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Geometric Algebra of Quarks∗

Martin Erik Horn
†

Abstract

Quarks are described mathematically by (3 x 3) matrices. To include these quarkonian math-
ematical structures into Geometric algebra it is helpful to restate Geometric algebra in the
mathematical language of (3 x 3) matrices. It will be shown in this paper how (3 x 3) per-
mutation matrices can be interpreted as unit vectors. And as S3 permutation symmetry is
flavour symmetry a unified flavour picture of Geometric algebra will emerge.

1 Warning

In this version of Geometric algebra of quarks negative numbers are avoided. There will be only
imaginary units i, positive scalars as multiples of 1, and matrices. This paper lives in a positive,
but yet complex world.

Of course it is possible to include minus signs into Geometric algebra of quarks as it is no crime
against mathematics to write equations like





0 0 i
0 i 0
i 0 0





2

=





−1 0 0
0 −1 0
0 0 −1



 = −





1 0 0
0 1 0
0 0 1



 (1)

But for ontological reasons (see [7, sec. 8]) I prefer to write this equation without a minus sign as





0 0 i
0 i 0
i 0 0





2

≃





1 1 1+i
1 1+i 1

1+i 1 1





2

=





2+2i 3+2i 3+2i
3+2i 2+2i 3+2i
3+2i 3+2i 2+2i



 ≃





0 1 1
1 0 1
1 1 0





(2)

2 Introduction

It is well known that generators of the symmetric group S3, which is isomorphic to the dihedral
group of order 6, can be represented by positive (3 x 3) matrices. In Geometric algebra it is
possible to consider these matrices as geometric objects with a clear geometric meaning.
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And it is well known that permutation symmetry S3 closely resembles flavour symmetry [10].
To prepare the scene for a unified Geometric algebra picture of quarks (which will be constructed
one day) permutation symmetry S3 will be used in the following to restate Geometric algebra in
the language of (3 x 3) matrices. As Gell-Mann matrices are (3 x 3) matrices, a unification of
Geometric algebra and Gell-Mann matrix algebra (which will be found one day) is surely made
easier to construct.

One possible way to identify (3 x 3) permutation matrices with geometric objects is presented
in [7], where special emphasis is given to the fact that a purely positive world without negative
and without complex numbers can be formulated. In the present paper a more direct relation to
matrix representations of the symmetric group S3 is drawn, now using imaginary units to describe
directions perpendicular to the S3-plane of [7]. For this reason imaginary numbers are included,
while the representation of the null matrix (or nihilation matrix) is still applied by analogy to [7].

3 Ugliness in Geometric Group Theory

Geometric group theory [12] discusses among other things matrix representations of permutations.
The six different permutations of three objects or positions or flavour families a, b, and c are
represented by the six positive (3 x 3) matrices [13, p. 356] as operators of S3. For example the
second and third positions of a column vector are exchanged in [12, p. 180] by:





1 0 0
0 0 1
0 1 0









a
b
c



 =





a
c
b



 (3)

This can be considered as geometric operation in three-dimensional space when we interprete
the numbers a, b, and c as coordinates:





1 0 0
0 0 1
0 1 0









x
y
z



 =





x
z
y



 (4)

From a Geometric algebra perspective this is a very, very ugly equation. The operator is repre-
sented by a (3 x 3) matrix while the operand is represented by a column vector or (1 x 3) matrix.
Compared with the (3 x 3) matrix, a column vector is a totally different mathematical object.
Thus we have an algebra of two different mathematical worlds: the world of (3 x 3) matrices and
the world of (1 x 3) matrices.

In Geometric algebra we have a more ambitious dream. Vianna, Trindade and Fernandes [15,
p. 962] state this dream in the following way: ”We share with many authors the idea that operators
and operands should be elements of the same space.” To fulfill this dream and to find an algebra
which shows a ”proper conformity of the parts to one another and to the whole” (as Heisenberg
[5] and Chandrasekhar [1] characterise mathematical beauty) it is tried in the following to use
only (3 x 3) matrices to describe three-dimensional objects, operations, or geometrical situations.

It is surely more beautiful to represent all parts of a mathematical system by the same math-
ematical structures. And if it is not considered as more beautiful by aesthetically desillusioned
pragmatists, it should at least be considered as more consistent, practical or convenient.

