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Abstract 
 

The trinomial triangle can be constructed in a binomial way using unit vectors of 

geometric algebra of quarks. This sheds some light on the question, how it is 

possible to transform mathematically entities of two elements into entities of three 

elements or vice versa. 
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1.  Introduction

 

 

Some years ago I described and analysed the bilateral structure of binomial and multinomial 

expansions, which can be represented by the three Pascal triangles, the four Pascal pyramids 

or some more Pascal hyper-pyramids [1]. Having later discovered non-commutative equiva-

lents of these structures and having not found them mentioned in the literature, I called them 

Pauli Pascal triangles, Pauli Pascal pyramids, or Pauli Pascal hyper-pyramids [2]. They surely 

have some didactical relevance [3]. 

 

                                                           

 This paper was uploaded at the internet preprint arxive of Cornell University (www.arxiv.org) at 

  October 7
th

, 2012 [12]. Some days later the author was informed by the arxiv administration that 

  the present paper is determined inappropriate for www.arxiv.org and that the submission was re- 

  moved. It therefore seems urgently necessary that scientists intending to work for www.arxiv.org 

  first read books like [13]. It might at least prevent some of their laborious censorship activities. 
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Recently Miao showed some interesting connections between Pascal pyramids at layer ࣨ and 

the number of component fields of a given kind in an ࣨ-extended supermultiplet for super-

conformal field theories [4]. And Gómez-Muñoz prepared some Mathematica applications of 

the positive Pauli Pascal triangle and other non-commutative expansions [5]. Therefore it 

might be interesting to reanalyse this subject from a slightly different viewpoint again. 
 

This viewpoint is the viewpoint of geometric algebra of quarks [6], [7]. 

 

2.  Philosophical Background 
 

Wolfgang Pauli and Carl Gustav Jung vividly discussed the intrinsic description of nature by 

the numbers three and four in their letters. How can we make four out of three? They even 

called the problem, how to reach the modern view of our world based on the number four by 

starting with the Middle Ages view of our world based on the number three, as the “nearly 
2000 year old central problem” of our cultural history [8, p. 124]. And Pauli in length ana-

lysed the philosophical conflicts between a ternary world view (represented for him by 

Kepler) and a quaternary world view (represented by the old Greeks, modern physics and 

scientists like Fludd) [8], [9]. Are theses problems Pauli and Jung discussed solved now? 

 

Of course these philosophical problems are not solved today. We do not know how to make 

four out of three, because we do not know how to make three out of two. And we do not know 

how to make three out of two, because we do not know how to make two out of one. Perhaps 

all we know today is how to make two out of zero by identifying zero with minus one plus 

one, resulting in the two basic elements ‘plus one’ and ‘minus one’. And it is even not sure 

whether we really know today how to do this split in a mathematically correct way. 

 

Nevertheless I will try to make three out of two in this paper. I will show how to construct a 

trinomial triangle in a binomial way using two basic elements only. These two basic elements 

or two basic paths to follow will be rearranged in a ternary way, resulting in a structure (the 

trinomial triangle) usually thought of being based on three basic elements or three different 

paths to follow. 

 

3.   Physical Background 
 

In physics we very often describe phenomena using two opposite elements. There are positive 

and there are negative electric charges, there are magnetic north and there are magnetic south 

poles, there is attraction and there is repulsion. There is no third form of electric charge, there 

is no third form of a magnetic pole, and there is no third form of force which is the opposite 

of attraction and at the same time the opposite of repulsion, too. 
 

It therefore makes surely sense to describe physical laws by using two opposite basic mathe-

matical elements in these cases. If we assume that some physical laws are represented by not 

too complicated functions f = f(k1 a + k2 b) of linear combinations of these two basic elements 

a and b, the coefficients of Taylor expansions of these functions can be represented in Pascal-

like triangles. These triangles are thus situated in the binomial plane. 

 

But sometimes this strategy of choosing only two basic elements fails in physics. Obviously 

baryons like neutrons and protons can be described in a mathematically appropriate way only, 

if  we  use  three  distinct  and  somehow  opposing  basic  elements.  There  are  three  quarks,  two 
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 –8   1                                                1  –8 
 

 21  –7   1                                          1  –7  21 
 

–14  15  –6   1                                    1  –6  15 –14 
 

–20  –5  10  –5   1                              1  –5  10  –5 –20 
 

 24 –15   0   6  –4   1                        1  –4   6   0 –15  24 
 

  3   9  –9   2   3  –3   1                  1  –3   3   2  –9   9   3 
 

 –6   3   2  –4   2   1  –2   1            1  –2   1   2  –4   2   3  –6 
 

  0  –1   1   0  –1   1   0  –1   1      1  –1   0   1  –1   0   1  –1   0 
 

  1 
 

  1   1   1 
 

  1   2   3   2   1 
 

  1   3   6   7   6   3   1 
 

  1   4  10  16  19  16  10   4   1 
 

  1   5  15  30  45  51  45  30  15   5   1 
 

  1   6  21  50  90 126 141 126  90  50  21   6   1 
 

  1   7  28  77 161 266 357 393 357 266 161  77  28   7   1 
 

  1   8  36 112 266 504 784 1016 1107 1016 784 504 266 112  36   8   1 
 

 

Fig. 1: The trinomial plane with the three trinomial triangles.
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are not enough. This then automatically results in multinomial coefficients of grade three 

when raising linear combinations of three basic elements a, b, and c to higher powers. They 

can then be arranged as binominal Pascal pyramids. 

 

But Euler decided to choose the three basic elements x
0
, x

1
, and x

2
 [10] instead. There might 

be a common mathematical core x in everything, resulting in Taylor expansion coefficients 

which can be arranged in the trinomial plane as trinomial triangles (see figure 1). 

