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ABSTRACT. The Clay Navier-Stokes problem is correctly solved. The answer
from CMI is included. The article discusses why and how the Clay Navier-
Stokes problem should be corrected.

1. INTRODUCTION

Has the Clay Navier-Stokes problem been solved? Yes, the exact formulation of
the problem as it is written in the official problem statement was correctly solved
over two years ago in [1]. But that is not what we want! That is not the correct
problem: CMI meant something different!

This may be so, but the real story is still rather interesting. I discussed [1] with an
expert of the Clay Navier-Stokes problem, Claes Johnson from KTH in September
2012. Johnson has written an article questioning if the CMI Navier-Stokes problem
is well-posed, so he should have read the official problem statement. Johnson’s
first argument against [1] was that strong solutions for Navier-Stokes equations are
unique and therefore [1] must be wrong. Johnson gave the Fefferman quote as a
support of his words. This quote is in the official problem statement on page 2 of
[2]: it is known that (A) and (B) hold (also for » = 0) if the time interval [0, c0)
is replaced by a small time interval [0,7"). However, looking at (A) and (B), that
is Statements A and B in [2] on page 2, we can see that these statements do not
make any claim that solutions can be continued uniquely. Furthermore, when we
search for any versions of the official problem statement in the web, we do not find
any version where (A) and (B) would ever have claimed that solutions are unique.

This reminded me of the time 2008 and 2009 when [1] was being reviewed in
journals. Journal referees made the same reference to the Fefferman quote as a
justification of their claim that strong solutions are unique. I reminded myself
of having looked up Statements A and B at that time, and they did claim that
solutions are unique. Several emails were sent to the author of the official problem
statement and to CMI that the problem statement must be corrected. No answer
was ever received, but in 2010 people reading [1] after it was published told me that
there is nothing of uniqueness in the official problem statement. And that there
never has been. The problem statement has not been corrected. It never made any
such claim, but strangely enough Johnson still remembered that it did.

Now the official problem statement says, or should we say, has always stated,
that either (A) and (B) hold, or there is a blowup solution. This apparently means
that either (A) holds or (C) holds, and either (B) holds or (D) holds.

Key words and phrases. Navier-Stokes; Clay problems; CMI; mathematics today.
1



2 JORMA JORMAKKA

I will show by repeating the argument in [1] that this claim is wrong, if [2] ever
made such a claim, but logically it must be either (A) of (C), and either (B) or (D),
or else [2] has no internal logic in posing the Statements. We can very well have the
situation that (B) holds and (D) also holds. Statement B says that for initial data
u®(x) and zero external force f there exists a smooth solution that can be continued
to the whole space-time. Statement D says that there exists initial data u° and a
force f such that all solutions blow up. These statements are not exact opposites.
There can be u® such that for identically zero f there exists a smooth solution in
the whole space-time, but there also exists a force f, that is not identically zero
but has zero value everywhere, such that there is only one solution under this force
and that solution blows up. Such a force can be defined as a feedback control force.
If there are many solutions, there can be one solution that can be continued to the
whole space-time, and one blowup solution. We can select a feedback control force
that steers all solutions to join the blowup solution.

Earlier, when the official problem statement claimed in (A) and (B) that solutions
are locally unique (if it ever claimed this, we cannot prove it) it was clearer that
the solution in [1] is a solution of the CMI Navier-Stokes problem, but even now
when (A) and (B) make no claim of uniqueness, the solution of [1] is still a valid
one. The official problem statement should still be corrected as [1] demands.

2. THE SOLUTION IN [1]

Let us look at the solution in [1]. It is very short and simple. First we need some
definitions: Let x = (x1,72,23) € R® be the position, ¢+ > 0 the time, p(z,t) € R
the pressure, u(z,t) = (u;(z,t))1<i<s € R® the velocity vector, and f;(z,t) the
external force. The Navier-Stokes equations for incompressible fluids filling all of
R3 for ¢ > 0 are in [2] given as

3

+216“’= Bui= 24 fiat), 2B, 120,1<i<3 (1)
dlvu—zauz— TR >0 (2)
6.%'1 7 ? -

with initial conditions
u(z,0) =u’(z), ze€R>. (3)

. .. . 3 2 . . . .
Here v is a positive coefficient, A = Y7 | %; is the Laplacian in the space variables,

and u°(z) is C°(R?) vector field on R®. It is required to be divergence-free; i.e.,
satisfying divu® = 0. The time derivative 38’? at t = 01in (1) is taken to mean the
limit when ¢t — 0t.