4 Interpreting (3 x 3) Matrices

The (3 x 3) matrix of eq. (4) exchanges the y- and z-coordinates of three-dimensional Euclidean
space. Therefore this (3 x 3) matrix acts like a reflection at a plane which is spanned by the x-axis
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and the diagonal line between the y- and z-axis (see figure 1(b)). In a first approach it can be
checked whether it is possible to identify this matrix with the corresponding plane in Geometric
algebra.

In the following the (3 x 3) matrix representation will be given at the left side of the double
sided arrow, while the standard Pauli matrix representation of Geometric algebra can be found at
the right side of the double sided arrow:

e1 =





1 0 0
0 0 1
0 1 0




??←→ 1√

2
(σy + σz)σx =

1√
2
(σzσx − σxσy) (5)

Please note the question marks, because a problem arises. The square of bivectors or of linear com-
binations of bivectors in three-dimensional space of Geometric algebra is negative. An evaluation
of the right side of the double sided arrow of eq, (5) consequently gives

(
2−0.5(σzσx − σxσy)

)2
=

(
−1 0
0 −1

)

= −
(

1 0
0 1

)

(6)

while the square of matrix e1 at the left side of the double sided arrow is positive:

e21 =





1 0 0
0 0 1
0 1 0





2

=





1 0 0
0 1 0
0 0 1



 6=





0 1 1
1 0 1
1 1 0



 (7)

This leads to the conclusion that we have to identify the dual of e1 (which will be called E1)
with the considered plane of eq. (5):

E1 = ie1 =





i 0 0
0 0 i
0 i 0



 ←→ 1√
2
(σy + σz)σx =

1√
2
(σzσx − σxσy) (8)

In this way we have identified a (3 x 3) matrix on the left side of the double sided arrow with
a (2 x 2) matrix on the right side of the double sided arrow. It will be shown later that this
(3 x 3) matrix E1 indeed acts in the same way on a vector r = xσx + yσy + zσz like the standard
Geometric algebra reflection matrix of eq. (8), which exchanges the y-and z-coordinates:

r′ =
1√
2
(σy + σz)σx(xσx + yσy + zσz)

1√
2
(σy + σz)σx = xσx + zσy + yσz (9)

But first we have to find the (3 x 3) matrix equivalent of vector r.
The two other (3 x 3) matrices E2 and E3 which exchange two other coordinates in each case

can be interpreted in a similar way. The (3 x 3) matrix E2 exchanges the x- and z-coordinates.
Therefore it can be identified with a plane which is spanned by the y-axis and the diagonal line
between the x- and z-axis (see figure 1(c)):

E2 = ie2 =





0 0 i
0 i 0
i 0 0



 ←→ 1√
2
(σx + σz)σy (10)

And the (3 x 3) matrix E3 can be identified with a plane which is spanned by the z-axis and
the diagonal line between the x- and y-axis (see figure 1(a)):

E3 = ie3 =





0 i 0
i 0 0
0 0 i



 ←→ 1√
2
(σx + σy)σz (11)
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Figure 1: Imaginary permutation matrices E1, E2, and E3 represent planes.

And it is clear that the red area elements of figure 1 have surface areas of
√
2 times the unit

area.
A multiplication by the imaginary unit i in matrix algebra can be considered as a multiplication

by the volume element σxσyσz in Geometric algebra. The three unit vectors e1, e2, and e3 of
Geometric algebra of quarks can thus be identified with the following standard Geometric algebra
vectors:

e2 = i3E2 =
E2

i
=





0 0 1
0 1 0
1 0 0



 ←→ − 1√
2
(σx+σz)σy σxσyσz =

1√
2
(σz−σx) (12)

e3 =
E3

i
=





0 1 0
1 0 0
0 0 1



 ←→ 1√
2
(σx − σy) (13)

e1 =
E1

i
=





1 0 0
0 0 1
0 1 0



 ←→ 1√
2
(σy − σz) (14)

In this way (3 x 3) matrices can be identified with vectors. This is an important message: S3

permutation matrices represent vectors. These three vectors are shown in figure 2.
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Figure 2: Permutation matrices e1, e2, and e3 represent vectors.
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5 Nihilation Matrix and Identity

The three permutation vectors e1, e2, and e3 are unit vectors because they square to one1. They
are furthermore coplanar as e1, e2, and e3 are located in the same plane. This has been tried to
visualise in figure 3.

