classified by G-solutions into the following classes:

Class 1. Ĝ[LDES1
m] ≃ Km or Ĝ[LDEn

m] ≃ Km for integers m, n ≥ 1.

The G-solutions of differential equation systems are labeled by solution bases on

Km and any two linear differential equations in (LDES1
m) or (LDEn

m) are parallel,

which characterizes m isolated systems in this class.

For example, the following differential equation system




ẍ + 3ẋ + 2x = 0

ẍ − 5ẋ + 6x = 0

ẍ + 2ẋ − 3x = 0

is of Class 1.

Class 2. Ĝ[LDES1
m] ≃ Km or Ĝ[LDEn

m] ≃ Km for integers m, n ≥ 1.

The G-solutions of differential equation systems are labeled by solution bases on

complete graphs Km in this class. By Corollary 2.6, we know that Ĝ[LDES1
m] ≃ Km

or Ĝ[LDEn
m] ≃ Km if (LDES1

m) or (LDEn
m) is solvable. In fact, this implies that

⋂

v∈V (Km)

Bv =
⋂

u,v∈V (Km)

(Bu

⋂
Bv) 6= ∅.

Otherwise, (LDES1
m) or (LDEn

m) is non-solvable.

For example, the underlying graphs of linear differential equation systems (A)

and (B) in the following

(A)





ẍ − 3ẋ + 2x = 0

ẍ − x = 0

ẍ − 4ẋ + 3x = 0

ẍ + 2ẋ − 3x = 0

(B)





ẍ − 3ẋ + 2x = 0

ẍ − 5ẋ + 6x = 0

ẍ − 4ẋ + 3x = 0

are respectively K4, K3. It is easily to know that (A) is solvable, but (B) is not.

Class 3. Ĝ[LDES1
m] ≃ G or Ĝ[LDEn

m] ≃ G with |G| = m but G 6≃ Km, Km

for integers m, n ≥ 1.
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The G-solutions of differential equation systems are labeled by solution bases on

G and all linear differential equation systems (LDES1
m) or (LDEn

m) are non-solvable

in this class, such as those shown in Example 2.12.

2.3 Stability of Linear Differential Equations

The following result on the initial problem of (LDES1) and (LDEn) are well-known

for differential equations.

Lemma 2.15([13]) For t ∈ [0,∞), there is a unique solution X(t) for the linear

homogeneous differential equation system

dX

dt
= AX (LhDES1)

with X(0) = X0 and a unique solution for

x(n) + a1x
(n−1) + · · ·+ anx = 0 (LhDEn)

with x(0) = x0, x
′(0) = x′

0, · · · , x(n−1)(0) = x
(n−1)
0 .

Applying Lemma 2.15, we get easily a conclusion on the G-solution of (LDES1
m)

with Xv(0) = Xv
0 for ∀v ∈ V (G) or (LDEn

m) with x(0) = x0, x
′(0) = x′

0, · · · , x(n−1)(0)

= x
(n−1)
0 by Theorem 2.10 following.

Theorem 2.16 For t ∈ [0,∞), there is a unique G-solution for a linear homogeneous

differential equation systems (LDES1
m) with initial value Xv(0) or (LDEn

m) with

initial values xv(0), x′
v(0), · · · , x(n−1)

v (0) for ∀v ∈ V (G).

For discussing the stability of linear homogeneous differential equations, we

introduce the conceptions of zero G-solution and equilibrium point of that (LDES1
m)

or (LDEn
m) following.

Definition 2.17 A G-solution of a linear differential equation system (LDES1
m)

with initial value Xv(0) or (LDEn
m) with initial values xv(0), x′

v(0), · · · , x(n−1)
v (0) for

∀v ∈ V (G) is called a zero G-solution if each label Bi of G is replaced by (0, · · · , 0)

(|Bi| times) and Bi

⋂
Bj by (0, · · · , 0) (|Bi

⋂
Bj | times) for integers 1 ≤ i, j ≤ m.

Definition 2.18 Let dX/dt = AvX, x(n) + av1x
(n−1) + · · ·+ avnx = 0 be differential

equations associated with vertex v and H a spanning subgraph of G[LDES1
m] (or
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G[LDEn
m]). A point X∗ ∈ Rn is called a H-equilibrium point if AvX

∗ = 0 in

(LDES1
m) with initial value Xv(0) or (X∗)n + av1(X

∗)n−1 + · · · + avnX∗ = 0 in

(LDEn
m) with initial values xv(0), x′

v(0), · · · , x
(n−1)
v (0) for ∀v ∈ V (H).

We consider only two kind of stabilities on the zero G-solution of linear homo-

geneous differential equations in this section. One is the sum-stability. Another is

the prod-stability.

2.3.1 Sum-Stability

Definition 2.19 Let H be a spanning subgraph of G[LDES1
m] or G[LDEn

m] of

the linear homogeneous differential equation systems (LDES1
m) with initial value

Xv(0) or (LDEn
m) with initial values xv(0), x′

v(0), · · · , x
(n−1)
v (0). Then G[LDES1

m] or

G[LDEn
m] is called sum-stable or asymptotically sum-stable on H if for all solutions

Yv(t), v ∈ V (H) of the linear differential equations of (LDES1
m) or (LDEn

m) with

|Yv(0) − Xv(0)| < δv exists for all t ≥ 0, | ∑
v∈V (H)

Yv(t) − ∑
v∈V (H)

Xv(t)| < ε, or

furthermore, lim
t→0

| ∑
v∈V (H)

Yv(t) −
∑

v∈V (H)

Xv(t)| = 0.

Clearly, an asymptotic sum-stability implies the sum-stability of that G[LDES1
m]

or G[LDEn
m]. The next result shows the relation of sum-stability with that of clas-

sical stability.

Theorem 2.20 For a G-solution G[LDES1
m] of (LDES1

m) with initial value Xv(0)

(or G[LDEn
m] of (LDEn

m) with initial values xv(0), x′
v(0), · · · , x

(n−1)
v (0)), let H be

a spanning subgraph of G[LDES1
m] (or G[LDEn

m]) and X∗ an equilibrium point

on subgraphs H. If G[LDES1
m] (or G[LDEn

m]) is stable on any ∀v ∈ V (H), then

G[LDES1
m] (or G[LDEn

m]) is sum-stable on H. Furthermore, if G[LDES1
m] (or

G[LDEn
m]) is asymptotically sum-stable for at least one vertex v ∈ V (H), then

G[LDES1
m] (or G[LDEn

m]) is asymptotically sum-stable on H.

Proof Notice that

|
∑

v∈V (H)

pvYv(t) −
∑

v∈V (H)

pvXv(t)| ≤
∑

v∈V (H)

pv|Yv(t) − Xv(t)|

and

lim
t→0

|
∑

v∈V (H)

pvYv(t) −
∑

v∈V (H)

pvXv(t)| ≤
∑

v∈V (H)

pv lim
t→0

|Yv(t) − Xv(t)|.
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Then the conclusion on sum-stability follows. �

For linear homogenous differential equations (LDES1) (or (LDEn)), the fol-

lowing result on stability of its solution X(t) = 0 (or x(t) = 0) is well-known.

