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Abstract

This compilation of formula of quaternionic algebra and quaternionic differentials is for a
significant part derived from Bo Thidé’s book “Electromagnetic Field Theory”;
http://www.plasma.uu.se/CED/Book. | have merely converted the vector formula into quaternionic
format.

Two types of quaternionic differentiation exist.

e Flat differentiation uses the quaternionic nabla and ignores the curvature of the
parameter space.

e Full differentiation uses the distance function g(x) that defines the curvature of the
parameter space.

The text focuses at applications in quantum mechanics, in electrodynamics and in fluid
dynamics.

Note of the author

This text is still open for amendment. It has been prepared with MS Word 2010. If the reader finds errors
and wants to improve the texts or if he wants to add a paragraph, then he might do that based on the
docx document. Please contact the author for getting Q_FORMULA.docx.
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1 Introduction

Let x be the position vector (radius vector, coordinate vector) from the origin of the
Euclidean space R3 coordinate system to the coordinate point (x;; x,; x3) in the same
system and let |x| denote the magnitude (‘length’) of x. Let further a(x), f(x),y(x), ..., be
arbitrary scalar fields, a(x), b(x), c(x), ..., arbitrary vector fields, and

A(x), B(x), C(x), ..,arbitrary rank two tensor fields in this space.

Let g be the position relative to the origin of the space H that is spanned by the
guaternions and that is given by the coordinate point (qo; q1; g2; q3)) and let |q| denote
the norm of q.

Let * denote complex or quaternionic conjugate and 1 denote Hermitian conjugate
(transposition and, where applicable, complex or quaternionic conjugation).

1.1 Cayley-Dickson construction
The Cayley-Dickson construction formula enable the generation of a quaternion from two complex

numbers:
p =ap + ak +i(bg + b:k) (1)
g =Co+ ¢k +i(dg + dik) (2)
(a,b) (c,d)=(ac—db’; a'd +ch) (3)
r=pq @
ro= agCo — a1C1 — bodg — b1d; (5)
r= agC1 — a1Co — bodq+ bidg (6)
ri= agdo + a;d; + bocy — b1y (7)



ri= —a1do + agd; + boci+ bs1co ®)

1.2 Warren Smith’s numbers

All hyper-complex numbers are based on real numbers. Two main construction formulas for hyper-
complex numbers exist. The Cayley-Dickson construction is the most widely known. The Warren-Smith
construction gives best algorithmic properties at higher dimensions. Until the octonions both
construction formulas deliver the same results.

The quaternions are the highest dimensional hyper-complex numbers that deliver a division ring.

1.2.1 2n-on construction
The 2"-ons use the following doubling formula

(a,b)(c,d) = (ac-(bd)", (b’c)" + (b" (@ ((b™H)"d")))") (1)

Up until the 16-ons the formula can be simplified to

(a,b)(c,d) = (ac-bd*,cb + (a*b™1) (bd)) (2)

Up to the octonions the Cayley Dickson construction delivers the same as the 2"-on construction. From

n>3 the 2"-ons are ‘nicer’.

1.2.1.1  2"ons

Table of properties of the 2"-ons.

See scorevoting.net/WarrenSmithPages/homepage/nce2.ps.

Type name Lose
1-ons Reals.
2-0ns Complex z" = z (the * denotes conjugating);
numbers the ordering properties that both {z >0, -z > 0,
orz =0}
and {w >0,z >0 impliesw + z >0, wz > 0}.
4-ons Quaternions | commutativity ab = ba;
the algebraic closedness property that every
univariate polynomial equation has a root.
8-ons Octonions associativity ab - c =a - bc.



file:///C:/web/NewWebSite/English/Science/scorevoting.net/WarrenSmithPages/homepage/nce2.ps

16-ons (not right-alternativity X - yy =Xy - v;
Sedenions!) | right-cancellation x = xy - y™ :

flexibility x - yx = xy - x; left-linearity (b +

c)a=ba + ca;

anti-automorphism ab = ba, (ab)* =b*a™;

left-linearity (b + c)a = ba + ca;

continuity of the map x — xy;