But figure 3 shows another important feature: The sum of the three vectors e1 + e2 + e3 (see
left picture of figure 3) or the double sum 2e1 + 2e2 + 2e3 (see right picture of figure 3) or every
other multiple sum like 3(e1+ e2+ e3) (see middle picture of figure 3) results in a vector of length
zero. That is why we should identify the matrix of ones N geometrically and algebraically with
the zero matrix O:

N = e1 + e2 + e3 =





1 1 1
1 1 1
1 1 1



 ≃





0 0 0
0 0 0
0 0 0



 = O (15)

This identification of N with zero is also justified when we compare the sum e1 + e2 + e3 with
its Geometric algebra counterpart by adding eq. (12), (13) and (14).

e1 + e2 + e3 ≃ O ←→ 1√
2
(σz − σx + σx − σy + σy − σz) = 0 (16)

✏✏✏✏✮
❅
❅
❅❘✂

✂
✂
✂✍

✏✏✏✏✮
❅
❅
❅❘✂

✂
✂
✂✍

✏✏✏✏✮
❅
❅
❅❘

❅
❅
❅❘

✂
✂
✂
✂✍✂

✂
✂
✂✍

✏✏✏✏✮
❅
❅
❅
❅
❅❅❘✂

✂
✂
✂
✂
✂
✂
✂✍

✏✏✏✏✏✏✏✏✮

✲

✻

�
�

�
�

�✠

✲

✻

�
�

�
�

�✠

✲

✻

�
�

�
��✠

��

��

��

��

��

��

���� ��

��

�
�
�

�
�
� ��

x

y

z

x

y

z

x

y

z

Figure 3: Some attempts to visualise that the vectors e1, e2, and e3 lie in the same plane.

In the same way the sum of all three imaginary permutation matrices E1, E2, and E3 which
represent unit area elements has to be identified with nothingness, nihilation, null or zero.

E1 + E2 + E3 =





i i i
i i i
i i i



 = iO ≃ N

←→ 1√
2
(σxσy + σzσy + σyσz + σxσz + σzσx + σyσx) = 0

(17)

In the literature the matrix of ones is sometimes called unit matrix (see eg. [16]), which is
rather confusing. The matrix of ones is not the identity matrix. And sometimes the matrix of
ones is called democratic matrix (see eg. [2]), which seems even more confusing and hides the
structural meaning of N . If a (3 x 3) matrix is multiplied with N in Geometric algebra of quarks,

1In a world with positive numbers only, it makes sense to call them base vectors, because they form a minimal
set of vectors spanning a plane, see [7]. It is not possible to reach every point of a plane when there are just two
base vectors with only positive coordinates.
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it will be nihilated und becomes zero. Thus we have indefinitely many representations of matrices
meaning zero. For example there are (with r ∈ C):

N =





1 1 1
1 1 1
1 1 1



 ≃





i i i
i i i
i i i



 ≃





r r r
r r r
r r r



 ≃





0 0 0
0 0 0
0 0 0



 = O (18)

Hence every other (3 x 3) matrix possess indefinitely many representations too. The matrix
Z ′

2 given by Dev, Gautam & Singh in [2, eq. (16)]

Z ′

2 =
1

3





1 −2 −2
−2 1 −2
−2 −2 1



 =
1

3





3 0 0
0 3 0
0 0 3



+
1

3





−2 −2 −2
−2 −2 −2
−2 −2 −2



 ≃





1 0 0
0 1 0
0 0 1



 (19)

is just another representation of the identity matrix. Therefore it is obvious that every mathe-
matical structure should be invariant under Z ′

2 in Geometric algebra of quarks.
And every vector r can be written in different ways:

r = x1e1 + x2e2 + x3e3 ≃ (x1 − x3)e1 + (x2 − x3)e2

≃ (x2 − x1)e2 + (x3 − x1)e3

≃ (x3 − x2)e3 + (x1 − x2)e1

←→ 1√
2
[(x2 − x1)σx + (x3 − x2)σy + (x1 − x3)σz ]

(20)

Therefore it is always possible to find a fundamental expression of vector r with only two unit
vectors ei and purely positive coefficients. For example, if x3 ≥ x2 ≥ x1 then it would make sense
to use the second line of eq. (20) as the two coefficients are greater than or equal to zero.

