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Abstract

The probability of occurrence of an event or that of the exise of a physical state has no relative
existence in the sense that motion is strongly believed lpexist in the relative sense. If the probability
of occurrence of an event or that of the existence of a phlysiege is known by one observer, this
probability must be measured to have the same numericad \sluany other observer anywhere in the
Universe. If we accept this bare fact, then, the probabilityction can only be a scalar. Consequently,
from this fact alone, we argue that the quantum mechanicefuaction can not be a scalar function as is
assumed for the Schrodinger and the Klein-Gordon wavéifume This has fundamental implications on
the nature of the wavefunction insofar as translations foomreference system to the other is concerned.
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“My work always tried to unite the Truth with the Beautiful,
but when | had to choose one or the other,
| usually chose the Beautiful”

—Hermann Klaus Hugo Weyl (1885 — 1955)

1 Introduction

The probability of occurrence of an event or that of the exist of a physical state has no relative existence
in the sense that motion is strongly believed to only existhim relative sense where observers will in
general no agree on the numerical value of the speed of antolsjer example, if | havé similar balls

that differ only in their color such th&tare white and are black and these are placed in a closed container
such that one ball is drawn at random, then, the probabilipiaking a white ball first is distinctlyl /3. It
really does not matter the relative state of motion betweemnu any observer anywhere in the Universe —
logic and physical reality dictates and compels that, tbewtill measure the same probability for picking

a white ball first ad /3.

Generalizing the above thesis, it follows that if the prabitof occurrence of an event or that of the
existence of a physical state is known by one observer, tbisgbility must be measured to have the same
numerical value by any other observer anywhere in the Uséeif we accept this bare fact, then, any
probability function can only be a scalar because only ssdlave this property that what one observer
measures at any given time and place, every other obsengtmeasure and find the same numerical value
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for that quantity at the corresponding time and place for dhaerver. Consequently, from this fact alone,
it is crystal clear that the quantum mechanical wavefumatien not be a scalar function as is assumed for
the Schrodinger and the Klein-Gordon wavefunctions. Hlais fundamental implications on the nature of
the wavefunction insofar as translations from one refezeystem to the other is concerned.

The synopsis of this reading is as follows: in the subsegseetion, we present an unequivocal argu-
ment that clearly demonstrates that no quantum mechanaadfwnction can ever be a pure scalar. In the
section that follows, we generalize the properties of thengum probability function to include dynamic
probabilities. In sectiof4) we show that the required transformation properties of trentum mechani-
cal wavefunction naturally complements (or is demandedtyproposed)nified Field Theoryproposed
in the reading Nyambuy&(10). In section(5), we give a general discussion and the conclusion drawn
thereof.

2 Scalar Quantum Mechanical Probability Function

If ¥ is the wavefunction of a particle, then, the probabilitytttras particle will be found in the region
andrg is:

P(r,ro) = / U Wdadda?da?. (1)

0

If we have two systems of reference (traditionally denokedgrimed and the unprimed) that are in a state
of relative motion, then, for the primed system of referemneewill have:

P'(r' 1) = / U dz’ da' da' )
T

If U is a scalar, the®’ = ¥. For the differentialglz?, they transform as:

. Y A
J oo — .J
dr! = 97 dx’ | (©)]
so that:
t r 81?/2 81?/2 axll
P'(r',rl) = iy (22— Sdr?detda’ £ P . 4
(r ,ro) /f,o /m (512 o2 Oxl ) dx°dx®dx dx® # P(r,ro) (4

If P(r,7) is to be a scalar is argued, we must h&/ér’, () = P(r,ro). If we are to have”’ (v, r()) =
P(r, 7o) as logic and physical reality compels, théh= S, such that:

12 /2 /1 /2 /2 /1
STS(ax 0x'? Oz ):)\(832 0x'"? Ox )I:L 5

da? 922 dat da? 02 dxt

whereSTS = AZ. In this way, we achieve the desired resl{r’, »))) = P(r,r,). Clearly, the probability
amplitudeW, nor the probability density function= ¥, can not be a scalar.