Moufang and Bol identities;

diassociativity

32-ons generalized-smoothness of the map x — xy;
right-division properties that xa = b has
(generically) a solution x, and the uniqueness
of such an x;

the “fundamental theorem of algebra” that
every polynomial having a unique
“asymptotically dominant monomial” must
have a root; Trotter's formula:

limn_,oo[ex/"ey/"]n = lim,_, e (1 +

n
_) — X+
n

Type Retain

2"-ons Unique 2-sided multiplicative & additive identity elements 1
& 0;

Norm-multiplicativity |xy|* = [x[* |y} ;

Norm-subadditivity |a + b| < |a| + |b];

2-sided inverse a* = a'/|a* (a # 0);

a =a

(xEy)*=x £y

@)'=4a

@) *=@";

lal* = laf* = a’a;

Left-alternativity yy - X =y - yx;

Left-cancellation x = y* - yx;

Right-linearity a(b + c) = ab + ac;

r'" power-associativity a" a™ = a"™;
Scalings-ab=sa-b=as-b=a-sb=a-bs=ab-s(sreal);
Power-distributivity (ra” +sa™b=ra"b+sa™b (r, s real);
Vector product properties of the imaginary part: ab - re(ab) of
the product for pure-imaginary 2"-ons a,b regarded as (2" -
1)-vectors;

(xa,b) = (a,x'b), (xa,xb) = |x|?(a,b) and
(x,y) = <X*r y*>

Numerous weakened associativity, commutativity,
distributivity, antiautomorphism, and Moufang and Bol
properties including 9-coordinate ~“niner" versions of most of
those properties; contains 2"*-ons as subalgebra.

1.2.1.1.1 The most important properties of 2"-ons
If a,b,x,y are 2"-ons, n 20, and s and t are scalars (i.e. all coordinates are 0 except the real coordinate)
then



unit: A unique 2"-on 1 exists, with 1-x = x-1 = x.

zero: A unique 2"-on 0 exists, with 0 +x=x+0=xand 0-x=x-0=0.
additive properties: x+y = y+x, (x+y)+z = x+(y+2);

—x exists with x + (—x) =x — x = 0.

norm: |x|?=xx = xx.

norm-multiplicativity: |x|>|y|*= |x-y|*

scaling: s - X'y=sX-y=XS-y=X:Sy=X-yS.

weak-linearity: (x + s)-y = x:y + s'y and x:(y + s) = x:y + x's.

right-linearity: x:(y + z) = x-y + x-z.

inversion: If x # 0 then a unique x* exists, obeying x :x = x-x " = 1. It is x ' = x-|x| %
left-alternativity: x - xy = x”y.

left-cancellation: x - x "y = y.

effect on inner products: (x-a,b) = (a, x"-b), (x,y) = (x, v, (X -a, x*b) = (a,b),

and (x-a,x-b) = |x|*<(a,b).

Conjugate of inverse: (x) = (x ).

Near-anticommutativity of unequal basis elements: e, = —1 and ece/ = —ere, ifk#l.
(Note: the case k; I > 0 shows that unequal pure-imaginary basis elements anticommute.)

Alternative basis elements: e,-e,- e, = e, - erey, ere,- e =€, ere, and epe e = e, ece. (However,
when n > 4 the 2"-ons are not flexible i.e. it is not generally true that x-y - x = x - y-x if x and y are 16-ons
that are not basis elements. They also are not right-alternative.)

Quadratic identity: If x is a 2"-on (over any field F with charF # 2), then x> + |x|* = 2 re x

Squares of imaginaries: If x is a 2"-on with re x = 0 (“pure imaginary”) then x* = —|x|? is nonpositive
pure-real.

Powering preserves imx direction

1.2.1.1.2 Niners
Niners are 2n-ons whose coordinates with index > 8 are zero. The index starts with 0.

9-flexibility xp - x=x - px, px - p=p - xp.