Lemma 2.21 Let γ = max{ Reλ| |A−λIn×n| = 0}. Then the stability of the trivial

solution X(t) = 0 of linear homogenous differential equations (LDES1) (or x(t) = 0

of (LDEn)) is determined as follows:

(1) if γ < 0, then it is asymptotically stable;

(2) if γ > 0, then it is unstable;

(3) if γ = 0, then it is not asymptotically stable, and stable if and only if

m′(λ) = m(λ) for every λ with Reλ = 0, where m(λ) is the algebraic multiplicity

and m′(λ) the dimension of eigenspace of λ.

By Theorem 2.20 and Lemma 2.21, the following result on the stability of zero

G-solution of (LDES1
m) and (LDEn

m) is obtained.

Theorem 2.22 A zero G-solution of linear homogenous differential equation systems

(LDES1
m) (or (LDEn

m)) is asymptotically sum-stable on a spanning subgraph H of

G[LDES1
m] (or G[LDEn

m]) if and only if Reαv < 0 for each βv(t)e
αvt ∈ Bv in

(LDES1) or Reλv < 0 for each tlveλvt ∈ Cv in (LDEn
m) hold for ∀v ∈ V (H).

Proof The sufficiency is an immediately conclusion of Theorem 2.20.

Conversely, if there is a vertex v ∈ V (H) such that Reαv ≥ 0 for βv(t)e
αvt ∈ Bv

in (LDES1) or Reλv ≥ 0 for tlveλvt ∈ Cv in (LDEn
m), then we are easily knowing

that

lim
t→∞

βv(t)e
αvt → ∞

if αv > 0 or βv(t) 6=constant, and

lim
t→∞

tlveλvt → ∞

if λv > 0 or lv > 0, which implies that the zero G-solution of linear homogenous

differential equation systems (LDES1) or (LDEn) is not asymptotically sum-stable

on H . �

The following result of Hurwitz on real number of eigenvalue of a characteristic
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polynomial is useful for determining the asymptotically stability of the zero G-

solution of (LDES1
m) and (LDEn

m).

Lemma 2.23 Let P (λ) = λn + a1λ
n−1 + · · ·+ an−1λ + an be a polynomial with real

coefficients ai, 1 ≤ i ≤ n and

∆1 = |a1|, ∆2 =

∣∣∣∣∣
a1 1

a3 a2

∣∣∣∣∣ , · · ·∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 · · · 0

a3 a2 a1 0 · · · 0

a5 a4 a3 a2 a1 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · an

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then Reλ < 0 for all roots λ of P (λ) if and only if ∆i > 0 for integers 1 ≤ i ≤ n.

Thus, we get the following result by Theorem 2.22 and lemma 2.23.

Corollary 2.24 Let ∆v
1, ∆

v
2, · · · , ∆v

n be the associated determinants with characteris-

tic polynomials determined in Lemma 4.8 for ∀v ∈ V (G[LDES1
m]) or V (G[LDEn

m]).

Then for a spanning subgraph H < G[LDES1
m] or G[LDEn

m], the zero G-solutions

of (LDES1
m) and (LDEn

m) is asymptotically sum-stable on H if ∆v
1 > 0, ∆v

2 >

0, · · · , ∆v
n > 0 for ∀v ∈ V (H).

Particularly, if n = 2, we are easily knowing that Reλ < 0 for all roots λ of

P (λ) if and only if a1 > 0 and a2 > 0 by Lemma 2.23. We get the following result.

Corollary 2.25 Let H < G[LDES1
m] or G[LDEn

m] be a spanning subgraph. If

the characteristic polynomials are λ2 + av
1λ + av

2 for v ∈ V (H) in (LDES1
m) (or

(LhDE2
m)), then the zero G-solutions of (LDES1

m) and (LDE2
m) is asymptotically

sum-stable on H if av
1 > 0, av

2 > 0 for ∀v ∈ V (H).

2.3.2 Prod-Stability

Definition 2.26 Let H be a spanning subgraph of G[LDES1
m] or G[LDEn

m] of

the linear homogeneous differential equation systems (LDES1
m) with initial value

Xv(0) or (LDEn
m) with initial values xv(0), x′

v(0), · · · , x
(n−1)
v (0). Then G[LDES1

m] or

G[LDEn
m] is called prod-stable or asymptotically prod-stable on H if for all solutions

Yv(t), v ∈ V (H) of the linear differential equations of (LDES1
m) or (LDEn

m) with
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|Yv(0) − Xv(0)| < δv exists for all t ≥ 0, | ∏
v∈V (H)

Yv(t) − ∏
v∈V (H)

Xv(t)| < ε, or

furthermore, lim
t→0

| ∏
v∈V (H)

Yv(t) −
∏

v∈V (H)

Xv(t)| = 0.

We know the following result on the prod-stability of linear differential equation

system (LDES1
m) and (LDEn

m).

Theorem 2.27 A zero G-solution of linear homogenous differential equation systems

(LDES1
m) (or (LDEn

m)) is asymptotically prod-stable on a spanning subgraph H of

G[LDES1
m] (or G[LDEn

m]) if and only if
∑

v∈V (H)

Reαv < 0 for each βv(t)e
αvt ∈ Bv

in (LDES1) or
∑

v∈V (H)

Reλv < 0 for each tlveλvt ∈ Cv in (LDEn
m).

Proof Applying Theorem 1.2, we know that a solution Xv(t) at the vertex v

has the form

Xv(t) =

n∑

i=1

ciβv(t)e
αvt.

Whence,

∣∣∣∣∣∣

∏

v∈V (H)

Xv(t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∏

v∈V (H)

n∑

i=1

ciβv(t)e
αvt

∣∣∣∣∣∣

=

∣∣∣∣∣∣

n∑

i=1

∏

v∈V (H)

ciβv(t)e
αvt

∣∣∣∣∣∣
=

∣∣∣∣∣∣

n∑

i=1

∏

v∈V (H)

ciβv(t)

∣∣∣∣∣∣
e

∑
v∈V (H)

αvt

.

Whence, the zero G-solution of homogenous (LDES1
m) (or (LDEn

m)) is asymptoti-

cally sum-stable on subgraph H if and only if
∑

v∈V (H)

Reαv < 0 for ∀βv(t)e
αvt ∈ Bv

in (LDES1) or
∑

v∈V (H)

Reλv < 0 for ∀tlveλvt ∈ Cv in (LDEn
m). �

Applying Theorem 2.22, the following conclusion is a corollary of Theorem 2.27.

Corollary 2.28 A zero G-solution of linear homogenous differential equation sys-

tems (LDES1
m) (or (LDEn

m)) is asymptotically prod-stable if it is asymptotically

sum-stable on a spanning subgraph H of G[LDES1
m] (or G[LDEn

m]). Particularly,

it is asymptotically prod-stable if the zero solution 0 is stable on ∀v ∈ V (H).

