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Abstract: - The hub location problem is important in the selection of technological networks, such as computer 
networks, cellular networks, or wireless sensor networks. These modern communication networks must be 
dynamically set prior to changes in external conditions, since the nodes deplete their batteries and go out of 
service. For this reason, it is necessary to update the available data in order to determine which nodes can be 
used as hubs. The dynamic location problem requires a shorter solution time, even though the quality of the 
solution may not be ideal. Heuristic methods are used for their simplicity and are easy to package in the 
firmware. The central aim of this work is to design a heuristic method that will obtain an good feasible solution 
in a reasonable amount of time. The methodology proposed for the heuristic method consists of obtaining the 
optimum solution of the relaxed problem followed by rounding this solution to a 0 or 1 value. The strategy 
developed for rounding the calculations is to first use a measure, called an attractive force, for each node and 
then to define those nodes more attractive as hubs. Finally, an integer model is solved to assign the nodes to the 
selected hubs. An interesting result is that the hubs selected by the optimal solution of the relaxed problem are 
always between the nodes that have a major attractive force. The heuristic algorithm is well established for 
problems with 10, 20, 25, 50 and 100 nodes. In each case, mixing two levels of difficulty we obtain four 
problems. 
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1    Introduction 
 

Some applications of network designs require an 
optimal facility location. The problem of designing 
networks of communications considers the ideal 
location of communication equipment and the 
locations of transmission lines. Consider, for 
example, a network in which the nodes are 
computers and the edges are physical lines or 
wireless signal transmission. 
 

For this case, it is necessary to decide how 
many and which of the computers will be connected 
to each hub. Another example is the location of 
antennas for cellular telephones, in which the goal is 
to optimise signal traffic for the user. In this paper, 
we discuss a subclass of problems in network 
design, where the nodes act as consolidation points 
for flows between them in the network. This type of 

facility is known as a hub. 



 

 

 
Hubs are places where commodities such as air 

passengers or communications are concentrated. 
Thus, all of the traffic that is exchanged between 
nodes must be routed through one o more hubs. In 
such problems, the hubs are completely 
interconnected. There are several different variants 
of hub location problems. The exact number of hubs 
required the hub and node locations, and the use of 
simple or multiple connections are a few examples 
of variables that must be determined. The hubs can 
have capacity, cost, or location constraints. 
Campbell [1] provided a comprehensive review of 
hub location problems. 
 

In this work, we focus on a particular 
variant of hub location problem, known as the 
simple hub location problem with node capacity 
restriction. We will refer to this problem as 



 

 

 
Capacitated Single Allocation Hub Location 
Problem, denoted by CSAHLP. 
 

The choice of the problem is motivated by a 
digital wireless equipment network design 
application. Consider a network of cellular antennas 
with the ability to transmit flows between them. The 
average traffic between antennas (nodes) is known. 
The packages of information - signals that route 
across one or two antennas - are assigned to hubs. 
For more details see the figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Given the limited concentration capacity of 
the antennas, it is necessary to introduce restrictions 
on the node capacity. In addition, the quantity of 
antennas required is unknown, since this quantity 
must be kept variable to allow the model to 
determine the optimum number. 
 

Nevertheless, there is a cost associated with 
antenna use, and it is a limiting factor. To complete 
the communication between antennas, the model 
must decide what node will be use like a hub. 
Additionally, it must assign the connections of 
nodes to hubs and account for the cost of 
transmission in each case. In this work, the cost of 
transmission from a node origin to a node hub is 
referred as the compilation cost. 
 

The cost of transmission between hub nodes 
is called the transmission cost, and the cost of 
transmission between a hub node and a target node 
is called the distribution cost. The problem 
Capacitated Multiple Allocation with p Hubs 
Multilocation Problem, denoted by CMApHMP is a 
variant with capacity restrictions and multiple node-
to-hub assignments. 