Although it seems that we are living in a three-dimensional space with x-, y- and z-axes as
shown in the previous figures, till now we are not able to reach points outside the plane indicated
in figure 3. We are frozen in this plane. Every point we can reach till now is considered to be
a linear combination of the three vectors e1, e2, and e3. To reach points outside this plane it is
crucial to identify a vector perpendicular to the S3-plane.

6 Products of Permutation Matrices

The following products of permutation matrices exist:

e0 := e21 = e22 = e23 =





1 0 0
0 1 0
0 0 1



 ←→
(

1 0
0 1

)

= 1 (21)

⊖ := E2

1 = E2

2 = E2

3 =





0 1 1
1 0 1
1 1 0



 ←→ −
(

1 0
0 1

)

= −1 (22)

e12 := e1e2 = e2e3 = e3e1 =





0 0 1
1 0 0
0 1 0



 ←→ 1

2
(−1 + σxσy + σyσz + σzσx) (23)

e21 := e2e1 = e3e2 = e1e3 =





0 1 0
0 0 1
1 0 0



 ←→ 1

2
(−1− σxσy − σyσz − σzσx) (24)

6



E12 := E1E2 = E2E3 = E3E1 =





1 1 0
0 1 1
1 0 1



 ←→ 1

2
(1− σxσy − σyσz − σzσx) (25)

E21 := E2E1 = E3E2 = E1E3 =





1 0 1
1 1 0
0 1 1



 ←→ 1

2
(1 + σxσy + σyσz + σzσx) (26)

These matrix products are geometric products. They thus bear geometrical meaning. The
entities of eq. (21) and (22) can be identified with scalars. The entities of eq. (23) to (26) can be
identified as linear combinations of a scalar and bivectors. The trivector or pseudoscalar can be
found by the following permutation matrix multiplications:

I := E1e1 = E2e2 = E3e3 =





i 0 0
0 i 0
0 0 i



 ←→ σxσyσz (27)

If we restrict ourselves to the plane of figure 3, we can do everything in this plane using (3 x
3) matrices of Geometric algebra of quarks what we are able to do with (2 x 2) Pauli matrices in
conventional Geoetric algebra in a plane. This is important! (2 x 2) matrices can be thought
as and seen as (3 x 3) permutation matrices. So it is no mathematical question, which
system we use, it is instead a didactical question.

7 The Philosophy of Negative Numbers

As indicated in section 1 minus signs are avoided in this paper. Instead of this algebraic sign ”–”
the geometric entity

e12 + e21 =





0 1 1
1 0 1
1 1 0



 ←→ −1 (28)

gives us a (3 x 3) matrix which does all that a minus sign usually does. Algebraically e12 + e21
reduces every scalar ke0 by one unit:

ke0 + e12 + e21 = (k − 1)e0+ e0 + e12 + e21
︸ ︷︷ ︸

≃ (k − 1)e0

N
(29)

But at the same time the matrix e12 + e21 has a clear geometric meaning: It reverses the
direction of vectors:

(e12 + e21)(x1e1 + x2e2 + x3e3) = x1(e2 + e3) + x2(e3 + e1) + x3(e1 + e2) (30)

This is indeed a complete reversion as for example the unit vector e2 + e3 is parallel to the unit
vector e1, but shows into the opposite direction.

Therefore this matrix (e12 + e21) is called ⊖ in this paper, using the \ominus symbol of Latex
like it is done in eq. (22). So ⊖ e0 is no multiplication of a negative sign with the scalar 1, but
a matrix multiplication resulting in ⊖ e0 = ⊖. This avoidance of minus signs indicates that we
might live in a mathematically purely positive world.

In this world negative entities do not exist. We just reverse directions. And sometimes we
do not totally reverse a direction but change the direction only a little bit. This might have
epistemological and ontological consequences for our physical world too. Do we really measure

7



negative entities anywhere in physics? Or do we only measure positive entities in different or
sometimes in opposite directions? The possibility of avoiding the minus sign might indicate that
we not only might live in a mathematically positive world, but that we might live in a world which
can be decribed in physics as a purely positive world too.