Example 2.29 Let a G-solution of (LDES1
m) or (LDEn

m) be the basis graph shown

in Fig.2.4, where v1 = {e−2t, e−3t, e3t}, v2 = {e−3t, e−4t}, v3 = {e−4t, e−5t, e3t}, v4 =
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{e−5t, e−6t, e−8t}, v5 = {e−t, e−6t}, v6 = {e−t, e−2t, e−8t}. Then the zero G-solution

is sum-stable on the triangle v4v5v6, but it is not on the triangle v1v2v3. In fact, it

is prod-stable on the triangle v1v2v3.

{e−8t} {e3t}

v1

v2

v3v4

{e−2t}

{e−3t}

{e−4t}
{e−5t}

{e−6t}

{e−t}

v5

v6

Fig.2.4 A basis graph

§3. Non-Solvable Spaces of Differential Equations

For differential equation system (DES1
m), we consider the stability of its zero G-

solution of linearized differential equation system (LDES1
m) in this section.

3.1 Stability of Non-Solvable Differential Equation

Definition 3.1 Let H be a spanning subgraph of G[DES1
m] of the linearized dif-

ferential equation systems (DES1
m) with initial value Xv(0). A point X∗ ∈ Rn is

called a H-equilibrium point of differential equation system (DES1
m) if fv(X

∗) = 0

for ∀v ∈ V (H).

Clearly, 0 is a H-equilibrium point for any spanning subgraph H of G[DES1
m]

by definition. Whence, its zero G-solution of linearized differential equation system

(LDES1
m) is a solution of (DES1

m).

Definition 3.2 Let H be a spanning subgraph of G[DES1
m] of the linearized differ-

ential equation systems (DES1
m) with initial value Xv(0). Then G[DES1

m] is called

sum-stable or asymptotically sum-stable on H if for all solutions Yv(t), v ∈ V (H)
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of (DES1
m) with ‖Yv(0) − Xv(0)‖ < δv exists for all t ≥ 0,

∥∥∥∥∥∥

∑

v∈V (H)

Yv(t) −
∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
< ε,

or furthermore,

lim
t→0

∥∥∥∥∥∥

∑

v∈V (H)

Yv(t) −
∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
= 0,

and prod-stable or asymptotically prod-stable on H if for all solutions Yv(t), v ∈
V (H) of (DES1

m) with ‖Yv(0) − Xv(0)‖ < δv exists for all t ≥ 0,

∥∥∥∥∥∥

∏

v∈V (H)

Yv(t) −
∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
< ε,

or furthermore,

lim
t→0

∥∥∥∥∥∥

∏

v∈V (H)

Yv(t) −
∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
= 0.

Clearly, the asymptotically sum-stability or prod-stability implies respectively

that the sum-stability or prod-stability.

Then we get the following result on the sum-stability and prod-stability of the

zero G-solution of (DES1
m).

Theorem 3.3 For a G-solution G[DES1
m] of differential equation systems (DES1

m)

with initial value Xv(0), let H1, H2 be spanning subgraphs of G[DES1
m]. If the zero

G-solution of (DES1
m) is sum-stable or asymptotically sum-stable on H1 and H2,

then the zero G-solution of (DES1
m) is sum-stable or asymptotically sum-stable on

H1

⋃
H2.

Similarly, if the zero G-solution of (DES1
m) is prod-stable or asymptotically

prod-stable on H1 and Xv(t) is bounded for ∀v ∈ V (H2), then the zero G-solution of

(DES1
m) is prod-stable or asymptotically prod-stable on H1

⋃
H2.

Proof Notice that

‖X1 + X2‖ ≤ ‖X1‖ + ‖X2‖ and ‖X1X2‖ ≤ ‖X1‖‖X2‖
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in Rn. We know that
∥∥∥∥∥∥

∑

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t) +
∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥

≤

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
+

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥

and
∥∥∥∥∥∥

∏

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)
∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥

≤

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
.

Whence,
∥∥∥∥∥∥

∑

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
≤ ǫ or lim

t→0

∥∥∥∥∥∥

∑

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
= 0

if ǫ = ǫ1 + ǫ2 with
∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ ǫ1 and

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ ǫ2

or

lim
t→0

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
= 0 and lim

t→0

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
= 0.

This is the conclusion (1). For the conclusion (2), notice that
∥∥∥∥∥∥

∏

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ Mǫ

if ∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ ǫ and

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ M.

Consequently, the zero G-solution of (DES1
m) is prod-stable or asymptotically prod-

stable on H1

⋃
H2. �
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Theorem 3.3 enables one to get the following conclusion which establishes the

relation of stability of differential equations at vertices with that of sum-stability

and prod-stability.

Corollary 3.4 For a G-solution G[DES1
m] of differential equation system (DES1

m)

with initial value Xv(0), let H be a spanning subgraph of G[DES1
m]. If the zero solu-

tion is stable or asymptotically stable at each vertex v ∈ V (H), then it is sum-stable,

or asymptotically sum-stable and if the zero solution is stable or asymptotically sta-

ble in a vertex u ∈ V (H) and Xv(t) is bounded for ∀v ∈ V (H) \ {u}, then it is

prod-stable, or asymptotically prod-stable on H.

It should be noted that the converse of Theorem 3.3 is not always true. For

example, let

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ a + ǫ and

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ −a + ǫ.

Then the zero G-solution G[DES1
m] of differential equation system (DES1

m) is not

sum-stable on subgraphs H1 and H2, but

∥∥∥∥∥∥

∑

v∈V (H1
⋃

H2)

Xv(t)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
+

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
= ǫ.

Thus the zero G-solution G[DES1
m] of differential equation system (DES1

m) is sum-

stable on subgraphs H1

⋃
H2. Similarly, let

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ ǫ

tr
and

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ tr

for a real number r. Then the zero G-solution G[DES1
m] of (DES1

m) is not prod-

stable on subgraphs H1 and Xv(t) is not bounded for v ∈ V (H2) if r > 0. However,

it is prod-stable on subgraphs H1

⋃
H2 for

∥∥∥∥∥∥

∏

v∈V (H1
⋃

H2)

Xv(t)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
= ǫ.
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3.2 Linearized Differential Equations

Applying these conclusions on linear differential equation systems in the previous

section, we can find conditions on Fi(X), 1 ≤ i ≤ m for the sum-stability and

prod-stability at 0 following. For this objective, we need the following useful result.

Lemma 3.5([13]) Let Ẋ = AX +B(X) be a non-linear differential equation, where

A is a constant n× n matrix and Reλi < 0 for all eigenvalues λi of A and B(X) is

continuous defined on t ≥ 0, ‖X‖ ≤ α with

lim
‖X‖→0

‖B(X)‖
‖X‖ = 0.

Then there exist constants c > 0, β > 0 and δ, 0 < δ < α such that

‖X(0)‖ ≤ ε ≤ δ

2c
implies that ‖X(t)‖ ≤ cεe−βt/2.