9-similitude unambiguity xp - x' =x - px™*, px-pt=p-xp™.
9-right-alternativity xp - p = x - p>, px-x=p - X°.
9-right-cancellation xp™ - p = x, px™* - x = p.

9-effect on inner products (x, yp) = (xp, v), (xp, yp) = |p| (X, V).
9-left-linearity (x + y)p = xp + yp, (p + g)x = px + gx.
9-Jordan-identity xp - xx = x(p - xx), py - pp = p(y * pp).

,,,,,

9-coordinate-Jordan-identity [xy - xx]o....s = [X(Y * XX)]o.....8-

9-anticommutativity for orthogonal imaginary 2"-ons

If (p, x) = re p =re x =0 then px = —xp.

. L 270 (1)
refl[x](t) ot - WX

What holds for the niners, also holds for the octonions.

1.3 Waltz details

The 16-ons lose the continuity of the map x = xy. Also, in general holds (x y)x # x (y x) for 16-ons.
However, for all 2"-ons the base numbers fulfill (e; e;) e; = e; (e; ;). All 2"-ons feature a conjugate and
an inverse. The inverse only exists for non-zero numbers. The 2"-ons support the number waltz

c =ab/a.
(1)

Often the number waltz appears as a unitary number waltz

c =ubu (2)



where u is a unit size number and u* is its conjugate u u* = 1.

In quaternion space the quaternion waltz a b/a can be written as

ab/a= exp(Qrip)bexp(—21ip) (3)

=b-b, + exp2mip)b, exp(—21ip)

=b-b, + exp(dmip)b,

Ab = (exp(4migp)- 1)b, (4)

(cos(dmp)+ isin(Ame)-1)b;

exp(2mip)2isin(Rue)b;

Ab]l = 1|2 sin(2m @) by || (5)



Figure 1. The rotation of a quaternion by a second quaternion.

Another way of specifying the difference is:

Ab = (a-b-b-a)/a = 2-(axb)/a (6)

1Ab]| = 2 |lax bl|/ |lall (7)

10



Figure 2: The difference after rotation
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1.4 Spinors and matrices
In contemporary physics complex probability amplitude distributions (CPAD’s) are used rather than
QPAD'’s. Spinors and matrices are used to simulate QPAD behavior for CPAD’s.

1.4.1 Symmetries

The quaternionic number system exists in sixteen discrete symmetry sets (sign flavors). When the real
part is ignored, then eight different symmetry sets result. The values of a continuous distribution all
belong to the same symmetry set. The parameter space of the distribution may belong to a different
symmetry set.

»ONR
O RL
MONs)
NOF)
»@ B R
»& G R
»© RR
nay

Eight sign flavors
(discrete symmetries)
ColorsN,R,G,B,R,G,B, W

Right or Left handedness R,L

Figure 3: Sign flavors

The red block indicates sign up or down with respect to the base sign flavor. For quaternionic
distributions the (quaternionic) parameter space acts as base sign flavor.

The 3D Kronecker delta tensor
5__2{1 if i =j (1)
J=l0if i #j
The fully antisymmetric Levi-Civita tensor
1 if i,j, k is an even permutation of 1,2,3 (2)

€ijk= 0 ifatleasttwo of i,j, k are equal
—1 if i,j, k is an even permutation of 1,2,3

! This picture has been changed!

12



1.4.2 Spinor

We use square brackets for indicating spinors. Spinors use real component functions ;. . Complex
component functions y;would result in spinor representations of bi-quaternions. Bi-quaternions do
not form a division ring2.