 

In Chapter two the core philosophical question was outlined: How can we make three out of 

two? In physics it might be helpful to think about the opposite direction: There are three 

quarks. Might it be perhaps possible to find two entities which fully and completely represent 

these three quarks? In this case the question is: How can we make two out of three? Indeed 

geometric algebra of quark might be helpful to answer this question. 

 

4.  Geometric Algebra of Quarks 
 

Geometric algebra of quarks is the algebra of S3 permutation matrices, which were identified 

with geometrical objects in the following way. 

 

unit scalar:  e0 = 

1 0 0

0 1 0

0 0 1

 
 
 
 
 

 = 1           (1) 

 

unit vectors:  e1 = 

1 0 0

0 0 1

0 1 0

 
 
 
 
 

,     e2 = 

0 0 1

0 1 0

1 0 0

 
 
 
 
 

,     e3 = 

0 1 0

1 0 0

0 0 1

 
 
 
 
 

      (2) 

 

unit parallelograms: e12 = 

0 0 1

1 0 0

0 1 0

 
 
 
 
 

 ,     e21 = 

0 1 0

0 0 1

1 0 0

 
 
 
 
 

        (3) 

 

The products of the unit vectors then are: 

 

e1
2
 = e2

2
 = e3

2
 = e0             (4) 

 

 e1e2 = e2e3 = e3e1 = e12 ,     e2e1 = e3e2 = e1e3 = e21         (5) 

 

It can be shown that every multiple of the nihilation or nihilistic matrix
1
 (or null matrix) N  

 

 N = 

1 1 1

1 1 1

1 1 1

 
 
 
 
 

 = e1 + e2 + e3 = e0 + e12 + e21          (6) 

 

                                                           
1
 If you don’t like this name, take it as a joke. But it surely makes sense to avoid names like “democratic matrix” 

   or “unit matrix” which can be found for N in the literature. These names totally conceal the geometric meaning 

   of the nihilation matrix N. Multiplying a (3 x 3) matrix with N has the same effect as multiplying with O [6]. 
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can be identified geometrically and algebraically with the zero matrix  

 

 O = 

0 0 0

0 0 0

0 0 0

 
 
 
 
 

             (7) 

 

and therefore for every k there is 

 

 k N = O              (8) 

 

It follows that we do not need negative signs in geometric algebra of quarks, because the      

(3 x 3) matrix Ԧ 

 

 Ԧ = e12 + e21 = 

0 1 1

1 0 1

1 1 0

 
 
 
 
 

            (9) 

 

does all that what is usually done by the minus sign “ – “. Thus in geometric algebra of quarks 
we live in a totally positive mathematical world. This two-dimensional world can be extended 

into a three-dimensional world when the pseudoscalar is interpreted as 

 

unit volume:  I = 

i 0 0

0 i 0

0 0 i

 
 
 
 
 

     with     I
2
 = 

0 1 1

1 0 1

1 1 0

 
 
 
 
 

 = Ԧ e0 = Ԧ    (10) 

 

More about geometric algebra of quarks can be found in [6], [7] and [11]. 

 

5.   Quarkonian Binomial Coefficients (first try) 
 

To get the three standard Pascal triangles, the Taylor expansion (Mac Laurin form) of 

 

(1 a + 1 b)
n
 = (e0 a + e0 b)

n
          (11) 

 

is constructed. The coefficients can then be arranged as the three well-known Pascal triangles 

(see [1] ). To get the three Pauli Pascal triangles, the coefficients of the Taylor expansion of 

 

(x a + y b)
n
 =      1 3 4 1 2 4

n
1 1

2e 8e 3e a 8e 2e 3e b
3 2

      
 

    (12) 

 

are arranged in the usual way (see [2] and please feel free to consider these Pauli matrices as 

(3 x 3) matrices [7]  ). But now we start with a different binom which is not a vector of Pauli 

algebra or of standard geometric algebra, but a vector of geometric algebra of quarks or S3 

permuation algebra: 

 

(e1 a + e2 b)
n
            (13) 

 

This results in the following expressions for  n  0: 
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(e1 a + e2 b)
0
 = 1           (14) 

 

(e1 a + e2 b)
1
 = e1 a + e2 b          (15) 

 

(e1 a + e2 b)
2
 = e1

2
 a

2
 + (e12 + e21) ab + e2

2
 b

2
 

                      = 1 a
2
 + Ԧ1 ab + 1 b

2
         (16) 

 

(e1 a + e2 b)
3
 = e1 a

3
 + (Ԧe1 + e2) a

2
b + (e1 + Ԧe2) ab

2
 + e2 b

3
     (17) 

 

(e1 a + e2 b)
4
 = e1

2
 a

4
 + (e12 + Ԧe1

2
 + e21 ) a

3
b 

                                   + (Ԧe12 + e2
2
 + e1

2
 + Ԧe21) a

2
b

2
 + (e21 + Ԧe2

2
 + e12 ) ab

3
 + e2

2
 b

4
 

                      = 1 a
4
 + Ԧ2 a

3
b + 3 ·  1 a

2
b

2
 + Ԧ2 ab

3
 + 1 b

4
      (18) 

 

(e1 a + e2 b)
5
 = e1 a

5
 + (Ԧ2e1 + e2) a

4
b + (3e1 + Ԧ2e2) a

3
b

2
 

                                 + (Ԧ2e1 + 3e2) a
2
b

3
  + (e1 + Ԧ2e2) ab

4
 + e2 b

5
     (19) 

 

(e1 a + e2 b)
6
 = 1 a

6
 + Ԧ3 a5

b + 6 ·  1 a
4
b

2
 + Ԧ7 a3

b
3
 + 6 ·  1 a

2
b

4
 + Ԧ3 ab5

 + 1 b
6
   (20) 

 

     etc... 