Theorem 3.6 Let (DES1
m) be a non-linear differential equation system, H a span-

ning subgraph of G[DES1
m] and

Fv(X) = F ′
v

(
0
)
X + Rv(X)

such that

lim
‖X‖→0

‖Rv(X)‖
‖X‖ = 0

for ∀v ∈ V (H). Then the zero G-solution of (DES1
m) is asymptotically sum-stable

or asymptotically prod-stable on H if Reαv < 0 for each βv(t)e
αvt ∈ Bv, v ∈ V (H)

in (DES1
m).

Proof Define c = max{cv, v ∈ V (H)}, ε = min{εv, v ∈ V (H)} and β =

min{βv, v ∈ V (H)}. Applying Lemma 3.5, we know that for ∀v ∈ V (H),

‖Xv(0)‖ ≤ ε ≤ δ

2c
implies that ‖Xv(t)‖ ≤ cεe−βt/2.

Whence,
∥∥∥∥∥∥

∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
≤

∑

v∈V (H)

‖Xv(t)‖ ≤ |H|cεe−βt/2

∥∥∥∥∥∥

∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
≤

∏

v∈V (H)

‖Xv(t)‖ ≤ c|H|ε|H|e−|H|βt/2.
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Consequently,

lim
t→0

∥∥∥∥∥∥

∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
→ 0 and lim

t→0

∥∥∥∥∥∥

∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
→ 0.

Thus the zero G-solution (DESn
m) is asymptotically sum-stable or asymptotically

prod-stable on H by definition. �

3.3 Liapunov Functions on Graphs

We have know Liapunov functions associated with differential equations. Similarly,

we introduce Liapunov functions for determining the sum-stability or prod-stability

of (DES1
m) following.

Definition 3.7 Let (DES1
m) be a differential equation system, H < G[DES1

m]

a spanning subgraph and a H-equilibrium point X∗ of (DES1
m). A differentiable

function L : O → R defined on an open subset O ⊂ Rn is called a Liapunov

sum-function on X∗ for H if

(1) L(X∗) = 0 and L

(
∑

v∈V (H)

Xv(t)

)
> 0 if

∑
v∈V (H)

Xv(t) 6= X∗;

(2) L̇

(
∑

v∈V (H)

Xv(t)

)
≤ 0 for

∑
v∈V (H)

Xv(t) 6= X∗,

and a Liapunov prod-function on X∗ for H if

(1) L(X∗) = 0 and L

(
∏

v∈V (H)

Xv(t)

)
> 0 if

∏
v∈V (H)

Xv(t) 6= X∗;

(2) L̇

(
∏

v∈V (H)

Xv(t)

)
≤ 0 for

∏
v∈V (H)

Xv(t) 6= X∗.

Then, the following conclusions on the sum-stable and prod-stable of zero G-

solutions of differential equations holds.

Theorem 3.8 For a G-solution G[DES1
m] of a differential equation system (DES1

m)

with initial value Xv(0), let H be a spanning subgraph of G[DES1
m] and X∗ an

equilibrium point of (DES1
m) on H.

(1) If there is a Liapunov sum-function L : O → R on X∗, then the zero
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G-solution G[DES1
m] is sum-stable on X∗ for H. Furthermore, if

L̇


 ∑

v∈V (H)

Xv(t)


 < 0

for
∑

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[DES1
m] is asymptotically sum-

stable on X∗ for H.

(2) If there is a Liapunov prod-function L : O → R on X∗ for H, then the zero

G-solution G[DES1
m] is prod-stable on X∗ for H. Furthermore, if

L̇


 ∏

v∈V (H)

Xv(t)


 < 0

for
∏

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[DES1
m] is asymptotically prod-

stable on X∗ for H.

Proof Let ǫ > 0 be a so small number that the closed ball Bǫ(X
∗) centered at

X∗ with radius ǫ lies entirely in O and ̟ the minimum value of L on the boundary

of Bǫ(X
∗), i.e., the sphere Sǫ(X

∗). Clearly, ̟ > 0 by assumption. Define U = {X ∈
Bǫ(X

∗)|L(X) < ̟}. Notice that X∗ ∈ U and L is non-increasing on
∑

v∈V (H)

Xv(t) by

definition. Whence, there are no solutions Xv(t), v ∈ V (H) starting in U such that
∑

v∈V (H)

Xv(t) meet the sphere Sǫ(X
∗). Thus all solutions Xv(t), v ∈ V (H) starting

in U enable
∑

v∈V (H)

Xv(t) included in ball Bǫ(X
∗). Consequently, the zero G-solution

G[DES1
m] is sum-stable on H by definition.

Now assume that

L̇


 ∑

v∈V (H)

Xv(t)


 < 0

for
∑

v∈V (H)

Xv(t) 6= X∗. Thus L is strictly decreasing on
∑

v∈V (H)

Xv(t). If Xv(t), v ∈

V (H) are solutions starting in U − X∗ such that
∑

v∈V (H)

Xv(tn) → Y ∗ for n → ∞

with Y ∗ ∈ Bǫ(X
∗), then it must be Y ∗ = X∗. Otherwise, since

L


 ∑

v∈V (H)

Xv(t)


 > L(Y ∗)
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by the assumption

L̇


 ∑

v∈V (H)

Xv(t)


 < 0

for all
∑

v∈V (H)

Xv(t) 6= X∗ and

L


 ∑

v∈V (H)

Xv(tn)


→ L(Y ∗)

by the continuity of L, if Y ∗ 6= X∗, let Yv(t), v ∈ V (H) be the solutions starting at

Y ∗. Then for any η > 0,

L


 ∑

v∈V (H)

Yv(η)


 < L(Y ∗).

But then there is a contradiction

L


 ∑

v∈V (H)

Xv(tn + η)


 < L(Y ∗)

yields by letting Yv(0) =
∑

v∈V (H)

Xv(tn) for sufficiently large n. Thus, there must be

Y ∗
v = X∗. Whence, the zero G-solution G[DES1

m] is asymptotically sum-stable on

H by definition. This is the conclusion (1).

Similarly, we can prove the conclusion (2). �

The following result shows the combination of Liapunov sum-functions or prod-

functions.

Theorem 3.9 For a G-solution G[DES1
m] of a differential equation system (DES1

m)

with initial value Xv(0), let H1, H2 be spanning subgraphs of G[DES1
m], X∗ an equi-

librium point of (DES1
m) on H1

⋃
H2 and

R+(x, y) =
∑

i≥0,j≥0

ai,jx
iyj

be a polynomial with ai,j ≥ 0 for integers i, j ≥ 0. Then R+(L1, L2) is a Liapunov

sum-function or Liapunov prod-function on X∗ for H1

⋃
H2 with conventions for



3. Non-Solvable Spaces of Differential Equations 31

integers i, j, k, l ≥ 0 that

aijL
i
1L

j
2


 ∑

v∈V (H1
⋃

V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∑

v∈V (H1
⋃

V (H2)

Xv(t)




= aijL
i
1


 ∑

v∈V (H1)

Xv(t)


Lj

2


 ∑

v∈V (H2)

Xv(t)




+aklL
k
1


 ∑

v∈V (H1)

Xv(t)


Ll

2


 ∑

v∈V (H2)

Xv(t)




if L1, L2 are Liapunov sum-functions and

aijL
i
1L

j
2


 ∏

v∈V (H1
⋃

V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∏

v∈V (H1
⋃

V (H2)

Xv(t)




= aijL
i
1


 ∏

v∈V (H1)

Xv(t)


Lj

2


 ∏

v∈V (H2)

Xv(t)




+aklL
k
1


 ∏

v∈V (H1)

Xv(t)


Ll

2


 ∏

v∈V (H2)

Xv(t)




if L1, L2 are Liapunov prod-functions on X∗ for H1 and H2, respectively. Partic-

ularly, if there is a Liapunov sum-function (Liapunov prod-function) L on H1 and

H2, then L is also a Liapunov sum-function (Liapunov prod-function) on H1

⋃
H2.