3 Dynamic Quantum Mechanical Probability Function

According to Heisenberg’s quantum mechanical energy-timeertainty principleAEAt = h (where
AFE andAt are the energy and time uncertainity respectively aiglPlanck’s normalised constant), it is
impossible to make a measurement in a zero interval time pidieability P(r, o) and given in 1) is the
probability of occurrence of a quantum mechanical evengaten instant in timeé.e. in zero time interval.
As just stated, this is not permitted by Heisenberg’s uagety principle. All measurements must be made
in a finite time interval. To take this into account, the proitity function must in-cooperate in it, this finite
time interval in which this event can or will occur, that isg wust have:
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t 'd
P'(r,ro;t, tg) = / / U Ude3de? da' dad. (6)
to J7To

In most if not all cases considered in QM, the probabilitysigrfunction¥ ¥ is a static function because
T « e'Pt/" Because of this, the time dependence of the measuremergigsris usually ignored com-
pletely. For the sake of completeness and thoroughness effout to stay within the permissible physical
bounds, the correction made i8) (s just and valid.

Now, under a translation of the reference system, we must R&#’, r(; t', t) = P(r,ro;t,10), if
the probability function is to be a scalar as argued. As leefile wavefunction will transform as’ = S¥
and the coordinates as:

’ 8]3“’/
- I
dzt = D dz’. (7)

Again, S is such thatStS = \Z. For P'(v/, v}; ', t}) = P(r,ro;t,t0), we must have:

(8)

STS ax/‘s ax/2 81,/1 ax/o _ 81"3 ax/Q axll 81"0 B
0x3 02 9zt 920 ) 03 0x2 dxt 920 )
In this way, the dynamic probability function is a scalardtian as required.

4 Link to the Proposed Unified Field Theory

What really motivated us to take a closer look into the tramshtional nature of the quantum mechanical
is theUnified Field Theor{UFT) presented in Nyambuya(10). It is important to note that the thesis put
forward in§(1), (2) & (3) is independent of the what we shall say in the present seationt the work
Nyambuya £010). This work (Nyambuy&010) is actually what got us thinking on the nature of the QM
wavefunction.

For the interested reader, we shall try and clearly elabanathis effort (Nyambuy2010) so as to give
a clear perspective of where we are coming and where we ang gath all this. With all having been said
and done — at the end of it all; the proposed UFT (Nyamiya) is actually an attempt at improving on
Weyl (1918, 1927a,7)'s failed unified theory of gravitation and electricitp. a nutshell, what Weyl1918)
did was to supplement the usual metric of spacetjmewith a scalar functiore=2%, so that the metric
usual metric of Riemann spacetimg, is transformed to a new metrig,,, that is:

g,u,u = 6_2¢g/1,m (9)

so that the corresponding line element of the emergent Spaeis ds? = e=2%g,,, dr*dz”. With such a
line element, Weyl obtained that the new affine connecﬁip,pbelonging to this kind of spacetime is such

that:
P

nz nv nvo

(10)

whereW 7, is the Weyl tensor and'y;, is the usual Christophel symbol of Riemann geometry. Weyl's
geometry tends to Riemann geometryl&§, — 0. To try and find a link between electricity and
gravitation, Wey! carefully choose the functignso that¢ = A,z* whereA,, is some four vector. If

¢ = A,x*, and just as in pure Riemann geometry, the covariant demvat the metricj,,,, is upheld,.e.
Juvia = 0, then:

WSII = 531411 + 5314/1« - g/u/gOAA)w (11

What deeply intrigued Weyl and many others (including offiysbat came to admire the theory, is the
‘seemingly divine and heaven sefaict that the Weyl connectiof,, is invariant under the following
transformation:
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A, s At O, (12

wherey = x(z) is an arbitrary scalar function. ﬂ’jj, is invarianti.e. 6fﬁ‘y = 0, the curvature tensor

Rzku is also invariant.e. 51?%” = 0. Given that Weyl knew very well that Maxwellian electrodymias
is described by a four vector such that the entire Maxwebigetrodynamics is invariant under the trans-
formation (L2 b) — without wasting much time, Wey! seized the golden monaemt identifiedA,, with
the Maxwellian four vector potential of electrodynamicd.tis point, one can not help but endlessly and
deeply admire Weyl’s brilliantly convinced theory, and e bther hand, one can only be irretrievably and
deeply sad to know that this theory, despite its esoterindgar and exquisite beauty, it does not have any
correspondence with physical experience as we know it.

From a ‘safe distance’, the great Albert Einst¢ii879 — 1955) was the first to publicly exhibit his
passionatalbeit backhanded admiration of Weyl's theory, he said of it:

“...apart from the agreement with reality,
itis at any rate a grandiose achievement of the mind ...

a first class genius.”