 

The coefficients can be arranged as positive (lower) triangle in a Pascal-like way (see figure 

2). But there exist three Pascal-like triangles. The second can be found by arranging the co-

efficients for  n < 0  and  | a | > | b |. These coefficients can be found in the same way the 

coefficients of the negative Pauli triangles are found (see eq. (7a) & (7b) in [2, p. 10] ): 
 

(e1 a + e2 b)
–

 
1
 = 1 2

2
1 1

e a e b

(e a e b)




 = 1 2

2 2 2 2
1 12 21 2

e a e b

a e ab(e e ) b e


  

 = 1 2

2 2
0 0 0

e a e b

a e abe b e


 

 

                       = 1 2

2 2

e a e b

a ab b


 

= 

1
2

1 2

2 2

e a e b b b

aa a




 
  

 
1 1       (21) 

                       = (e1 a
–

 
1
 + e2 a

–
 
2
b) (1 + Ԧ a–

 
1
b + 1 a

–
 
2
b

2
)
–

 
1
 

 

a, b  Թ are scalars, and the last bracket on the right hand side of eq. (21) can be expanded 

using the Taylor expansion 

 

(1 + x)
–

 
1
 = 1 – x + x

2
 – x

3
 + x

4
 – … + …        (22) 

 

with 
 

 x = – a
–

 
1
b + a

–
 
2
b

2
 

 x
2
 = a

–
 
2
b

2
 – 2 a

–
 
3
b

3
 + a

–
 
4
b

4
 

 x
3
 = – a

–
 
3
b

3
 + 3 a

–
 
4
b

4
 – 3 a

–
 
5
b

5
 + a

–
 
6
b

6
        (23) 

 x
4
 = a

–
 
4
b

4
 – 4 a

–
 
5
b

5
 + 6 a

–
 
6
b

6
 – 4 a

–
 
7
b

7
 + a

–
 
8
b

8
 

      etc... 
 

resulting in 

 

 (1 – a
–

 
1
b + a

–
 
2
b

2
)
–

 
1
           (24) 

       = 1 + a
–

 
1
b + 0 – a

–
 
3
b

3
 – a

–
 
4
b

4
 + 0 + a

–
 
6
b

6
 + a

–
 
7
b

7
 + 0 – … – … + 0 + … + … + 0 – … 

 

which can be translated into a (3 x 3) matrix equation: 

 

(1 + Ԧ a
–

 
1
b + 1 a

–
 
2
b

2
)
–

 
1
          (25) 

       = 1 + 1 a
–

 
1
b + O + Ԧ a–

 
3
b

3
 + Ԧ a–

 
4
b

4
 + O + 1 a

–
 
6
b

6
 + 1 a

–
 
7
b

7
 + O + Ԧ … + Ԧ … + O + … 
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Thus we get the matrix equation 

 

(e1 a + e2 b)
–

 
1
 = (e1 a

–
 
1
 + e2 a

–
 
2
b) (1 + 1 a

–
 
1b + 0 + Ԧ a–

 
3
b

3
 + Ԧ a–

 
4
b

4
 + 0 + … + … + 0 + …) 

 

                 = e1 a
–

 
1
 + e1 a

–
 
2
b + O a

–
 
3
b

2
 + Ԧ e1 a

–
 
4
b

3
 + Ԧ e1 a

–
 
5
b

4
 + O a

–
 
6
b

5
 + e1 a

–
 
7
b

6
 + … 

                              + e2 a
–

 
2
b + e2 a

–
 
3
b

2
 + O a

–
 
4
b

3
 + Ԧ e2 a

–
 
5
b

4
 + Ԧ e2 a

–
 
6
b

5
 + O a

–
 
7
b

6
 + … 

 

                 = e1 a
–

 
1
 + (e1 + e2) a

–
 
2
b + e2 a

–
 
3
b

2 

                              + Ԧ e1 a
–

 
4
b

3
 + Ԧ (e1 + e2) a

–
 
5
b

4
 + Ԧ e2 a

–
 
6
b

5
     (26) 

                              +     e1 …     +     (e1 + e2) …     +     e2 … 

                              + Ԧ e1 …     + Ԧ (e1 + e2) …     + Ԧ e2 … + … 

 

We can check this result by multiplying this equation (26) with equation (15): 

 

(e1 a + e2 b)
1

 (e1 a + e2 b)
–

 
1
 = (e1 a + e2 b)

0
 = 1       (27) 

 

In a similar way the following results can be checked too: 
 

(e1 a + e2 b)
–

 
2
 = 1 a

–
 
2
 + 1 a

–
 
3
b + O a

–
 
4
b

2
 + Ԧ1 a

–
 
5
b

3
 + Ԧ1 a

–
 
6
b

4
 + …    (28) 

 

(e1 a + e2 b)
–

 
3
 = e1 a

–
 
3
 + (2e1+e2) a

–
 
4
b + (e1+2e2) a

–
 
5
b

2
 + (Ԧ2e1+e2) a

–
 
6
b

3
 + …   (29) 

 

(e1 a + e2 b)
–

 
4
 = 1 a

–
 
4
 + 2 ·  1 a

–
 
5
b + 1 a

–
 
6
b

2
 + Ԧ2 a–

 
7
b

3
 + Ԧ4 a–

 
8
b

4
 + …    (30) 

 

(e1 a + e2 b)
–

 
5
 = e1 a

–
 
5
 + (3e1+e2) a

–
 
6
b + (3e1+3e2) a

–
 
7
b

2
 + (Ԧ2e1+3e2) a

–
 
8
b

3
 + …   (31) 

 

(e1 a + e2 b)
–

 
6
 = 1 a

–
 
6
 + 3 ·  1 a

–
 
7
b + 3 ·  1 a

–
 
8
b

2
 + Ԧ2 a–

 
9
b

3
 + Ԧ9 a–

 
10

b
4
 + …   (32) 

 

   etc… 

 

The coefficients of expansions (26) and (28) to (32) form the first negative triangle on the 

upper right side of figure 2. The second negative triangle on the upper left side is constructed 

with the coefficients for  n < 0  and  | a | < | b |: 