Writing down the conditions (8), (9), (10) and (11) from [2], Statement D in the
official problem statement is as follows (we already have required that v > 0 and

n=3):

Statement D: There exists a smooth, divergence-free vector field u°(z) on R?
and a smooth f(z,t) on R® x [0,00) and a number Cp m x > 0 satisfying

u’(z +e;) =u’(x), f(z+ej,t)=f(z,1), 1<j<3
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(here e; is the unit vector), and
|8:6tmf(x,t)| S CamK(]- + |t|)7K
for any a, m and K, such that there exist no solutions (p,u) of (1), (2), (3) on
R3 x [0, 00) satisfying
u(z,t) = u(z + ej,1)
on R® x [0,00) for 1 < j < 3, and

p,u € C®(R x [0,00)).

In order to prove Statement D above, let us take the following u®(z):
u® = 27 sin(2nxs) + 27 cos(2mz3),
uy = 27 sin(2nz3) + 27 cos(2mz1 ),
u9 = 27 sin(27zy) + 27 cos(2mza),

and let f;(x,t) be chosen identically zero for 1 < ¢ < 3. The following family of
functions u and p satisfy (1 )—(3):

(si ) (2mzs)
uy = e P21 (sin(27x3) + cos(2mzy)),
uz = e P21 (sin(27 ) ( )
p = —e 2P1(21)? sin(2mzy ) cos(2mr,

— e 2Pt (27)% sin (27w ) cos(2ms

Let g : R — R be a smooth function with g(0) = ¢'(0) =
transform of (1):

There is the following
u(z,t) = u(a', 1) - '(t), 4)
p(z,t) = p(',t) Zx],

where 2%, = z; +g(t), j = 1,2,3, and t' = ¢. It keeps the initial values 49(z) and
f(z,t) fixed if g(0) = ¢'(0) = 0. It is a transform that can be done to any solution
of (1)-(3) and the transformed equation still satisfies (1)-(3).

Let 8 = (27)2v. Using the transform (4) we get the following family of functions
u and p that satisfy (1)-(3) for zero external force:

uy = e P12 (sin(2m(zy + g(t))) + cos(2m(z3 + g(t)))) — ¢ (1),
(2m(z3 + g(t))) + cos(2m(z1 + g(1)))) — ¢'(2),
(2m(z1 + g(t))) + cos(2m (22 + g(1)))) — ¢'(2),
p = —e P (2m)? sin(2r (21 + g(1))) cos(2m (22 + ¢(1)))

— e 2Pt (27)2 sin (27 (22 + g(t))) cos(2m (23 + g(t)))

uy = e P27 (sin

u3 = e P12 (sin

)
)
)
)

— e~ 24 (2m)? sin(2m (23 + g(t))) cos(2m (w1 + g(t Z

We found a whole set of new solutions.
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We see that we can take any valid solution with f = 0 that fills the requirements
of Statement D and do the transform (4). It yields a set of valid solutions that have
a linearly growing term in the pressure. The function g(t) can be freely selected as
long as g(0) = ¢'(0) = 0.

Statement D has in the title Breakdown of Navier-Stokes Solutions on R3/Z3
but the statement is given on R3. It is the statement that has to be shown. It can
be given any title. The statement lists all conditions (1), (2), (3), (8), (9), (10),
(11) in [2]. It is stated in R3. Statement D does not require the pressure to be
space-periodic.

Let us notice that we do not need to have g(t) smooth everywhere. It can have
a singularity. Let us select the function g(¢) as follows:

1, 1
t) = —ct
g(t) 5t ——

()

where ¢ # 0 and a > 0.

With this g(¢) we obtain a solution that cannot be continued to the whole space-
time, a blowup solution.