Proof Notice that

d
(
aijL

i
1L

j
2

)

dt
= aij

(
iLi−1

1 L̇1L
j
2 + jLi

1L
j−1
1 L̇2

)

if i, j ≥ 1. Whence,

aijL
i
1L

j
2


 ∑

v∈V (H1
⋃

V (H2)

Xv(t)


 ≥ 0

if

L1


 ∑

v∈V (H1)

Xv(t)


 ≥ 0 and L2


 ∑

v∈V (H2)

Xv(t)


 ≥ 0

and

d(aijL
i
1L

j
2)

dt


 ∑

v∈V (H1
⋃

V (H2)

Xv(t)


 ≤ 0
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if

L̇1


 ∑

v∈V (H1)

Xv(t)


 ≤ 0 and L̇2


 ∑

v∈V (H2)

Xv(t)


 ≤ 0.

Thus R+(L1, L2) is a Liapunov sum-function on X∗ for H1

⋃
H2.

Similarly, we can know that R+(L1, L2) is a Liapunov prod-function on X∗ for

H1

⋃
H2 if L1, L2 are Liapunov prod-functions on X∗ for H1 and H2. �

Theorem 3.9 enables one easily to get the stability of the zero G-solutions of

(DES1
m).

Corollary 3.10 For a differential equation system (DES1
m), let H < G[DES1

m] be

a spanning subgraph. If Lv is a Liapunov function on vertex v for ∀v ∈ V (H), then

the functions

LH
S =

∑

v∈V (H)

Lv and LH
P =

∏

v∈V (H)

Lv

are respectively Liapunov sum-function and Liapunov prod-function on graph H.

Particularly, if L = Lv for ∀v ∈ V (H), then L is both a Liapunov sum-function and

a Liapunov prod-function on H.

Example 3.11 Let (DES1
m) be determined by





dx1/dt = λ11x1

dx2/dt = λ12x2

· · · · · · · · ·
dxn/dt = λ1nxn





dx1/dt = λ21x1

dx2/dt = λ22x2

· · · · · · · · ·
dxn/dt = λ2nxn

· · ·





dx1/dt = λn1x1

dx2/dt = λn2x2

· · · · · · · · ·
dxn/dt = λnnxn

where all λij, 1 ≤ i ≤ m, 1 ≤ j ≤ n are real and λij1 6= λij2 if j1 6= j2 for integers

1 ≤ i ≤ m. Let L = x2
1 + x2

2 + · · · + x2
n. Then

L̇ = λi1x
2
1 + λi2x

2
2 + · · ·+ λinx

2
n

for integers 1 ≤ i ≤ n. Whence, it is a Liapunov function for the ith differential

equation if λij < 0 for integers 1 ≤ j ≤ n. Now let H < G[LDES1
m] be a spanning

subgraph of G[LDES1
m]. Then L is both a Liapunov sum-function and a Liapunov

prod-function on H if λvj < 0 for ∀v ∈ V (H) by Corollaries 3.10.

Theorem 3.12 Let L : O → R be a differentiable function with L(0) = 0 and

L

(
∑

v∈V (H)

X

)
> 0 always holds in an area of its ǫ-neighborhood U(ǫ) of 0 for ε > 0,
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denoted by U+(0, ε) such area of ε-neighborhood of 0 with L

(
∑

v∈V (H)

X

)
> 0 and

H < G[DES1
m] be a spanning subgraph.

(1) If ∥∥∥∥∥∥
L


 ∑

v∈V (H)

X



∥∥∥∥∥∥
≤ M

with M a positive number and

L̇


 ∑

v∈V (H)

X


 > 0

in U+(0, ǫ), and for ∀ǫ > 0, there exists a positive number c1, c2 such that

L


 ∑

v∈V (H)

X


 ≥ c1 > 0 implies L̇


 ∑

v∈V (H)

X


 ≥ c2 > 0,

then the zero G-solution G[DES1
m] is not sum-stable on H. Such a function L :

O → R is called a non-Liapunov sum-function on H.

(2) If ∥∥∥∥∥∥
L


 ∏

v∈V (H)

X



∥∥∥∥∥∥
≤ N

with N a positive number and

L̇


 ∏

v∈V (H)

X


 > 0

in U+(0, ǫ), and for ∀ǫ > 0, there exists positive numbers d1, d2 such that

L


 ∏

v∈V (H)

X


 ≥ d1 > 0 implies L̇


 ∏

v∈V (H)

X


 ≥ d2 > 0,

then the zero G-solution G[DES1
m] is not prod-stable on H. Such a function L :

O → R is called a non-Liapunov prod-function on H.

Proof Generally, if ‖L(X)‖ is bounded and L̇ (X) > 0 in U+(0, ǫ), and for

∀ǫ > 0, there exists positive numbers c1, c2 such that if L (X) ≥ c1 > 0, then



3. Non-Solvable Spaces of Differential Equations 34

L̇ (X) ≥ c2 > 0, we prove that there exists t1 > t0 such that ‖X(t1, t0)‖ > ǫ0 for

a number ǫ0 > 0, where X(t1, t0) denotes the solution of (DESn
m) passing through

X(t0). Otherwise, there must be ‖X(t1, t0)‖ < ǫ0 for t ≥ t0. By L̇ (X) > 0 we know

that L(X(t)) > L(X(t0)) > 0 for t ≥ t0. Combining this fact with the condition

L̇ (X) ≥ c2 > 0, we get that

L(X(t)) = L(X(t0)) +

t∫

t0

dL(X(s))

ds
≥ L(X(t0)) + c2(t − t0).

Thus L(X(t)) → +∞ if t → +∞, a contradiction to the assumption that L(X) is

bounded. Whence, there exists t1 > t0 such that ‖X(t1, t0)‖ > ǫ0.

Applying this conclusion, we immediately know that the zero G-solution G[DES1
m]

is not sum-stable or prod-stable on H by conditions in (1) or (2). �

Similar to Theorem 3.9, we know results for non-Liapunov sum-function or

prod-function by Theorem 3.12 following.