 

(e1 a + e2 b)
–

 
1
 = e2 a

0
b

–
 
1
 + (e1+e2) ab

–
 
2
 + e1 a

2
b

–
 
3
 + Ԧe2 a

3
b

–
 
4
 + Ԧ(e1+e2) a

4
b

–
 
5

 + …(33) 
 

(e1 a + e2 b)
–

 
2
 = 1 a

0
b

–
 
2
 + 1 ab

–
 
3
 + O a

2
b

–
 
4
 + Ԧ1 a

3
b

–
 
5
 + Ԧ1 a

4
b

–
 
6
 + …     (34) 

 

(e1 a + e2 b)
–

 
3
 = e2 a

0
b

–
 
3
 + (e1+2e2) ab

–
 
4
 + (2e1+e2) a

2
b

–
 
5
 + (e1+Ԧ2e2) a

3
b

–
 
6
 + …    (35) 

 

(e1 a + e2 b)
–

 
4
 = 1 a

0
b

–
 
4
 + 2 ·  1 ab

–
 
5
 + 1 a

2
b

–
 
6
 + Ԧ2 a3

b
–

 
7
 + Ԧ4 a4

b
–

 
8
 + …     (36) 

 

(e1 a + e2 b)
–

 
5
 = e2 a

0
b

–
 
5
 + (e1+3e2) ab

–
 
6
 + (3e1+3e2) a

2
b

–
 
7
 + (3e1+ Ԧ2e2) a

3
a

–
 
8
 + …(37) 

 

(e1 a + e2 b)
–

 
6
 = 1 a

0
b

–
 
6
 + 3 ·  1 ab

–
 
7
 + 3 ·  1 a

2
b

–
 
8
 + Ԧ2 a3

b
–

 
9
 + Ԧ9 a4

b
–

 
10

 + …    (38) 
 

   etc… 

 

Comparing the trinomial triangle (figure 1) with the wrong trinomial triangle (figure 2), we 

observe, that the integers of every second diagonal line are identical, while the integers of the 

other diagonal lines have reversed signs. 

 

This can be repaired after having analysed and understood the construction rule for quarko-

nian Pascal triangles. 

 

6.   The Construction Rule for Quarkonian Pascal Triangles 
 

An analysis of these results clearly show that the construction of quarkonian binomial co-

efficients (abbreviated by QBC in figure 3) follows a recursive pattern. To find a quarkonian 

binomial coefficient (QBC) in row (n + 1), three steps have to be made. 
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 1                                                                                                                                                                                                         1 
 

  e1+5e2            e2                                                                                                                                                                                     e1              5e1+e2 

 

4                   1                                                                                                                                                                1                  4 
 

4e1+6e2          e1+4e2            e2                                                                                                                                            e1            4e1+e2           6e1+4e2 

 

  3                   3                  1                                                                                                                        1                  3                  3 
 

3e1–2e2        3e1+3e2          e1+3e2            e2                                                                                                   e1             3e1+e2        3e1+3e2         –2e1+3e2 

 

–2                   1                   2                  1                                                                              1                  2                   1                 –2 
 

–2e1–4e2       e1–2e2           2e1+e2          e1+2e2            e2                                                         e1              2e1+e2          e1+2e2         –2e1+e2        –4e1–2e2 
 

–1                 –1                   0                  1                  1                                       1                 1                  0                 –1                –1 
 

    –e1            –e1–e2             –e2                 e1               e1+e2             e2                  e1             e1+e2               e2                –e1             –e1–e2             –e2 
 

   1 
 

   e1                 e2 
 

   1                –1                  1 
 

e1             –e1+e2            e1–e2             e2 
 

   1                –2                  3                –2                  1 
 

e1            –2e1+e2        3e1–2e2         –2e1+3e2        e1–2e2            e2 
 

   1                –3                  6                –7                  6                –3                  1 
 

   e1           –3e1+e2         6e1–3e2       –7e1+6e2        6e1–7e2      –3e1+6e2         e1–3e2            e2 
 

   1                –4                10               –16                19               –16                10                –4                  1 
 

e1            –4e1+e2       10e1–4e2    –16e1+10e2    19e1–16e2    –16e1+19e2    10e1–16e2    –4e1+10e2       e1–4e2            e2 
 

   1                –5                15               –30                45               –51                45               –30                15                –5                  1 
 

    e1            –5e1+e2       15e1–5e2    –30e1+15e2    45e1–30e2   –51e1+45e2    45e1–51e2  –30e1+45e2    15e1–30e2   –5e1+15e2       e1–5e2           e2 

 

 

Fig. 2: First binomial construction of the three trinomial triangles with wrong signs.
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These three steps are: 
 

- Multiply the left quarkonian binomial coefficient in row n just above the po- 

sition of the wanted quarkonian binomial coefficient by the unit vector e2. 
 

- Multiply the right quarkonian binomial coefficient in row n just above the po- 

sition of the wanted quarkonian binomial coefficient by the unit vector e1. 
 

- Add the two geometric products to get the wanted quarkonian binomial co- 

efficient of row n + 1. 
 

This procedure is shown in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 
 

              Fig. 3 (a): Construction rule for quarkonian binomial coefficients (QBC), 

                        (b): Example for some quarkonian binomial coefficient constructions. 

 

For example the construction of the “wrong” trinomial coefficient          = – 16  can be seen as 

quarkonian binomial coefficient construction by 

 

 (Ԧ3e1 + 6e2) e1 + (6e1 + Ԧ7e2) e2 = Ԧ3e0 + 6e21 + 6e12 + Ԧ7e0 

                                                      = Ԧ3 + 6(e21 + e12) + Ԧ7 

                                                      = Ԧ3 + Ԧ6 + Ԧ7       (39) 

                                                      =  Ԧ16  =  
0 16 16

16 0 16

16 16 0

 
 
 
 
 

 

 

This example shows that we get an additional \ominus term of Ԧ6 (which can be interpreted 

as negative integer – 6), when the number 6 in figure 3(b) moves down along two different 

paths. Each number, which reaches the final coefficient on two different routes, is multiplied 

in two different ways: on the left route by e12 and on the right route by e21, resulting in a total 

multiplication by (e12 + e21) or Ԧ. 
 