If you very much object to concluding that Statement D does not require space-
periodicity for p and think that of course p must be space-periodic since the title of
Statement D says R®/Z3, and that this counterexample only works because of this
minimal formal error in the problem statement, please consider Statement C. Take
a solution filling the conditions of Statement A for zero external force and make
the transform (4) to that solution. Statement C does not set any growth conditions
to the pressure. The external force has value zero, so there is no problem from it.
The only additional condition you have to check is (7) in [2], bounded energy. In
(4) your u(z,t) has been transformed to u(z',t) — g'(t) where z; = x; + g(t). The
bounded energy condition in [2] requires that

3
/ lu(z, 8)[2dz
R

is bounded by some number. You select g(t) that is almost zero and has a very
thin spike that goes to infinity. When g(t) grows, z’; grows and u(z',t) vanishes
in infinity. You easily find a function g(t) that yields bounded energy. Statement
C clearly says R® in the title and we can create in almost exactly the same way a
counterexample proving Statement C.

We still have to remove the other solutions, other choices of g(¢), so that there
is only left the blowup solution. This can be done as follows. We select the time
derivatives of u at t = 0 to be the time derivatives of this blowup solution at
t = 0, then the solution is unique. Then the zero external force yields only this
one solution, this particular blowup solution that cannot be continued to the whole
space-time.

Can we select the time derivatives of u at t = 07 Look carefully at Statement B
and Statement D in [2]. Clearly our solution fills Statement B. If g(¢) = 0, we can
continue the solution to the whole space-time, and we have the force identically zero.
What is there in Statement D that forbids us from selecting the time derivatives
of u(z,t) at ¢ = 0?7 Nothing. Statement D does not say anything about that. We
are asked to select the initial data «°, that is u at ¢ = 0 and the external force.
We can select parameters. Surely we also can select all such terms and parameters
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that the problem statement does not explicitly mention. In a counterexample you
can select everything.

The solutions are required to be physically reasonable. There is the physicality
condition (7) in [2] but it is not required in Statement D. In Statement D physical
reasonability is (10) and (11) of [2], which we already included in Statement D.
The initial data is u°. That is physical here and in Theorem 2.4 of [1]. Our time
derivatives of u are not physical at ¢ = 0, but they are not required to be physical.

Thus, we have a proof of Statement D. It was as simple as that, and it is correct.

In [1] the last step is done a bit differently, more elegantly in a way, and we
select only the external force, not the time derivatives of u(z,t) at t = 0. This way
follows exactly what Statement D asks us to do. We can obtain a unique solution
by using a feedback control force as the external force.

The force in Theorem 2.4 of [1] is a feedback control force of the type as the
steering force steering a car moving on a straight road. If the car moves to the
direction of the road, is stays on the road without steering. If it moves to other
directions, it drops off the road. A steering force turns the car to the direction of
the road and then keeps it there. When the car is in the direction of the road, the
force has zero value. How much work the force has to do to get the car on the
correct direction depends on what was the original position of the car. If it already
was in the correct direction, the force has always zero value. This last case is the
situation in Theorem 2.4.

Mathematically we can consider a linear system du/dt = ku+ ¢+ f where k and
¢ can have many values and one solution for f = 0 is dv/dt = av + b. A feedback
force f = du/dt — dv/dt gives a solution f = 0, 4 = v in case k = a and ¢ = b.
So, if a linear system is started in correct direction, the feedback force always has
the value zero. If the system has some other starting values k, ¢, the force f, which
in this case is not the same as given above, first moves the system to the correct
direction and then becomes zero. If the system is nonlinear, like the Navier-Stokes
equation, we linearize it at a vicinity of ¢ = 0 and the control force behaves in the
same way. After some time the feedback control force sets u = v and f becomes
zero. After that point u = v for all time because strong solutions are unique when
all (also higher order) time derivatives of u are set, i.e., after u = v for an interval.

What then is the initial position in Theorem 2.4?7 Does the external force f
first need to move the system into correct direction? No: we are free to select the
initial position. Nothing in Statement D, or any other place in the official problem
statement, forbids us from assigning suitable values for the time derivatives of u at
t = 0 so that the initial position is that of v, the blowup solution. Then f has value
zero from the beginning t = 0 and 4 = v all the time as in Theorem 2.4.