And as we actually speak about something like ”reality” it is even possible that the world of
physics not only can be but even must be described as purley positve, to understand it conceptully
as ”The Road to Reality” (see discussion in [11, §3.5]) is a mathematical road2.

But whatever our ontological and epistemological positions are: We have reached here the true
heart of Geometric algebra: ⊖ can be interpreted as algebraic and as well as geometric operation.
Algebra and geometry are deeply connected now. We live in both worlds: in the world of algebra
and in the world of geometry. And as we can transfer from algebra to geometry and back to
algebra at every moment, these worlds coalesce structurally.

8 Constructing e4

After having found an appropriate entity to describe negativities in geometric algebra of quarks
we are able to split up the geometric product of two vectors r1r2 into a dot product and a wedge
product.

r1r2 = r1 · r2 + r1 ∧ r2 (31)

The dot product results in a scalar

r1 · r2 =
1

2
(r1r2 + r2r1) (32)

and is connected with the cosine of the angle α between the two vectors r1 and r2:

cosα = r̂1 · r̂2 =
1

2
(r̂1r̂2 + r̂2r̂1) (33)

where r̂ is the unit vector of r = x1e1 + x2e2 + x3e3:

r̂ =
r

|r| (34)

with

|r| =
√
r2 =

√

x2
1
+ x2

2
+ x2

3
− x1x2 − x2x3 − x3x1 (35)

As indicated in figure 3 the angles between all unit vectors e1, e2, and e3 indeed equal 2π/3:

cosα = e1 · e2 = e2 · e3 = e3 · e1 =
1

2
(e1e2 + e2e1) = ⊖

1

2
e0 ←→ −1

2
(36)

It surely makes sense to identify the arccosine of this expression with

α = arccos

(

⊖ 1

2

)

≃ 2π

3
= 120◦ (37)

Now the wedge product is defined as:

r1 ∧ r2 =
1

2
(r1r2 +⊖r2r1) (38)

2At the beginning of this discussion Penrose writes: ”I think that it is clear that, unlike the natural numbers,
there is no evident physical content to the notion of a negative number of physical objects” [11, p. 65]. But he
later on revises this position slightly.
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Thus we get an expression for a bivector representing the plane AS3
in which the unit vectors

e1, e2, and e3 are situated:

AS3
:= e1 ∧ e2 = e2 ∧ e3 = e3 ∧ e1 =

1

2
(e1e2 +⊖e2e1)

=
1

2
e0 + e12 =





1

2
0 1

1 1

2
0

0 1 1

2



 ←→ 1

2
(σxσy + σyσz + σzσx)

(39)

The magnitude of this area element is

|AS3
| =

√

⊖
(

e12 +
1

2
e0

)2

=

√

⊖
(
1

4
e0 + e12 + e21

)

≃
√

⊖3

4
(e12 + e21) =

√

⊖2
3

4
≃

√

3

4
e0 =

1

2

√
3

(40)

Therefore the unit area element E4 which is perpendicular to the wanted unit vector e4 equals

E4 =
AS3

|AS3
| =

1√
3
(e0 + 2e12) =

1√
3





1 0 2
2 1 0
0 2 1



 ←→ 1√
3
(σxσy + σyσz + σzσx) (41)

By analogy to eq. (12), (13), or (14) the unit vector e4 perpendicular to all other unit vectors
e1, e2, and e4 can be found as

e4 = ⊖iE4 =
1√
3
i(e0 + 2e21) =

1√
3





i 2i 0
0 i 2i
2i 0 i



 ←→ 1√
3
(σx + σy + σz) (42)

As expected e4 is a unit vector:

e24 =
1

3





i 2i 0
0 i 2i
2i 0 i





2

≃ 1

3





i+2 2i+2 2
2 i+2 2i+2

2i+2 2 i+2





2

=
1

3





12i+11 12i+8 12i+ 8
12i+8 12i+11 12i+ 8
12i+8 12i+8 12i+11



 ≃ 1

3





3 0 0
0 3 0
0 0 3



 =





1 0 0
0 1 0
0 0 1





(43)