 
CSAHLP has its origin in CSApHMP-type 

problems, but eliminates restrictions on the number of 
hubs. The work by O’Kelly [2] and [3] presents a 
quadratic problem formulation without capacity 
restrictions called Uncapacitated Single Allocation 
Hub Location Problem, denoted by USAHLP, which is 
characterised by the use of only a few variables. Since 
this formulation is not convex, it is difficult to solve. 
Campbell [4] has presented a linear form of this 
problem and added some capacity constraints. This 
model was analysed by Ernst & Krishnamoorthy [5] 
and named CSAHLP-C. 
 

There are several recent works on the 
location problem of simple hub assignments worth 
mentioning here: Marcus Randall discussed 
solutions for the CSAHLP problem using meta-
heuristic ant colonies. Chen [6] developed a 
heuristic for CSAHLP and compared it with 
simulated annealing (SA) to obtaining better results. 
Costa [7] produced a unique and interesting 
approach for CSAHLP problems. 
 

This approach does not use capacity 
constraints on the flow, but instead uses a second 
objective function to minimise the CPU time. In this 
paper, we work with the CSAHLP-N model, which 
corresponds to the model reformulated by Ernst & 
Krishnamoorthy [8] and based on the work by 
Campbell [1] [4]. The original model from 
Campbell CSAHLP-C, is modified by changing the 
main variable X, which shows the percentage of 
flow from an origin node to a final node, to the 
variable Y. This new variable represents the amount 
of the flow from the origin and the route through the 
hubs. 
 

Some additional equations were modified 
from the original formulation. The most important 
advantage of the new CSAHLP-N model with 
respect to the CSAHLP-C model is the reduction in 
the problem size and the associated decrease in CPU 
time. In 2008 Chen [12] developed a heuristic 
algorithm based in simulated annealing. 
Computational results indicate that the presented 
heuristic outperforms a simulated annealing method 
from the literature. 
 

An Ant Colony System Hybridized with a 
Genetic Algorithm for the Capacitated Hub 
Location Problem was presented by Sun et al. [12], 
they deal with a capacitated asymmetric allocation 
hub location problem (CAAHLP). As the CAAHLP 
has impractically demanding for the large-sized 
problem, a solution method based on combined ant 



 

 

 
colony optimization algorithm and genetic algorithm 
was developed which solve hub location problem 
and node allocation problem respectively. 
 

A review of the state of the art published by 
Alumur et al. [13] showed an increasing interest in 
the world for improve the powerful of the 
algorithms to solve big problems in few second. 
 

In 2010 Contreras et al. [14] presented the 
Tree of Hubs Location Problem. They propose an 
integer programming formulation for the problem 
and present some families of valid inequalities that 
reinforce the formulation and we give an exact 
separation procedure for them. 
 
 
2    Mathematical Formulation 
 

The following is the formulation used in 
this paper of the p-hub Problem version CSAHLP-
N. 
 
2.1. Formulation CSAHLP-N 
 
Minimise 
 
 
 
 
 
 
 
 
subject to: 

The variables of the model are: 
 

: flow per unit time from node i through 
hubs k y and l; 
 

: a decision variable, where a value of 1 
indicates the optimal route for nodes i and k  
and 0 applies to any other case; 
 
The data of the model are: 
 

: distance between nodes i and 
k; :flow capacity of the node k; 

 
: unitary recollection cost;   
: unitary transportation cost;   
: unitary distribution cost;   

: material flow from node i;   
: material flow to node i;   
: cost of using node k as a hub;   

: flow of material from node i to node j.  
 

Equation (1) is used to constrain the 
decision variable ; equation (2) is used to select 
node hubs for each flow. Equation (3) restricts the 
use of nodes to their capacity limitations. Equation  
(4) is the difference equation for node i on node k, 
where the demand and the supply of the nodes are  
determined by   the   location .   Equation (5)
defines as  binary,  and  Equation  (6)  defines

as a real positive variable that includes 0.  