In figure 3 a multiplication by unit vectors e1 and e2 from the right is shown. Of course the 

final result does not change if instead only multiplications from the left are used. 

 

And another observation is interesting at the “wrong” trinomial triangle of figure 2: The sum 
of all coefficients of even rows equals 1, while the sum of all coefficients of odd rows equals 

(e1 + e2). At the “right” trinomial triangle of figure 1, the sums of all coefficients of a row 
equal powers of three: 1, 3, 9, 27, 81, … To find a binomial equivalent of this correct trinomi-
al triangle, this should be taken into consideration. 

 

 

    QBC                                   QBC 

  on the left                        on the right 

 

 

 

 

 

                         QBC 

                     underneath 

       multipli- 

   cation by e1 

from the right 

multiplication 

   by e2 from 

      the right 

 

    –7                       6                        –3 
 

 

 

              6e1–7e2            –3e1+6e2 

 

 

 

                             –16 

·  e1 

·  e1 ·  e1 
·  e2 

·  e2 

·  e2 

2

4

1

 
 
 
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7.   Quarkonian Binomial Coefficients (second try) 
 

To transform the “wrong” into the correct trinomial triangle, it is necessary to insert an addi-

tional \ominus matrix (or minus sign) into the binom of eq. (13). Now we are looking for the 

binomial expansions of the powers of 

 

(e1 a + Ԧ e2 b)
n
 = (e1 a + (e12 + e21) e2 b)

n
 = (e1 a + (e1 + e3) b)

n
     (40) 

 

Doing this we change the angle between the two vector parts of our binom. This angle no 

longer is 0° like in eq. (11) or 90° like in eq. (12) or 120° like in eq. (13). The angle between  

e1 a  and Ԧ e2 b = (e1 + e3) b  now equals 60°. 

 

The expansions for  n  0 are: 
 

(e1 a + Ԧe2 b)
0
 = 1           (41) 

 

(e1 a + Ԧe2 b)
1
 = e1 a + Ԧe2 b          (42) 

 

(e1 a + Ԧe2 b)
2
 = e1

2
 a

2
 + Ԧ(e12 + e21) ab + (Ԧe2)

2
 b

2
 

                      = 1 a
2
 + 1 ab + 1 b

2
         (43) 

 

(e1 a + Ԧe2 b)
3
 = e1 a

3
 + (e1 + Ԧe2) a

2
b + (e1 + Ԧe2) ab

2
 + Ԧe2 b

3
     (44) 

 

(e1 a + Ԧe2 b)
4
 = e1

2
 a

4
 + (Ԧe12 + e1

2
 + Ԧe21 ) a

3
b 

                                   + (Ԧe12 + e2
2
 + e1

2
 + Ԧe21) a

2
b

2
 + (Ԧe21 + e2

2
 + Ԧe12 ) ab

3
 + e2

2
 b

4
 

                      = 1 a
4
 + 2 ·  1 a

3
b + 3 ·  1 a

2
b

2
 + 2 ·  1 ab

3
 + 1 b

4
      (45) 

 

(e1 a + Ԧe2 b)
5
 = e1 a

5
 + (2e1 + Ԧe2) a

4
b + (3e1 + Ԧ2e2) a

3
b

2
 

                                 + (2e1 + Ԧ3e2) a
2
b

3
  + (e1 + Ԧ2e2) ab

4
 + Ԧe2 b

5
    (46) 

 

(e1 a + e2 b)
6
 = 1 a

6
 + 3 ·  1 a

5
b + 6 ·  1 a

4
b

2
 + 7 ·  1 a

3
b

3
 + 6 ·  1 a

2
b

4
 + 3 ·  1 ab

5
 + 1 b

6

   (47) 
 

     etc... 

 

The coefficients can again be arranged as positive (lower) triangle in a Pascal-like way (see 

figure 4). And again the second Pascal-like triangle can be found by arranging the coefficients 

for  n < 0  and  | a | > | b | using the following expansion: 
 

(e1 a + Ԧe2 b)
–

 
1
 = 1 2

2
1 1

e a e b

(e a e b)








 = 1 2

2 2 2 2
1 12 21 2

e a e b

a e ab(e e ) ( b) e



 


  

 

                          = 1 2

2 2
0 0 0

e a e b

a e abe b e


 

 = 1 2

2 2

e a e b

a ab b


 

 = 

1
2

1 2

2 2

e a e b b b

aa a


  

  
 
1 1 1  

                       = (e1 a
–

 
1
 + Ԧe2 a

–
 
2
b) (1 + a

–
 
1
b + 1 a

–
 
2
b

2
)
–

 
1
      (48) 

 

a, b  Թ are scalars, and the last bracket on the right hand side of eq. (48) can be expanded 

again with the help of the Taylor expansion (22), but this time with 

 

 x = a
–

 
1
b + a

–
 
2
b

2
           (49) 

 

This results in 

 

 (1 + a
–

 
1
b + a

–
 
2
b

2
)
–

 
1
           (50) 

       = 1 – a
–

 
1
b + 0 + a

–
 
3
b

3
 – a

–
 
4
b

4
 + 0 + a

–
 
6
b

6
 – a

–
 
7
b

7
 + 0 + … – … + 0 + … 
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which again can be translated into a (3 x 3) matrix equation: 

 

(1 + 1 a
–

 
1
b + 1 a

–
 
2
b

2
)
–

 
1
          (51) 