Or written in vector notation instead of matrix notation:

e24 =

(
1√
3
i(e0 + 2e21)

)2

=
1

3
(e12 + e21)(3e12 + 3e21) ≃ e0

←→
(

1√
3
(σx + σy + σz)

)2

= 1

(44)

And e4 is perpendicular to all other unit vectors:

cosα14 = e1 · e4 = e2 · e4 = e3 · e4 =
1

2
(e1e4 + e4e1)

=
1

2
√
3
i (2e1 + 2e2 + 2e3) =

1√
3
iN ≃ 0 ←→ cosα14 = 0

(45)

⇒ α14 =
π

2
= 90◦ (46)
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Therefore the products of e4 with the other unit vectors are:

e14 := e1e4 =
1√
3
i(e1 + 2e3) =

1√
3





i 2i 0
2i 0 i
0 i 2i



 = ⊖ e4e1

←→ 1√
6
(−σxσy + 2σyσz − σzσx)

(47)

e41 := e4e1 =
1√
3
i(e1 + 2e2) =

1√
3





i 0 2i
0 2i i
2i i 0



 = ⊖ e1e4

←→ 1√
6
(σxσy − 2σyσz + σzσx)

(48)

e24 := e2e4 =
1√
3
i(e2 + 2e1) =

1√
3





2i 0 i
0 i 2i
i 2i 0



 = ⊖ e4e2

←→ 1√
6
(−σxσy − σyσz + 2σzσx)

(49)

e42 := e4e2 =
1√
3
i(e2 + 2e3) =

1√
3





0 2i i
2i i 0
i 0 2i



 = ⊖ e2e4

←→ 1√
6
(σxσy + σyσz − 2σzσx)

(50)

e34 := e3e4 =
1√
3
i(e3 + 2e2) =

1√
3





0 i 2i
i 2i 0
2i 0 i



 = ⊖ e4e3

←→ 1√
6
(2σxσy − σyσz − σzσx)

(51)

e43 := e4e3 =
1√
3
i(e3 + 2e1) =

1√
3





2i i 0
i 0 2i
0 2i i



 = ⊖ e3e4

←→ 1√
6
(−2σxσy + σyσz + σzσx)

(52)

Reflecting the unit vectors e1, e2, e3 or e4 at each other then results in:

e1e1e1 = e1 e2e1e2 = e3 e3e1e3 = e2 e4e1e4 = e2 + e3 (53)

e1e2e1 = e3 e2e2e2 = e2 e3e2e3 = e1 e4e2e4 = e3 + e1 (54)

e1e3e1 = e2 e2e3e2 = e1 e3e3e3 = e3 e4e3e4 = e1 + e2 (55)

e1e4e1 = ⊖e4 e2e4e2 = ⊖e4 e3e4e3 = ⊖e4 e4e4e4 = e4 (56)
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9 Pauli Matrices

In a last step to reach a full identification of Pauli matrices with (3 x 3)-matrices explicit formulae
for them can be found using eq. (12), (13), (14), and (42):

ex =
1

3

(√
2(e1 + 2e3) +

√
3e4

)

←→ σx (57)

ey =
1

3

(√
2(e2 + 2e1) +

√
3e4

)

←→ σy (58)

ez =
1

3

(√
2(e3 + 2e2) +

√
3e4

)

←→ σz (59)

Reflections of these (3 x 3) Pauli vectors ex, ey, and ez at unit vector e1 then are:

e1exe1 =
1

3

(√
2(e1 + 2e2) +⊖

√
3e4

)

= ⊖ex ←→ −σx (60)

e1eye1 =
1

3

(√
2(e3 + 2e1) +⊖

√
3e4

)

= ⊖ez ←→ −σz (61)

e1eze1 =
1

3

(√
2(e2 + 2e3) +⊖

√
3e4

)

= ⊖ey ←→ −σy (62)

or

⊖e1exe1 =
1

3

(√
2(e2 + e3 + 2e1 + 2e3) +

√
3e4

)

(63)

≃ 1

3

(√
2(e1 + 2e3) +

√
3e4

)

= ex ←→ σx (64)