The  proposed  model  has  an  integer  variable
called and  a real  variable called that 
correspond  to  the  flow  from  node  i  to  hubs  k  and  l,  
respectively. indicates that   node   i   is
connected  by  node  k,  and indicates  that 
node i is a hub. This formulation therefore 
corresponds to an integer mixed problem (MIP). 
 
 
2.2. Relaxing the formulation CSAHLP-N 
 

If the variables Zik are relaxed so that they 
take real values between zero and one, this model 
becomes a problem of linear programming (PPL). In 
this case, the variable Zii measures the degree to 
which node i has the potential to be a hub. In this 
paper, it is assumed that this potential is a measure 
of the attraction of the node to be used. For this 
reason, it is designated as the "attractive force". 
 

Now, we focus on the relaxed problem 
CSAHLP-N, letting PR ) be the relaxed problem. 



 

 

 
We have: 
 
PR) Minimise 
 
 
 
 
 
 
 
 
 
 
 
With the following: 
 
(1), (2), (3), (4) and (6) of the original problem 
expressed in 2.1 
 
 
 
 
 
2.3.- Formulation CSAHLP-C 
 
Minimise 
 
 
 
 
 
 
 
 
Subject to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Skorin-Kapov et al. [10] note that constraints (3) is 
very weak. Hence, to obtain useful lower bounds 
from the LP relaxations, they replace (3) by the pair 
of constraints : 

 
 
 
 
 
 
 
 
 

The new formulation is denoted as 
CSAHLP-LP. Unfortunately these constraints make 
the formulation very large. In practice terms, it 
means that solving the LP relaxation for problems 
with more than 20 nodes becomes too slow. 
 
 
 
3. Heuristic attraction force algorithm 
(HAFA) 
 
3.1 Attraction force of a node 
 

The attraction force of a node is a measure 
of the proportion of the total flow that would be 
assigned to this node if it was defined as a hub. This 
measure is calculated in the different iterations of 
the heuristic algorithm with results of the relaxed 
problems. The intuitive idea, it is that the node that 
receives more flow is a good candidate to be a hub. 
In addition we used other intuitive idea, it is that a 
good solution is which minimize of numbers of 
hubs that attend to all the flows. For consider this 
fact we divided the first measure by the number of 
hubs. And then both measures are used for build the 
attractive force of every node. 
 

The attraction force of a node ( ), is the 
average between the pure attraction force and 
relative attraction force. The pure attraction force is 
the sum of all proportions of the flow that would be  
assigned  to  this  node  using of  the  optimum
solution  of  the  relaxed problem. The  normalised 
attraction force is the pure attraction force divided 
by the numbers of hubs used. The flow chart and 
pseudo code of the heuristic is shown below. The 
inputs are the classic input of the hub and spoke 
problem. The outputs correspond to the optimum 
solution. 
 
 
3.2. Heuristic Algorithm 
 
3.2.1. Flow Chart of the HAFA 



 

 

 
 
 

Input: d, O, D, F and a. 
 
 
 
 

1. Solve the linear problem      . 

2.  Solve  two  new  linear  problems,  that 
we call and .   

    

    
3.  In  the  problems , and we
define and like  the  value  of 
the normalised attractive force for the 
node i. 

 
 
 

4.  In  the  problems and we
define and like the value of 
the normalised relative attractive force 
for the node i. 

 
 

5. Let , and be the averages
between  and      .  

  

  
6.  Let be  the  problem  that  show  the
minimum     value     of     the     optimum  
solution between problems , and

.   Let be   this   value. Let  
be  the  optimum  solution  of  the

problem .   
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7. We define the set with the 
nodes that have the greatest 
value of the variable . 

 
Solve the original MIP problem 
adding the next constraints : 

 
 

. 
 
 
 

II 



 

 

 
II 

 
 
 
 
 

be the 
optimum solution of this 
problem 

 
 
 
 
3.2.2. Heuristic algorithm 
 
HAFA ROUTINE 
INPUT: W, d, F, α, χ, δ, Ί  
OUTPUT: 
 

1. Solve the linear problem . Let

 Z 0  ∈ℜn×n  be  the  Z  matrix  of  the  optimum
 solution  of  this  problem  and  let   N 0 be  the
 number   of   hubs   a   priori,   which   we   will
 improve in the heuristic algorithm.  