Which one selects the initial position? We or the external force? This is a matter
of taste. We can say that the force does the selection. In the car example it is more
natural to think that we have to leave the car in the initial position, but there are
other similar examples. Consider an egg standing on its sharp head. A small knock
pushes it to any side we want. Here it is clearly the external force that selects the
direction. We can quite well say as [1] that it is the external force that selects the
initial position.

For anybody having driven a car or taken a course in control theory, all this
is obvious. Feedback control forces are not especially exotic creatures. But is
a feedback control force allowed in Statement D? The official problem statement
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does not deny such a force. Therefore it is allowed. The problem statement only
says: f is a given, externally applied force (e.g. gravity). Given means that the
term f is not an unknown like u and p, but given. In Statement D it can be
selected. A given force can very well be given either explicitly or implicitly as a
function of u. External forces in NSE often have feedback from u. Gravity, the
only example mentioned, has feedback from the distribution of the fluid mass. Fluid
has mass or gravity had no effect. Mass creates gravity. We do not know if the
whole space is filled with fluid. Thus, the mass distribution is a function of u. The
gravitation force has an additive component given by a function of u. In general,
the interest in fluid turbulence is largely caused by research on propulsion systems.
Propulsion systems are a part of a steering system and thus, they have feedback
from water motion. As the CMI problems are intended for a wide public and they
explain even simple things to the reader, they certainly are intended to contain all
assumptions. As there are no explicit limitations to the external force, there are no
implicit assumptions that the external force must fill. Thus, f can be a feedback
control force.

This is the whole solution in [1]. Did we see any misinterpretation of the problem
description? No, everything was according to the official problem statement [2].

3. THE NEED TO CORRECT THE PROBLEM STATEMENT

We conclude that Theorem 2.4 in [1] is indeed a valid proof of Statement D. The-
orem 2.4 shows that there exists a space-periodic solution that cannot be continued
to the whole space. The initial conditions and the external force in this solution
confirm fully to the requirements of the problem statement. The solution is given
explicitly.

But we do not like the solution.

Thus, the problem statement should be corrected. Let us make some observations
concerning this issue. The counterexample in Theorem 2.4 was possible because
Statement D does not require the pressure to be space-periodic and because it does
not forbid feedback control forces. Let us see what can be done to fix the problem.

Forbidding feedback control forces does not help. We already showed that it
suffices to select the time derivatives of the velocity vector u in order to have
a unique solution. We set the unique solution to be the blowup solution. In
a counterexample we are asked to select the initial data, the external force, the
parameters. Surely we are asked also to select all data that was not mentioned by
Statement D. In a counterexample we can select everything. It is enough to show
that one counterexample exists.

How about space-periodicity? It does not help to require space-periodicity for
p in Statement D. If we add a condition that the pressure be space-periodic in
Statement D, the solution of [1] still exists. Only it does not fill the required
conditions and is therefore a counterexample to existence. Proving Statement D
requires finding a counterexample to existence. If we reformulate Statement D in a
torus T = R3 /Z? instead of R3, Statement D is fixed, but a similar counterexample
can be made for Statement C. There are no restrictions to pressure in Statement C
and we really cannot put restrictions on pressure: pressure can be eliminated from
the equation at least for f = 0 (see [1], there it is done), and pressure is calculated
from wu. If we require p to behave nicely, we assume u to behave nicely. Then there
is no sense to prove that u behaves nicely.
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We could change the problem statement in such a way that the transform is not
allowed, but are we sure that it is the only transform? Where is a proof of that?

The easiest change is to make Statement D the exact opposite of Statement B.
That is, to state that the external force is identically zero in Statement D, but this
is not what we want.

It is of course possible to state the official problem statement correctly in some
way but it is not obvious what way CMI will use. Therefore the problem statement
must first be given a correct formulation before one can know what exactly should
be proven. [1] proves exactly what was stated in Statement D. If that is not what
should have been proven, then the problem statement is incorrectly formulated.