(Abraham Paig005, Subtle is the Lordp. 341)

With equal passion, he made the one all-enduring ‘aerialderdment’ to it, a bombardment from which
Weyl's theory would never recover to this day. That is, theeainstein was quick and to point out that
in Weyl's geometry, the frequency of the spectral lines @inat clocks from different portions of the
distant heavenly spaces would depend on the location andigteries of the atoms. This is in fragment
disagreement with experience. The spectral lines aredefihed and sharp; they very strongly appear to
be independent of an atom’s pre-history. Atomic clocks a@efinits of time, and experience shows they are
integrally transported from one portion of the heavens &dther. So, with this criticism alone, Einstein
gave Weyl's theory a stillbirth with his backhanded comptiaweyl's brilliant and beautiful theory was
hopelessly thwarted and, to no avail, he made last ditclrtetifosave his theory in latter year (Weyl
1927a,7). Einstein’s criticism lay deep in the nimbus of the foatidn stone of Weyl's theory, which is
that the length of a vector varied from one point of spacetion@nother. In wrapping-up his criticism, he
[Einstein] said:

“... I do not believe that his theory will hold its ground inlation to reality.”
(Einstein1952, Sidelights of Relativityp. 23)

Much for the great Hermann Weyl and faili-brilliant, beautiful but ‘failed’ theory Be that it may, the
theory presented in Nyambuy20(10) is a series of radical, modest yet subtly ambitious impnoeets on
Weyl (1918)’s theory. The first and most important of all the improvenses that the role of the conformal
objecty added by Weyl now (in Nyambuy2010) takes a new role. It is now required of it that the Weyl
affine connectiotV;g, must be constrained such that, at the end of the day whensaidsand dond:“f;l,
is a tensor. In Weyl1918)'s theory,fj’jy transforms much the way as the three Christophel syrifipl
which transforms as:

ox® dzt dx¥ _,  Ox®  Hz™

Fa: ;= 7 7 r + / ’ 13
Y Qae Qak Qav' M Qx Qxl Oz (13
If fij is to be a tensor, thel 7, must transform as:

o oz Ozt dz¥ . x®  §x”

MV g Qi fzv' M Qae dak Hxv'
If W, is to transform as suggested above, then, the Weyl's fouowet, must seize to be a vector, it
must transform as:

14
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A, = A . 1
o Qg + Oxtdx (15
In Weyl's conformal connectior, if we setp = ¥TW = ¢2%, theng,,, = pg,.., so that:
1 dp
o 16
5 p axu ( )
Now, if p transforms ag’ = Ap, then:
oxH 1 oA
Ay=— - 1
L N (17

It is not difficult to see that if\ is defined as it is defined ir8), then the object,, clearly transforms as
desired, that is, it transforms as required 1%)( thus leading us naturally to our desired tensorial affine
connectior'?,,.

In Nyambuya £010), the objec has been identified with the quantum mechanical probalkiétysity
function. To be more specific, it has been identified with tli@®probability density functiop = 1T
where is the Dirac four component. What was not clear at the time afig down this theory is
that the transformation properties required of this obyeatild lead to the quantum probability function
[P(r,T05t,t0) = ftto Jr ¥1da®da®da’ dx°) having its required scalar properties as argue§{(in, (2)
and(3). The fact that this is so — in our modest view, this points titteas presented in Nyambuya{0)
as containing in them an element of truth in them.

5 Discussion and Conclusion

We have argued here that the QM wavefunction can not be arstalae have long assumed. So doing
(i.e. assumingV to be a scalar) leads to a probability function that has retiésired scalar properties for

a probability function, which is that it must be a scalar. Slienas the arguments presented herein may be,
they have profound implications on our foremost understandf the QM. The main result of this rather
brief study is thatl can not be a scalar.

5.1 Conclusion

Assuming the correctness or the plausibility of the ide@s@nted herein, we hereby make the following
conclusions:

1. If the quantum mechanical probability measure is defined esdefined in quantum mechanics, then, it is not
possible to have scalar wavefunctions. The quantum mecdigmiobability measure is what must be a scalar
and not the wavefunction.

2. The required transform properties of the wavefunction fgcalar quantum mechanical probability measure is
what is naturally required to obtain tensorial connectidnghe proposed UFT presented in Nyambu3@il().
We strongly believe that this fact certainly gives credetodéiis UFT.
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