Theorem 3.13 For a G-solution G[DES1
m] of a differential equation system (DES1

m)

with initial value Xv(0), let H1, H2 be spanning subgraphs of G[DES1
m], 0 an equi-

librium point of (DES1
m) on H1

⋃
H2. Then R+(L1, L2) is a non-Liapunov sum-

function or non-Liapunov prod-function on 0 for H1

⋃
H2 with conventions for

aijL
i
1L

j
2


 ∑

v∈V (H1
⋃

V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∑

v∈V (H1
⋃

V (H2)

Xv(t)




and

aijL
i
1L

j
2


 ∏

v∈V (H1
⋃

V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∏

v∈V (H1
⋃

V (H2)

Xv(t)




the same as in Theorem 3.9 if L1, L2 are non-Liapunov sum-functions or non-

Liapunov prod-functions on 0 for H1 and H2, respectively. Particularly, if there is

a non-Liapunov sum-function (non-Liapunov prod-function) L on H1 and H2, then

L is also a non-Liapunov sum-function (non-Liapunov prod-function) on H1

⋃
H2.

Proof Similarly, we can show that R+(L1, L2) satisfies these conditions on

H1

⋃
H2 for non-Liapunov sum-functions or non-Liapunov prod-functions in Theo-

rem 3.12 if L1, L2 are non-Liapunov sum-functions or non-Liapunov prod-functions
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on 0 for H1 and H2, respectively. Thus R+(L1, L2) is a non-Liapunov sum-function

or non-Liapunov prod-function on 0. �

Corollary 3.14 For a differential equation system (DES1
m), let H < G[DES1

m] be

a spanning subgraph. If Lv is a non-Liapunov function on vertex v for ∀v ∈ V (H),

then the functions

LH
S =

∑

v∈V (H)

Lv and LH
P =

∏

v∈V (H)

Lv

are respectively non-Liapunov sum-function and non-Liapunov prod-function on graph

H. Particularly, if L = Lv for ∀v ∈ V (H), then L is both a non-Liapunov sum-

function and a non-Liapunov prod-function on H.

Example 3.15 Let (DES1
m) be





ẋ1 = λ1x
2
1 − λ1x

2
2

ẋ2 =
λ1

2
x1x2





ẋ2 = λ2x
2
1 − λ2x

2
2

ẋ2 =
λ2

2
x1x2

· · ·





ẋ1 = λmx2
1 − λmx2

2

ẋ2 =
λm

2
x1x2

with constants λi > 0 for integers 1 ≤ i ≤ m and L(x1, x2) = x2
1 − 2x2

2. Then

L̇(x1, x2) = 4λix1L(x1, x2) for the i-th equation in (DES1
m). Calculation shows that

L(x1, x2) > 0 if x1 >
√

2x2 or x1 < −
√

2x2 and L̇(x1, x2) > 4c
3
2 for L(x1, x2) > c

in the area of L(x1, x2) > 0. Applying Theorem 3.12, we know the zero solution of

(DES1
m) is not stable for the i-th equation for any integer 1 ≤ i ≤ m. Applying

Corollary 3.14, we know that L is a non-Liapunov sum-function and non-Liapunov

prod-function on any spanning subgraph H < G[DES1
m].

§4. Non-Solvable Spaces of Shifted Differential Equations

The differential equation systems (DES1
m) discussed in previous sections are all

in a same Euclidean space Rn. We consider the case that they are not in a same

space Rn, i.e., shifted differential equation systems in this section. These differential

equation systems and their non-solvability are defined in the following.

Definition 4.1 A shifted differential equation system (SDES1
m) is such a differential

equation system

Ẋ1 = F1(X1), Ẋ2 = F2(X2), · · · , Ẋm = Fm(Xm) (SDES1
m)



4. Non-Solvable Spaces of Shifted Differential Equations 36

with
X1 = (x1, x2, · · · , xl, x1(l+1), x1(l+2), · · · , x1n),

X2 = (x1, x2, · · · , xl, x2(l+1), x2(l+2), · · · , x2n),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

Xm = (x1, x2, · · · , xl, xm(l+1), xm(l+2), · · · , xmn),

where x1, x2, · · · , xl, xi(l+j), 1 ≤ i ≤ m, 1 ≤ j ≤ n − l are distinct variables and

Fs : Rn → Rn is continuous such that Fs(0) = 0 for integers 1 ≤ s ≤ m.

A shifted differential equation system (SDES1
m) is non-solvable if there are

integers i, j, 1 ≤ i, j ≤ m and an integer k, 1 ≤ k ≤ l such that x
[i]
k (t) 6= x

[j]
k (t),

where x
[i]
k (t), x

[j]
k (t) are solutions xk(t) of the i-th and j-th equations in (SDES1

m),

respectively.

The number dim(SDES1
m) of variables x1, x2, · · · , xl, xi(l+j), 1 ≤ i ≤ m, 1 ≤ j ≤

n − l in Definition 4.1 is uniquely determined by (SDES1
m), i.e., dim(SDES1

m) =

mn−(m−1)l. For classifying and finding the stability of these differential equations,

we similarly introduce the linearized basis graphs G[SDES1
m] of a shifted differential

equation system to that of (DES1
m), i.e., a vertex-edge labeled graph with

V (G[SDES1
m]) = {Bi|1 ≤ i ≤ m},

E(G[SDES1
m]) = {(Bi, Bj)|Bi

⋂
Bj 6= ∅, 1 ≤ i, j ≤ m},

where Bi is the solution basis of the i-th linearized differential equation Ẋi =

F ′
i (0)Xi for integers 1 ≤ i ≤ m, called such a vertex-edge labeled graph G[SDES1

m]

the G-solution of (SDES1
m) and its zero G-solution replaced Bi by (0, · · · , 0) (|Bi|

times) and Bi

⋂
Bj by (0, · · · , 0) (|Bi

⋂
Bj | times) for integers 1 ≤ i, j ≤ m.

Let (LDES1
m), (LDES1

m)′ be linearized differential equation systems of shifted

differential equation systems (SDES1
m) and (SDES1

m) with G-solutions H, H ′.

Similarly, they are called combinatorially equivalent if there is an isomorphism ϕ :

H → H ′ of graph and labelings θ, τ on H and H ′ respectively such that ϕθ(x) =

τϕ(x) for ∀x ∈ V (H)
⋃

E(H), denoted by (SDES1
m)

ϕ≃ (SDES1
m)′. Notice that if

we remove these superfluous variables from G[SDES1
m], then we get nothing but

the same vertex-edge labeled graph of (LDES1
m) in Rl. Thus we can classify shifted

differential similarly to (LDES1
m) in Rl. The following result can be proved similarly

to Theorem 2.14.

Theorem 4.2 Let (LDES1
m), (LDES1

m)′ be linearized differential equation systems
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of two shifted differential equation systems (SDES1
m), (SDES1

m)′ with integral la-

beled graphs H, H ′. Then (SDES1
m)

ϕ≃ (SDES1
m)′ if and only if H = H ′.

The stability of these shifted differential equation systems (SDES1
m) is also

similarly to that of (DES1
m). For example, we know the results on the stability of

(SDES1
m) similar to Theorems 2.22, 2.27 and 3.6 following.