       = 1 + Ԧ a–
 
1
b + O + 1 a

–
 
3
b

3
 + Ԧ a–

 
4
b

4
 + O + 1 a

–
 
6
b

6
 + Ԧ a–

 
7
b

7
 + O + … + Ԧ … + O + … 

 

Thus we get the matrix equations 

 

(e1 a + Ԧe2 b)
–

 
1
 = (e1 a

–
 
1
 + Ԧe2 a

–
 
2
b) (1 + Ԧ a–

 
1
b + O + 1 a

–
 
3
b

3
 + Ԧ a–

 
4
b

4
 + O + … – … ) 

 

                   = e1 a
–

 
1
 + Ԧ e1 a

–
 
2
b + O a

–
 
3
b

2
 + e1 a

–
 
4
b

3
 + Ԧ e1 a

–
 
5
b

4
 + O a

–
 
6
b

5
 + e1 a

–
 
7
b

6
 + Ԧ … 

                                + Ԧ e2 a
–

 
2
b + e2 a

–
 
3
b

2
 + O a

–
 
4
b

3
 + Ԧ e2 a

–
 
5
b

4
 + e2 a

–
 
6
b

5
 + O a

–
 
7
b

6
 + Ԧ … 

 

                   = e1 a
–

 
1
 + Ԧ(e1 + e2) a

–
 
2
b + e2 a

–
 
3
b

2
 

                                + e1 a
–

 
4
b

3
 + Ԧ(e1 + e2) a

–
 
5
b

4
 + e2 a

–
 
6
b

5
      (52)

 

                                + e1 …     + Ԧ(e1 + e2) …     + e2 … 

 

(e1 a + Ԧe2 b)
–

 
2
 = 1 a

–
 
2
 + Ԧ1 a

–
 
3
b + O a

–
 
4
b

2
 + 1 a

–
 
5
b

3
 + Ԧ1 a

–
 
6
b

4
 + …     (53) 

 

(e1 a + Ԧe2 b)
–

 
3
 = e1 a

–
 
3
 + (Ԧ2e1+Ԧe2) a

–
 
4
b + (e1+2e2) a

–
 
5
b

2
 + (2e1+Ԧe2) a

–
 
6
b

3
 + … (54) 

 

(e1 a + Ԧe2 b)
–

 
4
 = 1 a

–
 
4
 + Ԧ2 a–

 
5
b + 1 a

–
 
6
b

2
 + 2 ·  1 a

–
 
7
b

3
 + Ԧ4 a–

 
8
b

4
 + …     (55) 

 

(e1 a + Ԧe2 b)
–

 
5
 = e1 a

–
 
5

 + (Ԧ3e1+Ԧe2) a
–

 
6
b + (3e1+3e2) a

–
 
7
b

2
 + (2e1+Ԧ3e2) a

–
 
8
b

3
 + …(56) 

 

(e1 a + Ԧe2 b)
–

 
6
 = 1 a

–
 
6
 + Ԧ3 a–

 
7
b + 3 ·  1 a

–
 
8
b

2
 + 2 ·  1 a

–
 
9
b

3
 + Ԧ9 a–

 
10

b
4
 + …    (57) 

 

   etc… 

 

The coefficients of equations (52) to (57) form the first negative triangle on the upper right 

side of figure 2. The second negative triangle on the upper left side is constructed with the 

coefficients for  n < 0  and  | a | < | b |: 

 

(e1 a + Ԧe2 b)
–

 
1
 = Ԧe2 a

0
b

–
 
1
 + (e1+e2) ab

–
 
2
 + Ԧe1 a

2
b

–
 
3
 + Ԧe2 a

3
b

–
 
4
 + (e1+e2) a

4
b

–
 
5
 + … (58) 

 

(e1 a + Ԧe2 b)
–

 
2
 = 1 a

0
b

–
 
2
 + Ԧ1 ab

–
 
3
 + O a

2
b

–
 
4
 + 1 a

3
b

–
 
5
 + Ԧ1 a

4
b

–
 
6
 + …          (59) 

 

(e1 a + Ԧe2 b)
–

 
3
 = Ԧe2 a

0
b

–
 
3
 + (e1+2e2) ab

–
 
4
 + (Ԧ2e1+Ԧe2) a

2
b

–
 
5
 + (e1+Ԧ2e2) a

3
b

–
 
6

 + … (60) 
 

(e1 a + Ԧe2 b)
–

 
4
 = 1 a

0
b

–
 
4
 + Ԧ2 ab–

 
5
 + 1 a

2
b

–
 
6
 + 2 ·  1 a

3
b

–
 
7
 + Ԧ4 a4

b
–

 
8
 + …         (61) 

 

(e1 a + Ԧe2 b)
–

 
5
 = Ԧe2 a

0
b

–
 
5

 + (e1+3e2) ab
–

 
6

 + (Ԧ3e1+Ԧ3e2) a
2
b

–
 
7

 + (3e1+Ԧ2e2) a
3
a

–
 
8

 +...(62) 
 

(e1 a + Ԧe2 b)
–

 
6
 = 1 a

0
b

–
 
6
 + Ԧ3 ab–

 
7
 + 3 ·  1 a

2
b

–
 
8
 + 2 ·  1 a

3
b

–
 
9
 + Ԧ9 a4

b
–

 
10

 + …         (63) 
 

   etc… 

 

What is the meaning of these binomial and trinomial numbers? One explanation is a probabi-

listic explanation: If we have to decide which one of two possible choices to follow, we can 

throw a coin. 

 

But if we have to decide which one of three possible choices to follow, there are two possible 

strategies to make a probabilistic decision: We could throw a three-sided coin. Or we can 

throw a quarkonian coin two times. Both strategies will work, and perhaps nature works with 

quarkonian coins. 

 

As we presently have problems in measuring quarkonian probabilities after one, five or seven 

throws of quarkonian coins, we do not know whether nature actually uses quarkonian coins. 