⊖e1eye1 =
1

3

(√
2(e1 + e2 + 2e2 + 2e3) +

√
3e4

)

(65)

≃ 1

3

(√
2(e3 + 2e2) +

√
3e4

)

= ez ←→ σz (66)

⊖e1eze1 =
1

3

(√
2(e1 + e3 + 2e1 + 2e2) +

√
3e4

)

(67)

≃ 1

3

(√
2(e2 + 2e1) +

√
3e4

)

= ey ←→ σy (68)

Now we can construct a (3 x 3) matrix expression which is equivalent to eq. (9). A reflection
of vector

r = xex + yey + zez ←→ xσx + yσy + zσz (69)

at plane E1 = ie1 is given by

r′ = ie1(xex + yey + zez)ie1

= ⊖x e1exe1 +⊖y e1eye1 +⊖z e1eze1
= x ex + z ey + y ez ←→ xσx + zσy + yσz

(70)

and exchangs indeed the y- and z-coordinates. This and similar equations for reflections at planeE2

and E3 show the inherent linkage between a Geometric algebra of (3 x 3) matrices and permutation
symmetry S3. And as S3 seems to describe important features of flavour symmetry I hope that
this will indeed help us to understand quarks and neutrions one day in a geometrically convincing
manner.

And again: we are able do everything in three-dimensional Euclidean space using (3 x 3)
matrices of Geometric algebra of quarks what we are able to do with (2 x 2) Pauli matrices in
conventional Geometric algebra. It is no mathematical question, which system we use, it is a
didactical one.
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10 Epilog

This AGACSE paper has been reviewed by two reviewers whom I wish to thank for their very
constructive and helpful remarks. But there are two comments I do not agree with, and I think
this should be discussed openly.

First of all one of the reviewers wrote: ”Please avoid the use of words like crime, ugly and
ugliness in a scientific papers.” I want to clarify why I didn’t follow this proposition. As I am
a physics teacher and a physics education researcher my daily work is to analyse the process of
physics and mathematics learning. Categories like ’beauty’ or ’ugliness’ consciously and uncon-
ciously influence learning processes [9]. Not only students but we all evaluate ideas and concepts
according to such categories – even if we do not speak about them.

But not to speak about them does not mean that theses categories are not there. Scientific
research is learning too: We learn something new about nature, and we do that on the basis of
our preconceptions. These preconsecptions about whether an idea in physics or mathematics is
beautiful or ugly are important features of our understanding of a subject. The more we learn
about a subject the more we care about its inherent beauty or bother about its inherent lack of
beauty.

This care about beauty even is a sign of professionality, and Dirac once explained: ”With
increasing knowledge of a subject, when one has a great deal of support to work from, one can
go over more and more towards the mathematical procedure. One then has as one’s underlying
motivation the striving for mathematical beauty. Theoretical physicists accept the need for math-
ematical beauty as an act of faith. There is no compelling reason for it, but it has proved a very
profitable objective in the past” [3, p. 21]. Therefore the statement that the equation





1 0 0
0 0 1
0 1 0









a c b
c b a
b a c









1 0 0
0 0 1
0 1 0



 =





a b c
b c a
c a b



 (71)

is much more beautiful than equation (3) is important for me. And it directly adresses the main
point of this paper, as another comment of the reviewers shows.

This comment was: ”Note that the (3 x 3) matrices ’describing’ quarks are the 8 infinitesimal
generators of SU(3). One representation are the Gell-Mann matrices. They act on columns of 3
spinors, the spinors represent quarks.” This describes the standard procedure given in standard
physics books like [4, p. 51/52].

To find a unified Geometric algebra picture of quarks it might be helpful to use a representation
of space by (3 x 3) matrices instead of (2 x 2) Pauli matrices. But in addition to that it seems
inevitable to get rid of these columns of spinors used today (which are in my eyes as ugly as eq.
(3)) and to construct (3 x 3) matrices of spinors similar to the second matrix of eq. (71).

There exist more ideas how to construct a Geometric algebra picture of quarks in the literature.
For example Hestenes [6], Schmeikal [14] or Keller [8, chap. 4.6] present some of these. But it
seems that all these ideas go into more or less different directions, and we are still in need of a
really unified Geometric algebra picture of quarks.
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