Theorem 4.3 Let (LDES1
m) be a shifted linear differential equation systems and

H < G[LDES1
m] a spanning subgraph. A zero G-solution of (LDES1

m) is asymp-

totically sum-stable on H if and only if Reαv < 0 for each βv(t)e
αvt ∈ Bv in

(LDES1) hold for ∀v ∈ V (H) and it is asymptotically prod-stable on H if and

only if
∑

v∈V (H)

Reαv < 0 for each βv(t)e
αvt ∈ Bv in (LDES1).

Theorem 4.4 Let (SDES1
m) be a shifted differential equation system, H < G[SDES1

m]

a spanning subgraph and

Fv(X) = F ′
v

(
0
)
X + Rv(X)

such that

lim
‖X‖→0

‖Rv(X)‖
‖X‖ = 0

for ∀v ∈ V (H). Then the zero G-solution of (SDES1
m) is asymptotically sum-stable

or asymptotically prod-stable on H if Reαv < 0 for each βv(t)e
αvt ∈ Bv, v ∈ V (H)

in (SDES1
m).

For the Liapunov sum-function or Liapunov prod-function of a shifted dif-

ferential equation system (SDES1
m), we choose it to be a differentiable function

L : O ⊂ Rdim(SDES1
m) → R with conditions in Definition 3.7 hold. Then we know

the following result similar to Theorem 3.8.

Theorem 4.5 For a G-solution G[SDES1
m] of a shifted differential equation system

(SDES1
m) with initial value Xv(0), let H be a spanning subgraph of G[DES1

m] and

X∗ an equilibrium point of (SDES1
m) on H.

(1) If there is a Liapunov sum-function L : O ⊂ Rdim(SDES1
m) → R on X∗, then

the zero G-solution G[SDES1
m] is sum-stable on X∗ for H, and furthermore, if

L̇


 ∑

v∈V (H)

Xv(t)


 < 0
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for
∑

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[SDES1
m] is asymptotically sum-

stable on X∗ for H.

(2) If there is a Liapunov prod-function L : O ⊂ Rdim(SDES1
m) → R on X∗ for

H, then the zero G-solution G[SDES1
m] is prod-stable on X∗ for H, and furthermore,

if

L̇


 ∏

v∈V (H)

Xv(t)


 < 0

for
∏

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[SDES1
m] is asymptotically prod-

stable on X∗ for H.

§5. Applications

5.1 Global Control of Infectious Diseases

An immediate application of non-solvable differential equations is the globally con-

trol of infectious diseases with more than one infectious virus in an area. Assume

that there are three kind groups in persons at time t, i.e., infected I(t), susceptible

S(t) and recovered R(t), and the total population is constant in that area. We

consider two cases of virus for infectious diseases:

Case 1 There are m known virus V1, V2, · · · , Vm with infected rate ki, heal rate hi

for integers 1 ≤ i ≤ m and an person infected a virus Vi will never infects other

viruses Vj for j 6= i.

Case 2 There are m varying V1, V2, · · · , Vm from a virus V with infected rate ki,

heal rate hi for integers 1 ≤ i ≤ m such as those shown in Fig.5.1.

V1 V2
- - - Vm

Fig.5.1

We are easily to establish a non-solvable differential model for the spread of
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infectious viruses by applying the SIR model of one infectious disease following:




Ṡ = −k1SI

İ = k1SI − h1I

Ṙ = h1I





Ṡ = −k2SI

İ = k2SI − h2I

Ṙ = h2I

· · ·





Ṡ = −kmSI

İ = kmSI − hmI

Ṙ = hmI

(DES1
m)

Notice that the total population is constant by assumption, i.e., S + I + R is

constant. Thus we only need to consider the following simplified system

{
Ṡ = −k1SI

İ = k1SI − h1I

{
Ṡ = −k2SI

İ = k2SI − h2I
· · ·

{
Ṡ = −kmSI

İ = kmSI − hmI
(DES1

m)

The equilibrium points of this system are I = 0, the S-axis with linearization at

equilibrium points
{

Ṡ = −k1S

İ = k1S − h1

{
Ṡ = −k2S

İ = k2S − h2

· · ·
{

Ṡ = −kmS

İ = kmS − hm

(LDES1
m)

Calculation shows that the eigenvalues of the ith equation are 0 and kiS−hi, which

is negative, i.e., stable if 0 < S < hi/ki for integers 1 ≤ i ≤ m. For any spanning

subgraph H < G[LDES1
m], we know that its zero G-solution is asymptotically sum-

stable on H if 0 < S < hv/kv for v ∈ V (H) by Theorem 2.22, and it is asymptotically

sum-stable on H if

∑

v∈V (H)

(kvS − hv) < 0 i.e., 0 < S <
∑

v∈V (H)

hv

/
∑

v∈V (H)

kv

by Theorem 2.27. Notice that if Ii(t), Si(t) are probability functions for infectious

viruses Vi, 1 ≤ i ≤ m in an area, then
m∏

i=1

Ii(t) and
m∏

i=1

Si(t) are just the probability

functions for all these infectious viruses. This fact enables one to get the conclusion

following for globally control of infectious diseases.

Conclusion 5.1 For m infectious viruses V1, V2, · · · , Vm in an area with infected

rate ki, heal rate hi for integers 1 ≤ i ≤ m, then they decline to 0 finally if

0 < S <

m∑

i=1

hi

/
m∑

i=1

ki ,

i.e., these infectious viruses are globally controlled. Particularly, they are globally

controlled if each of them is controlled in this area.
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5.2 Dynamical Equations of Instable Structure

There are two kind of engineering structures, i.e., stable and instable. An engineering

structure is instable if its state moving further away and the equilibrium is upset

after being moved slightly. For example, the structure (a) is engineering stable but

(b) is not shown in Fig.5.2,

A1

B1 C1

A2

B2

C2

D2

(a) (b)

Fig.5.2

where each edge is a rigid body and each vertex denotes a hinged connection. The

motion of a stable structure can be characterized similarly as a rigid body. But such

a way can not be applied for instable structures for their internal deformations such

as those shown in Fig.5.3.

A B

C D

BA

C D

moving

Fig.5.3

Furthermore, let P1, P2, · · · , Pm be m particles in R3 with some relations, for

instance, the gravitation between particles Pi and Pj for 1 ≤ i, j ≤ m. Thus we

get an instable structure underlying a graph G with

V (G) = {P1, P2, · · · , Pm};
E(G) = {(Pi, Pj)|there exists a relation between Pi and Pj}.
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For example, the underlying graph in Fig.5.4 is C4. Assume the dynamical behavior

of particle Pi at time t has been completely characterized by the differential equa-

tions Ẋ = Fi(X, t), where X = (x1, x2, x3). Then we get a non-solvable differential

equation system

Ẋ = Fi(X, t), 1 ≤ i ≤ m

underlying the graph G. Particularly, if all differential equations are autonomous,

i.e., depend on X alone, not on time t, we get a non-solvable autonomous differential

equation system

Ẋ = Fi(X), 1 ≤ i ≤ m.