But one day we will know, as there are some measurable probabilities of 1/3 after three coin 

throws (see red probabilities in figure 5). Let’s look for them. 
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               1                                                                                                                                                                                                         1 
 

  e1–5e2            e2                                                                                                                                                                                     e1           –5e1–e2 

 

              –4                   1                                                                                                                                                               1                 –4 
 

–4e1+6e2        e1–4e2            e2                                                                                                                                            e1           –4e1–e2         6e1+4e2 

 

               3                  –3                  1                                                                                                                     1                  –3                  3 
 

3e1–2e2       –3e1–3e2         e1+3e2          –e2                                                                                                   e1           –3e1–e2         3e1+3e2        2e1–3e2 

 

               2                   1                 –2                  1                                                                             1                 –2                   1                  2 
 

2e1+4e2         e1–2e2         –2e1–e2          e1+2e2          –e2                                                           e1            –2e1–e2          e1+2e2          2e1–e2        –4e1–2e2 
 

             –1                   1                   0                –1                  1                                      1                –1                  0                   1                –1 
 

     –e1            e1+e2              –e2               –e1             e1+e2            –e2                   e1            –e1–e2               e2                 e1             –e1–e2              e2 
 

                                                                                                                     1 
 

                                                                                                           e1                –e2 
 

                                                                                                 1                  1                  1 
 

                                                                                        e1              e1–e2            e1–e2            –e2 
 

                                                                             1                  2                  3                  2                  1 
 

                                                                  e1             2e1–e2         3e1–2e2          2e1–3e2        e1–2e2          –e2 
 

                                                         1                  3                  6                  7                  6                  3                  1 
 

                                              e1             3e1–e2        6e1–3e2        7e1–6e2        6e1–7e2       3e1–6e2          e1–3e2           –e2 
 

                                     1                  4                10                 16                19                16                10                 4                  1 
 

                           e1            4e1–e2        10e1–4e2      16e1–10e2    19e1–16e2    16e1–19e2    10e1–16e2      4e1–10e2       e1–4e2          –e2 
 

                  1                  5                15                30                45                51                45                30                15                 5                  1 
 

      e1             5e1–e2       15e1–5e2      30e1–15e2    45e1–30e2    51e1–45e2    45e1–51e2    30e1–45e2    15e1–30e2     5e1–15e2       e1–5e2         –e2 

 

 

Fig. 4: Second try of a binomial construction of the three trinomial triangles with correct signs. 
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e0 (e1 + Ԧe2)
0 

= 100 % 

 
e1 (e1 + Ԧe2)

–
 
1
         Ԧe2 (e1 + Ԧe2)

–
 
1 

= 
1

3
e0 + Ԧ 1

3
e12         = 

1

3
e0 + Ԧ 1

3
e21 

 
e0 (e1 + Ԧe2)

–
 
2
              e0 (e1 + Ԧe2)

–
 
2
             e0 (e1 + Ԧe2)

–
 
2 

   = 
1

3
  33.33 %           = 

1

3
  33.33 %           = 

1

3
  33.33 % 

 
e1 (e1 + Ԧe2)

–
 
3
          (e1 + Ԧe2)(e1 + Ԧe2)

–
 
3
       (e1 + Ԧe2)(e1 + Ԧe2)

–
 
3
       Ԧe2 (e1 + Ԧe2)

–
 
3
 

= 
1

9
e0 + Ԧ 1

9
e12            = 

1

3
  33.33 %              = 

1

3
  33.33 %             = 

1

9
e0 + Ԧ 1

9
e21 

 
e0 (e1 + Ԧe2)

–
 
4
            2e0 (e1 + Ԧe2)

–
 
4
              3e0 (e1 + Ԧe2)

–
 
4
              2e0 (e1 + Ԧe2)

–
 
4
            e0 (e1 + Ԧe2)

–
 
4
 

 = 
1

9
  11.11 %          = 

2

9
  22.22 %             = 

1

3
  33.33 %             = 

2

9
  22.22 %           = 

1

9
  11.11 % 

 
e1(e1+Ԧe2)

–5
    (2e1+Ԧe2)(e1+Ԧe2)

–5
    (3e1+Ԧ2e2)(e1+Ԧe2)

–5
     (2e1+Ԧ3e2)(e1+Ԧe2)

–5
    (e1+Ԧ2e2)(e1+Ԧe2)

–5
     Ԧe2(e1+Ԧe2)

–5 

=
1

27
e0+Ԧ 1

27
e12    =

4

27
e0+Ԧ 1

27
e12           =

7

27
e0+Ԧ 1

27
e12             =

7

27
e0+Ԧ 1

27
e21            =

4

27
e0+Ԧ 1

27
e21       =

1

27
e0+Ԧ 1

27
e21 

 
e0(e1+Ԧe2)

–6
              3e0(e1+Ԧe2)

–6
              6e0(e1+Ԧe2)

–6
              7e0(e1+Ԧe2)

–6
              6e0(e1+Ԧe2)

–6
              3e0(e1+Ԧe2)

–6
              e0(e1+Ԧe2)

–6
 

= 
1

27
  3.70 %         = 

1

9
  11.11 %           = 

2

9
  22.22 %           = 

7

27
  25.93 %          = 

2

9
  22.22 %           = 

1

9
  11.11 %          = 

1

27
  3.70 % 

 
 

Fig. 5: Probabilities when throwing a fair quarkonian coin several times. 
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No throw: 

 

 
 

First throw: 

 

 

 
 

Second throw: 

 

 

 
 

Third throw: 

 

 

 
 

Fourth throw: 

 



 

8.   Outlook 
 

In theoretical physics we can never be sure whether the reality we find outside us is some-

thing which comes directly from nature or whether it is something we have invented when 

inventing mathematics. There might be some conceptual consequences of Taylor expanding 

formulae in physics. We all live in Pascal space because human theoretical physicists use the 

Taylor expansion. 