A 2x2 spinor is defined by the row:

[¥] = [[yol[¥]] (1)
[W]* = [[¥]1[Yo]] (2)
Where
[Yol = [l}(;o 490] )
I Z w, — iy 4
] [svl Vi, —w 2] @
Spinors obey®
[P] + [@] = 2P, d)] (5)
(Y] — [@] = 2i[¥ X ] (6)

1.4.2.1 Sign flavors
The relation with the sign flavors is

[¥] = [?]9 = [9©] (1)

? The author uses its own notation for spinors and sign flavors
® http://en.wikipedia.org/wiki/Spinors_in_three_dimensions
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[#]© = [p@] )

[#1® =[] G)
[¥1® = [v©] @
] =[]0 =[] (5)
[#1]® = [$©] (©)
[#]? =[] )
[¥19 = [»®] (®)

1.4.3 Dirac spinors
The 4% 4 spinors target the application in the Dirac equation.

A general 4X4 spinor is defined by the column:

h%J%Wﬂ[W] &

A compacted spinor |¥[ is a 1X4 matrix consisting of real functions that represent all sixteen sign
flavors of a QPAD.

Tl [l®]  [#) 2)
WLhWH_hW]Wﬂ
@, 0 v, Y -y,
B 0 W, o+, -,
I 2N -+ W, 0
—p, — iy, 4, 0 w,

1.4.4 Spinor base
The a and 8 matrices form the base of spinor |¥[ and its elements

[0 i] (1)

14



[0 J (2)

-j 0
a=]0 K 3)
_[0 1 4
B=l] (4)

i,j and k represent imaginary base vectors of the simulated quaternion. 8 represents the conjugation
action for the spinor.

A relation exist between a4, a5, a3 and the Pauli? matrices 04,07,03:

015[01 (1), 025[? Bi]’ 035[3 _01] (5)
1 —1, i— oy, jr— oy, k— o5 (6)

1.4.5 Gamma matrices
This combination is usually represented in the form of gamma matrices.

In Dirac representation, the four contravariant gamma matrices are

10 0 0 0 0 0 1 (1)
o_lo 1 0 o0 t_lo 0o 10
"=lo o =1 o] Y= ]lo -1 0 of
00 0 -1 1 0 0 0
0 0 0 —i 0 01 0
,_|o o i o s_|o o0 0 -1
Y"=lo i o ol Y =[=1 0 0 o
i 00 0 0 1.0 0

* http://en.wikipedia.org/wiki/Pauli_matrices
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It is useful to define the product of the four gamma matrices as follows:

(2)
Yo =iyOyly?yd =

SR OO
_ o oo
S OO
S O RO

The gamma matrices as specified here are appropriate for acting on Dirac spinors written in the Dirac
basis; in fact, the Dirac basis is defined by these matrices. In the Dirac basis®:

o[l O k_| O Gk] s [0 1 (3)
=l Sl —ok ol Y i o

This corresponds with a; = y*, p = y°.

Apart from the Dirac basis, a Weyl basis exists
0: B:O I k:[o Gk] 5=_I 0 (4)
Al VI R ] WP I G P

The Weyl basis has the advantage that its chiral projections® take a simple form:

b= -yl =[] o] 5)
Yr=2% A+ ¥l =) 7]l Q

> http://en.wikipedia.org/wiki/Gamma_matrices#Dirac_basis
6 http://en.wikipedia.org/wiki/Chirality_(physics)

16
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w1=[0 Y 7

1.5 Differentiation in flat space

We treat quaternionic distributions as if they possess a continuous parameter space.
The differential vector operator V is in Cartesian coordinates given by

9] (1)

<
I

INgE
D

QO

£

=1

The flat quaternionic differential operator V is in Cartesian coordinates given by

3 3 9
V=Zeivl Z 6_ =(1,i,j, k)

i=0 i=0

Vf = Z ele] (')x
0j= t

i=

(2)
(3)

1.6 Differentiation in curved space

The distance function (x) has a flat parameter space that is spanned by the rational or the
real quaternions7. However, in this section we treat g (x) as if it has a continuous parameter
space. Thus we, treat the A-type (x) as if it is a B-type g (x). That makes it possible to use
regular differential calculus. The full quaternionic difference operator dg is given by

> (1)

3 3 3
0§
o= Yot an = an = 0 Y 3
ox,
u=0 u=0 v=0

u=0

Here the coefficients g# are quaternionic coefficients, which are determined by the

quaternionic distance function g(x).
§(x) defines a curved target space. This curved space can act as parameter space to other

qguaternionic distributions.