 

 Let and be  the  matrix obtained  of
 the  optimum  solution  of  the  problems  
 and respectively.     

3. In  the  problems , and we  define
  and  like the value of the
 normalised attractive force for the node i.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. In the problems and we 
 define and like the value of the
 normalised relative attractive force for the
 node i.    

 
 
 
 
 
 
 Let be   the matrix obtained   of   the
 optimum solution of the problem. 

2. Then we   solve two   new linear   problems,
 that  we  call and respectively.  The 

problem is formed with the problem      
 

adding the constraint 
  5. Let , and be  the  averages  between
   and  :  

 

 
 
 
 

Doing this we force that the model assigns 
nodes. 

 
The problem is formed with the problem 

adding the constraint 
 
 
 
 
 
And now we force the model in order that it 
assigns nodes. 

 
We will call these forces normalized 
attractive forces average. 

 
 
6. Let be the problem that show the minimum 

value of the optimum solution between   
problems , and . 



 

 

 
Let be  this  value.  Let be the
optimum solution of the problem      .  

If then we make and ,
if then  we  make  and
 and    
if then   we make  and
 .    

Then  we  define  the  set with  the nodes  that
have the greatest value of the variable       .  
 
Solve the original MIP problem adding the next 
constraints : 

Then: 
 
 
 
 
 
 
 
 
 
 
 
 
Proof: 
 
In the optimal solution of the relaxed problem the 
cost of transport is equal to the cost of operation of 
the hubs. It is: 

 
 

Let be the optimum solution of  
this problem. 

 
 
 
END SUBROUTINE 
 

The complexity of the algorithm is bounded 
by a term with three components, associated with 
the three problems solved. First, a linear problem 
(LP) is solved. Second, three linear problems that fix 
the number of hubs are solved. Finally, three MIP 
problems (MIP) with fixed numbers of hubs are 
solved. Then the number of iterations of the 
heuristic algorithm proposed is on the order of  
4 * PL + 3* MIP . 
 

Although mixed integer programs are not 
polynomial problems, in practical terms, the 
computational complexity and CPU time is reduced 
fixing the nodes that will be assigned like hub. 
 
 
 
3.3 A bound for the integrality gap 
 
Theorem: 
 
Let be the optimum solution of the integer problem 
and let be the optimum value of the relaxed 
problem. Then we define the integrality gap. 
 
The integrality gap of the  CSAHLP-N is: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The left side of the equality is the cost of transport 
and the right size correspond to the operation cost. 
 
Then the value of the objective function in the 
optimal solution is: 
 
 
 
 

With 
 
Bounding lower: 

 
 
 
Bounding upper 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bounding upper again: 
 
 
 
 
 
 
 
 
 

and  finally   bounding by  the N 0 be
the number of hubs a priori force we have:   
 
 
 
 
 
 
Then : 
 
 
 
 
 
 
 
 
 
It is possible that this bound was not a tight bound, 
but it shows that the gap decreases when grows. And 
like is related to the attraction force of all nodes, we 
can establish that the gap decreases when the 
attraction force of all nodes grows. 
 
Many authors relates the integrality gap with the 
complexity of solve the integer linear programming 
problem. Then we can conjecture that the attraction 
force of all nodes, is a measure of the complexity of 
solve the integer linear programming problem. 

4. Computational experiments 
 

To prove the heuristic algorithm, a data set 
denoted “AP data set” was used. This data set 
belongs to the public library in the OR-library 
posted by Beasley [9]. The authors Ernest & 
Krishnamoorthy and posted this collection of data. 
This data include capacity restrictions and costs on 
nodes. We show the characteristics of every 
instance of the test problem used. 
 