 

The same thing might apply to quarkonian Taylor expansions. We will start living in a quar-

konian Pascal space when human theoretical physicists start Taylor expanding expressions of 

geometric algebra of quarks. 

 

And we can use this quarkonian Taylor expansion in more situations. The next natural step 

will be to construct a trinomial pyramid. Instead of expanding the binom of eq. (40) we then 

have to expand the trinom 
 

(e1 a + (e1 + e3) b + 
1

3
(2 e1 + e3 + 6 e4) c)

n
        (64) 

 

But this is another story. 
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10.   Attachment: Quarkonian Fibonacci Numbers 
 

Fibonacci numbers are found by adding all the numbers of shallow diagonals of a Pascal 

triangle. The shallow diagonals of the quarkonian Pascal triangle and their corresponding 

quarkonian Fibonacci numbers are indicated in figure 6 by different colours. The quarkonian 

Fibonacci numbers thus are: 

 

 F–9 =  Ԧ2 + 2e1 + Ԧe2   F1  =  O + e1 

 F–8 =  O + Ԧ2e1 + Ԧ2e2   F2  =  1 + Ԧe2 

 F–7 =  1 + 2e2     F3  =  1 + e1 

 F–6 =  O + e1     F4  =  2 ·  1 + e1 + Ԧe2 

 F–5 =  Ԧ1 + Ԧe2    F5  =  2 ·  1 + 2e1 + Ԧe2 

 F–4 =  1 + Ԧe1     F6  =  4 ·  1 + 2e1 + Ԧ2e2     (65) 

 F–3 =  O + e1 + e2    F7  =  5 ·  1 + 4e1 + Ԧ2e2 

 F–2 =  O + Ԧe2    F8  =  8 ·  1 + 5e1 + Ԧ4e2 

 F–1 =  O     F9  = 11 ·  1 + 8e1 + Ԧ5e2 

 F0  =  1     F10 = 17 ·  1 + 11e1 + Ԧ8e2 

 

Of course these quarkonian Fibonacci numbers are (3 x 3) matrices. Geometrically they are 

linear combinations of the unit scalar 1 and the unit vectors e1 and e2. 

 

While ordinary Fibonacci numbers satisfy the recurrence relations 

 

Fn  =  Fn – 1 + Fn – 2  (for increasing n)       (66) 
 

Fn  =  – Fn + 1 + Fn + 2  (for decreasing n)       (67) 

 

quarkonian Fibonacci numbers satisfy the following recurrence relations: 

 

Fn  =  e1 Fn – 1 + Ԧe2 Fn – 2 (for increasing n)       (68) 
 

Fn  =  e21 Fn + 1 + Ԧe2 Fn + 2 (for decreasing n)       (69) 

 

or  

 

Fn  =  Fn – 1 e1 + Fn – 2 Ԧe2 (for increasing n)       (70) 
 

Fn  =  Fn + 1 e12 + Fn + 2 Ԧe2 (for decreasing n)       (71) 

 

For example, F–10 should be: 

 

F–10  =  e21 (Ԧ2 + 2e1 + Ԧe2) + Ԧe2 (Ԧ2e1 + Ԧ2e2) 

         = Ԧ2e21 + 2e2 + Ԧe3 + 2e21 + 2 ·  1        (72) 

         = 2 ·  1 + e1 + 3e2 

 

Unfortunately a Binet-like formula is still missing. 
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               1 
 

  e1–5e2            e2 

 

              –4                   1 
 

–4e1+6e2        e1–4e2            e2 

 

               3                  –3                  1  
 

3e1–2e2       –3e1–3e2         e1+3e2          –e2 

 

               2                   1                 –2                  1 
 

2e1+4e2         e1–2e2         –2e1–e2          e1+2e2          –e2 
 

             –1                   1                   0                –1                  1 
 

     –e1            e1+e2              –e2               –e1             e1+e2            –e2 
 

                                                                                                 0                  1 
 

                                                                                                           e1                –e2 
 

                                                                                                 1                  1                  1 
 

                                                                                        e1              e1–e2            e1–e2            –e2 
 

                                                                             1                  2                  3                  2                  1 
 

                                                                  e1             2e1–e2         3e1–2e2          2e1–3e2        e1–2e2          –e2 
 

                                                         1                  3                  6                  7                  6                  3                  1 
 

                                              e1             3e1–e2        6e1–3e2        7e1–6e2        6e1–7e2       3e1–6e2          e1–3e2           –e2 
 

                                     1                  4                10                 16                19                16                10                 4                  1 
 

                           e1            4e1–e2        10e1–4e2      16e1–10e2    19e1–16e2    16e1–19e2    10e1–16e2      4e1–10e2       e1–4e2          –e2 
 

                  1                  5                15                30                45                51                45                30                15                 5                  1 
 

      e1             5e1–e2       15e1–5e2      30e1–15e2    45e1–30e2    51e1–45e2    45e1–51e2    30e1–45e2    15e1–30e2     5e1–15e2       e1–5e2         –e2 

 

 

Fig. 6: Construction of quarkonian Fibonacci numbers. 

–2 +   2e1 –    e2 

  0 –   2e1 –  2e2 

  1            +  2e2 

  0 +     e1 

–1             –    e2 

  1 –     e1 

  0 +     e1 +    e2 

  0             –    e2 

  0 

  1 

  0 +     e1 

  1             –    e2 

  1 +     e1 

  2 +     e1 –     e2 

  2 +   2e1 –     e2 

  4 +   2e1 –   2e2 

  5 +   4e1 –   2e2 

  8 +   5e1 –   4e2 

11 +   8e1 –   5e2 

17 + 11e1 –   8e2 

24 + 17e1 – 11e2 

36 + 24e1 – 17e2 

52 + 36e1 – 24e2 
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