All of these differential equation systems particularly answer a question presented in

[3] for establishing the graph dynamics, and if they satisfy conditions in Theorems

2.22, 2.27 or 3.6, then they are sum-stable or prod-stable. For example, let the

motion equations of 4 members in Fig.5.3 be respectively

AB : ẌAB = 0; CD : ẌCD = 0, AC : ẌAC = aAC , BC : ẌBC = aBC ,

where XAB, XCD, XAC and XBC denote central positions of members AB, CD, AC, BC

and aAC , aBC are constants. Solving these equations enable one to get

XAB = cABt + dAB, XAC = aACt2 + cACt + dAC ,

XCD = cCDt + dCD, XBC = aBCt2 + cBCt + dBC ,

where cAB, cAC , cCD, cBC , dAB, dAC, dCD, dBC are constants. Thus we get a non-

solvable differential equation system

Ẍ = 0; Ẍ = 0, Ẍ = aAC , Ẍ = aBC ,

or a non-solvable algebraic equation system

X = cABt + dAB, X = aACt2 + cACt + dAC ,

X = cCDt + dCD, X = aBCt2 + cBCt + dBC

for characterizing the behavior of the instable structure in Fig.5.3 if constants

cAB, cAC , cCD, cBC , dAB, dAC , dCD, dBC are different.
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Now let X1, X2, · · · , Xm be the respectively positions in R3 with initial val-

ues X0
1 , X

0
2 , · · · , X0

m, Ẋ0
1 , Ẋ0

2 , · · · , Ẋ0
m and M1, M2, · · · , Mm the masses of particles

P1, P2, · · · , Pm. If m = 2, then from Newton’s law of gravitation we get that

Ẍ1 = GM2
X2 − X1

|X2 − X1|3
, Ẍ2 = GM1

X1 − X2

|X1 − X2|3
,

where G is the gravitational constant. Let X = X2 −X1 = (x1, x2, x3). Calculation

shows that

Ẍ = −G (M1 + M2)
X

|X|3
.

Such an equation can be completely solved by introducing the spherical polar coor-

dinates 



x1 = r cos φ cos θ

x2 = r cos φ cos θ

x3 = r sin θ

with r ≥ 0, 0 ≤ φ ≤ π, 0 ≤ θ < 2π, where r = ‖X‖, φ = ∠Xoz, θ = ∠X ′ox with X ′

the projection of X in the plane xoy are parameters with r = α/(1 + ǫ cos φ) hold

for some constants α, ǫ. Whence,

X1(t) = GM2

∫ (∫
X

|X|3
dt

)
dt and X2(t) = −GM1

∫ (∫
X

|X|3
dt

)
dt.

Notice the additivity of gravitation between particles. The gravitational action

of particles P1, P2, · · · , Pm on P can be regarded as the respective actions of

P1, P2, · · · , Pm on P, such as those shown in Fig.5.4.

P1 P2 Pm

P

F1

K >}
F2 Fm

Fig.5.4

Thus we can establish the differential equations two by two, i.e., P1 acts on P, P2
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acts on P, · · ·, Pm acts on P and get a non-solvable differential equation system

Ẍ = GMi
Xi − X

|Xi − X|3
, Pi 6= P, 1 ≤ i ≤ m.

Fortunately, each of these differential equations in this system can be solved likewise

that of m = 2. Not loss of generality, assume X̂i(t) to be the solution of the

differential equation in the case of Pi 6= P, 1 ≤ i ≤ m. Then

X(t) =
∑

Pi 6=P

X̂i(t) = G
∑

Pi 6=P

Mi

∫ (∫
Xi − X

|Xi − X|3
dt

)
dt

is nothing but the position of particle P at time t in R3 under the actions of

Pi 6= P for integers 1 ≤ i ≤ m, i.e., its position can be characterized completely

by the additivity of gravitational force.

5.3 Global Stability of Multilateral Matters

Usually, one determines the behavior of a matter by observing its appearances re-

vealed before one’s eyes. If a matter emerges more lateralities before one’s eyes,

for instance the different states of a multiple state matter. We have to establish

different models, particularly, differential equations for understanding that matter.

In fact, each of these differential equations can be solved but they are contradictory

altogether, i.e., non-solvable in common meaning. Such a multilateral matter is

globally stable if these differential equations are sum or prod-stable in all.

Concretely, let S1, S2, · · · , Sm be m lateral appearances of a matter M in R3

which are respectively characterized by differential equations

Ẋi = Hi(Xi, t), 1 ≤ i ≤ m,

where Xi ∈ R3, a 3-dimensional vector of surveying parameters for Si, 1 ≤ i ≤ m.

Thus we get a non-solvable differential equations

Ẋ = Hi(X, t), 1 ≤ i ≤ m (DES1
m)

in R3. Noticing that all these equations characterize a same matter M , there must

be equilibrium points X∗ for all these equations. Let

Hi(X, t) = H ′
i(X

∗)X + Ri(X
∗),
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where

H ′
i(X

∗) =




h
[i]
11 h

[i]
12 · · · h

[i]
1n

h
[i]
21 h

[i]
22 · · · h

[i]
2n

· · · · · · · · · · · ·
h

[i]
n1 h

[i]
n2 · · · h

[i]
nn




is an n × n matrix. Consider the non-solvable linear differential equation system

Ẋ = H ′
i(X

∗)X, 1 ≤ i ≤ m (LDES1
m)

with a basis graph G. According to Theorem 3.6, if

lim
‖X‖→X∗

‖Ri(X)‖
‖X‖ = 0

for integers 1 ≤ i ≤ m, then the G-solution of these differential equations is asymp-

totically sum-stable or asymptotically prod-stable on G if each Reα
[i]
k < 0 for all

eigenvalues α
[i]
k of matrix H ′

i(X
∗), 1 ≤ i ≤ m. Thus we therefore determine the be-

havior of matter M is globally stable nearly enough X∗. Otherwise, if there exists

such an equation which is not stable at the point X∗, then the matter M is not

globally stable. By such a way, if we can determine these differential equations are

stable in everywhere, then we can finally conclude that M is globally stable.

Conversely, let M be a globally stable matter characterized by a non-solvable

differential equation

Ẋ = Hi(X, t)

for its laterality Si, 1 ≤ i ≤ m. Then the differential equations

Ẋ = Hi(X, t), 1 ≤ i ≤ m (DES1
m)

are sum-stable or prod-stable in all by definition. Consequently, we get a sum-stable

or prod-stable non-solvable differential equation system.

Combining all of these previous discussions, we get an interesting conclusion

following.

Conclusion 5.2 Let M GS, M
GS

be respectively the sets of globally stable multilateral

matters, non-stable multilateral matters characterized by non-solvable differential

equation systems and DE , DE the sets of sum or prod-stable non-solvable differential
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equation systems, not sum or prod-stable non-solvable differential equation systems.

then

(1) ∀M ∈ M GS ⇒ ∃(DES1
m) ∈ DE ;

(2) ∀M ∈ M
GS ⇒ ∃(DES1

m) ∈ DE .

Particularly, let M be a multiple state matter. If all of its states are stable,

then M is globally stable. Otherwise, it is unstable.
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