The name of each instance consists of the 
number of nodes followed by two characters: the 
first is the type of cost and the second is the capacity 
type. The characters LL designates low cost and 
relaxed capacity, the characters LT designates low 
costs and tight capacity, the characters TL 
designates high costs and relaxed capacity while the 
characters TT represents high cost and tight 
capacity. 
 
Table   1   :Results   of   the   HAFA for   CSAHLP-N

 

       
 

 Code CPU Time Objective Hubs Error %  
 

 Problem hr:min:sec Function Selected   
 

 10LL 00:00:00.3 224250.05 4,5,10 0.00  
 

 10LT 00:00:00.3 250992.26 1;4;5;10 0.00  
 

 10TL 00:00:00.3 263399.94 4;5;10 0.00  
 

 10TT 00:00:00.3 263399.94 4;5;10 0.00  
 

 (1)  
 

20LL 00:00:00.7 7;14; 6.53 
 

   
250022.7 

   

 (2)  
 

20LT 00:00:01.0 259,755.2 2.46 
 

    
6;10;14 

  

 (1)  
 

20TL 00:00:00.7 7:19 2.82 
 

   
271892.7 

   

 (3)  
 

20TT 296035.4 1;10;19 0.00 
 

  
00:00:05.7 

    

 (3)  
 

25LL 238978.2 8;18 0.00 
 

  
00:00:15.3 

    

 (2)  
 

25LT 00:00:26.6 286200.6 3.56 
 

    
9;14;16;25

  

 25TL 00:00:01.5 310317.9 9;23 0.00  
 

 (2)  
 

25TT 00:00:20.7 352070.1 1.06 
 

    
9;12;14 

  

 (2)  
 

40LL 00:00:20.9 242167.2 0.09 
 

    14;29   

 (3)  
 

40LT 272218.3 14;26;30 0.00 
 

  00:06:55.5     

 40TL 00:03:36.5 298919.0 14;19; 0.00  
 

 (3)  
 

40TT 354874.1 14;19;40 0.00 
 

  
00:05:27.0 

    

 (1)  
 

50LL 00:00:35.9 238573.1 0.02 
 

    
15;35; 

  

 50LT 00:00:24.9 273382.8 6;26;32;46 0.18  
 

 50TL 00:00:34.1 331511.6 3;27;45 3.92  
 

 50TT 00:13:13.4 424125.2 12;25;26 1.60  
 

 100LL 00:14:52.3 246714.0 29;64;73 0.00  
 

 100LT 00:29:12.0 265,932.7 29;71;95 3.62  
 

 100TL 00:16:44.3 362,950.1 44;52 0.00  
 

 100TT 00:40:56.1 465,213.4 5;34;86;95 0.00  
 

       
 

Notes: (1) The allocation is not optimal  
(2) The hub assigned is not optimal  
(3) CPU time becomes unfeasible  

 
During the benchmarking, we solved two 

versions of the problem: CSAHLP-N version and 
CSAHLP_C version. 



 

 

 
First we used the CSAHLP-N version and 

we solved problems containing up to 100 nodes. The 
obtained solution and the selected hubs correspond 
to the optimum solution for the instances from 10LL 
to 100LL. The instances that are not optimal are 
marked with an asterisk. In Table 1, we show results 
for the CSAHLP-N. 
 

Then we used the CSAHLP-C version of the 
problem and we solved problems containing up to 
25 nodes. Like we said before, this formulation is 
very large and solving problems with more than 25 
nodes was impossible to solve. 
 

In Table 2, we show results for the CSAHLP-C. 
 