4. THE REPLY FROM CMI

The solution [1] is published in a peer-reviewed journal of good reputation two
years ago. The article has not been refuted or disputed in the scientific forums. A
paper published in a peer-reviewed journal is generally accepted by the scientific
community unless it is refuted or disputed in the scientific forums. This means that
[1] is generally accepted by the mathematical community. Thus, both conditions
stated in the millennium prize challenge rules are filled. When both conditions are
filled, CMI promises in the rules to set up a group to check the solution. The rules
do not grant CMI or the Scientific Advisor Board the right to reject a solution
without setting up a group to check the solution. For three months CMI tried to
ignore [1] completely, but finally they had to answer. Below is the reply from CMI:

Dear Dr Jormakka,

Your paper has been considered by the Scientific Advisory Board. In the judge-
ment of the board, the claim that the paper solves the Navier-Stokes problem is
based on a misinterpretation of the problem description. Accordingly the board has
concluded that it does not merit detailed consideration for the award of a Millen-
nium Prize and it has therefore decided not to appoint a special advisory committee.
The Clay Mathematics Institute will not enter into further correspondence on this
matter.

With regards, Clay Mathematics Institute

We see that CMI refuses to set up a group to check the solution. They also
refuse to explain what they mean by a misinterpretation.

There is no misinterpretation in the steps taken in [1]. The problem in Statement
D is simply: find a function filling the listed conditions. It is the official problem
statement that is poorly formulated and should be corrected.

CMI also refuses to admit that the official problem statement has ever been cor-
rected. Strangely, experts like Johnson remember the Fefferman quote incorrectly.
Let this be as it is. Electronic documents have no dates that cannot be changed.
There is no way to prove that the problem statement ever made a claim of unique-
ness of solutions. However, the official problem statement is still not correct now,
October 2012. Statement D is as it always was, and it has been proven.

5. CONCLUSIONS

The solution may seem so simple that you may wonder if this was not known to
the experts of the field. It does not seem to be the case. When [1] was in journal
review, experts of PDEs, with one exception, started with the counterargument
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that strong solutions to the Navier-Stokes equation are known to be unique, thus
the solution in [1] must be wrong. That is, with the wrong counterargument,
because the strong solutions are not unique in the case of the Clay problem. The
only exception did not know any better: he thought that I mean non-uniqueness
of weak solutions and referred to [4]. That, of course, is well-known and not the
same thing as in [1]. There are theorems that strong solutions are unique, but these
theorems have some conditions that are not filled in Statement D. The closest goes
a proof in Temam in [3]. However, that proof makes an implicit assumption that
everything is space-periodic, while in the CMI problem the pressure is not required
to be space-periodic. Thus, this proof does not apply.

The solution in [1] is very simple. The official problem statement does not specify
how difficult the solution must be, all it demands is a complete proof of one of the
four Statements. Actually the solution is on the very highest border of difficulty
to be reviewed and published by a peer-reviewed journal in the normal manner in
case the paper presents a solution of a known difficult problem and comes from an
unknown source. It must be like the proof Fermat did not write to the margin for
the Fermat Last Theorem, i.e., short and simple, rather than the Wiles proof of
the theorem, i.e., long and difficult, since no expert will read the long and difficult.
The normal manner to publish a journal article is to submit a manuscript to a
journal and to get it accepted. This will not succeed if the problem is one of
those famous problems: the editor will not accept the submission, or cannot find
a referee, or the referees will not want to accept the paper. Getting a manuscript
checked by world-leading experts before publication requires that you must have
good connections within the mathematical community. You need inside friends or
supporters. Otherwise experts will not read a manuscript you send to them. Of
course they would not come to any seminar that you might try to arrange. This
would be absurd, but even if you in some way manage to get into a seminar to
present your solution to experts, they will refuse to say anything.

The rules of the Clay challenge do state that the solution should get a million,
but apparently nobody in the mathematical community wants to give this solution
a million, and CMI will not follow the rules it has stated in the web. Therefore,
one should correct the official problem statement, and give a smaller prize for [1]
for correcting the problem statement. The solution is simple, but it is neither
easy nor fast to find such easy solutions to known difficult problems. Additionally
CMI should set up a journal that receives submissions that try to solve the seven
problems (indeed, there can be different proofs even to the problems that already
were solved) and reviews them correctly.
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