(2)
[J.
axu p z eVpV

The distance function g (x) may include an isotropic scaling function a(t) that only depends on
progression T. It defines the expansion/compression of the curved space.

’ http://en.wikipedia.org/wiki/Quaternion_algebra#Quaternion_algebras_over_the_rational_numbers
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The quaternionic infinitesimal interval dg defines the quaternionic metric of the curved space
that is defined by g (x).

In this way, the quaternionic function g({), which has a curved parameter space defined by

¢ = g(x) corresponds to a new function h(x)= g(2(x)), which has a flat parameter space. The
flattened nabla V is defined as:

3 3 3
= 99(Q) _ 99,
v

3 3 3 2, a(# (3)
2,5 0,4 ). 5¢. o,

v=0 v=0 A=0 1=0 =0
3 3 3
SR PRILZ
ACu
] 66# Oxv
2 Coordinate systems
2.1 Cylindrical circular coordinates
2.1.1 Base vectors
2.1.1.1  Cartesian to cylindrical circular
p = x; cos(0) + x, sin(0) (1)
@ = —x, sin(8) + x, cos(0) (2)
Z=X3 (3)
2.1.1.2  Cylindrical circular to Cartesian
x, = pcos(0) — @ sin(9) (2)
x, = psin(6) + ¢ cos(0) (2)
X3 =2 (3)
2.1.1.3 Directed line element
= ode & = (1)
dl = dx T e,dp +eypdp +e,dz
2.1.1.4 Solid angle element
dQ =sin(6)do deo (1)

18



2.1.15 Directed area element

ds = e, r*>dQ + eg rsin(0) dr dp + e, rdrdo

2.1.1.6 Volume element

dV =dx3 =drr?dQ

2.1.1.7  Spatial differential operators

a = a(r,0,p)
a=a(r0,p)
Gradient
Vo = oa N 10a N 1 a
* =l G T 150 e‘prsin(é’) 10

Divergence
V.a) = 1 d(ra,) 1 0d(aysin(0)) 1 day
=2 oy rsin( 9) 00 rsin(0) ¢
Curl
Ixase, '1 a(a(psin(e))_aaq, +egl 1 da, da,
rsin( 6) 06 dp r \sin(9) dp  Or

1 (07 ay Bar)
+ —_— — —
€o7 ( ar 00

The Laplacian

1 0%a

10 <zaa> 1 d
- r2 sin*( 9) g2

Ja
r or) 2 sin( 9) a0 (sm( 2 %) *

2.1.2 Polar coordinates
The equivalent to rectangular coordinates in quaternion space is (a, ay, ay, a,)

19
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a=a +iay +ja, £t ija, (1)

The equivalent to polar coordinates in quaternion space is

ar = |lall cos(y) (2)
ax = llall sin(y) sin(B) cos(¢p) (3)
ay = [lall sin() sin(B) sin(¢) (4)
a, = |lall sin(¥) cos(6) (5)

sin(y), where = (0, ), is known as the (imaginary) amplitude of the quaternion.
Angle 8 = (0, ) is the (co-)latitude and angle ¢ = (0,2m) is the longitude.

For any fixed value of Y, 8 and ¢ parameterize a 2-sphere of radius sin(i), except for the degenerate
cases, when i equals 0 or i, in which case they describe a point.

This suggests the following structure of the argument A

a = |lall exp(i- ¥) (6)
= llall (cos(¥) + Tsin(y)) (7)
= a; + llallTsin() = a; +a (8)

20



The imaginary number T may take any direction.

2.1.3 3 sphere

A 3-sphere is a compact, connected, 3-dimensional manifold without boundary. It is also simply-
connected. What this means, loosely speaking, is that any loop, or circular path, on the 3-sphere can be
continuously shrunk to a point without leaving the 3-sphere. The Poincaré conjecture? proposes that the
3-sphere is the only three dimensional manifold with these properties (up to homeomorphism)®.