Table 2: results of HAFA for CSAHLP-C 
 

Problem CPU time Objective Hubs Error
name hr:min:sec function Selected % 
10LL 0:00:20 224250.05 4,5,10 0.00
10LT 00:01:49 * 250992.26 1;4;5;10 0.00
10TL 0:00:21 263399.94 4;5;10 0.00
10TT 0:00:18 263399.94 4;5;10 0.00
20LL 0:04:08 234690.96 7;14; 0.00
20LT 0:03:48 253517.40 10;14; 0.00
20TL 0:04:08 271128.18 7:19 0.00
20TT 0:06:11 296035.40 1;10;19 0.00
25LL 0:20:41 238977.95 8;18 0.00
25LT 0:22:37 279991.15 9;12;25 ** 1.31
25TL 0:25:05 316327.51 14;23 ** 1.94
25TT 0:16:14 359043.45 8,14,25 ** 3.06

 
* An unfeasible case, ** The selected nodes 

are not optimal 
 

Graphic N° 1:  
Comparing CPU-time of CSAHLP-C vs 

CSAHLP-N in seconds  
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Looking at graphic1, we can see the Cpu-

time is increasing strongly for the problems with 
formulation CSAHLP-C, while the problems with 
formulation CSAHLP-C increasing lowly. This 
exponentially growing in the Cpu-time in the 
formulation CSAHLP-C is caused by the explosive 

 
growing in the number of variables and in the 
number of constraints 
 

In this formulation every flow between two 
nodes uses four indexes in the variable X. For this 
reason the numbers of variable grows exponentially 
with the numbers of nodes. So we didn’t prove the 
set problem for 30 o more nodes with the 
formulation CSAHLP-C. 
 
 
Conclusions 
 
• This work developed a heuristic algorithm to 
find a solution for the CSAHLP problem. Two 
formulations were proved CSAHLP-C y CSAHLP-N. 
For the CSAHLP-C only three size of nodes were 
proved: 10, 20 and 25 nodes. For problems with more 
nodes the Cpu-time was very large. For the CSAHLP-
N six size of nodes were proved: 10, 20, 25, 40, 50 and 
100 nodes. The Cpu-time found are interesting and the 
gaps are few in the most of cases.  
 
• The heuristic is quick approaches the 
optimal solution for most types of problems. This 
heuristic is very simple because it only needs 
mathematical operations, meaning it can be 
packaged in firmware.  
 
• This work introduces a new concept, called 
the attractive force, to the logistic problem. This is a 
measure of the likelihood of a node to become a 
candidate hub. This measure is made using a mix of 
characteristic nodes that are placed into the linear 
programming problem.  
 
• There is a strong relation between the 
quality of the solution and the tight of cost and 
capacity constraints used. This suggests that there is 
some equilibrium between the costs of the objective 
function. The cost used must be equilibrated with 
the transport costs.  
 
• This kind of heuristic is based on relaxing 
some restrictions and reformulating the original 
problem so it is easier to solve than the original. The 
decision variables of this problem are then 
transformed into new equations that restrict the 
solution space for the new problem. Again, we must 
take the decision variable and transform it to a new 
restriction for next problem. We can state that it 
takes a circular form to obtain the result, and in 
most cases, it is possible to find the optimal 
solution.  



 

 

 
• A comparison of our heuristic algorithm with the 
meta-heuristic approach shows that our approach 
sometimes finds the optimal solution, while the 
optimal solution is never found in the meta-heuristic 
approach, only a quasi-optimal solution. 
 
 
• The useful concept “Total Attractive Force” 
introduced measures the capacity necessary to cover 
the demand of flow at a minimal cost and was 
verified. This allows us to use the “Total Attractive 
Force” as a first approach to find the optimal 
number of hubs, since the cost function is quadratic 
and convex.  
 
• This methodology can be extended to other 
problems with similar characteristics, such as 
location, set covering, and network problems. In the 
heuristic showed the resolution of a problem of 
linear programming is necessary, which is obtained 
when we relax the integer variables. This is done 
using the simplex algorithm, which is not very 
efficient for big problems. One of the future 
directions to research is reduce the times of 
resolution of the problem of linear programming, 
using some heuristic algorithm of more speedy 
convergence.  
 
• Another area of improvement of the 
heuristic is the step seven. In this step a problem of 
linear integer programming is solved. This problem 
correspond to the original problem in which there 
have been fixed the variable corresponding to the 
values of the diagonal of the matrix Z, with ones or 
zeros.  
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