The round metric on the 3-sphere in these coordinates is given by

ds? = dy? + sin?(y) (d8? + sin?(0)d¢?) (1)

The volume form is given by

AV = sin?() sin(8) dy * d " do (2)

The 3-dimensional volume (or hyperarea) of a 3-sphere of radius r is

2m?rd (3)

The 4-dimensional hypervolume (the volume of the 4-dimensional region bounded by the 3-sphere) is

¥ m? rt (4)

The 3-sphere has constant positive sectional curvature equal to 1/r2.

The 3-sphere has a natural Lie group structure SU(2) given by quaternion multiplication.

The 3-sphere admits non-vanishing vector fields (sections of its tangent bundle). One can even find three
linearly-independent and non-vanishing vector fields. These may be taken to be any left-invariant vector

® http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
? http://en.wikipedia.org/wiki/3-sphere

21


http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
http://en.wikipedia.org/wiki/3-sphere

fields forming a basis for the Lie algebra of the 3-sphere. This implies that the 3-sphere is parallelizable. It
follows that the tangent bundle of the 3-sphere is trivial.

There is an interesting action of the circle group T on $2 giving the 3-sphere the structure of a principal
circle bundle known as the Hopf bundle. If one thinks of S$3 as a subset of €2, the action is given by

(z1,22) A = (21 Az, D) Ve (5)

The orbit space of this action is homeomorphic to the two-sphere $2. Since $2 is not homeomorphic
to $% x S1, the Hopf bundle is nontrivial.

2.1.4 Hopfcoordinates
Another choice of hyperspherical coordinates, (1, &3, £,), makes use of the embedding of $3 in C2. In
complex coordinates (z;,z,) € C? we write

z1 = exp(i§;) sin(n) (1)

z, = exp(i&;) cos(n) (2)

Here 1 runs over the range 0 to /2, and &; and &, can take any values between 0 and 27 These
coordinates are useful in the description of the 3-sphere as the Hopf bundle

St »§3 - §? (3)

For any fixed value of n between 0 and 7 /2, the coordinates (5, ;) parameterize a 2-dimensional torus.
In the degenerate cases, when 1 equals 0 or /2, these coordinates describe a circle.

The round metric on the 3-sphere in these coordinates is given by

ds? = dn? + sin?(n) (d¢Z + cos?(n) d {3) (4)

and the volume form by
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dv = sin(n) cos(n) dn"dd,"dq, (5)

2.1.5 Group structure

Because the set of unit quaternions is closed under multiplication, S$3 takes on the structure of a group.
Moreover, since quaternionic multiplication is smooth, S can be regarded as a real Lie group. It is a non-
abelian, compact Lie group of dimension 3. When thought of as a Lie group S is often denoted Sp(1) or
U(1, H).

It turns out that the only spheres which admit a Lie group structure are S$?, thought of as the set of unit
complex numbers, and $3, the set of unit quaternions. One might think that S7, the set of unit
octonions, would form a Lie group, but this fails since octonion multiplication is non-associative. The
octonionic structure does give S7 one important property: parallelizability™. It turns out that the only

spheres which are parallelizable are $*, $3, and S”.

By using a matrix representation of the quaternions, H, one obtains a matrix representation of $3. One
convenient choice is given by the Pauli matrices:

a +1-ay ay+
—ay +1-a, ag —

t a4y (1)

—

(a. + ay-i+ay-j +az-k)=[

This map gives an injective algebra homomorphism from H to the set of 2x2 complex matrices. It has the

property that the absolute value of a quaternion g is equal to the square root of the determinant of the
matrix image of g.

The set of unit quaternions is then given by matrices of the above form with unit determinant. This
matrix subgroup is precisely the special unitary group SU(2). Thus, S as a Lie group is isomorphic to
SU(2).

Using our hyperspherical coordinates (17, £, ;) we can then write any element of SU(2) in the form

exp(1-&;) - sin(m) exp(1-§&,) - cos(m) 2)
—exp(I- &) -cos(n) exp(—1-§;)-sin(n)

Another way to state this result is if we express the matrix representation of an element of SU(2) as a
linear combination of the Pauli matrices. It is seen that an arbitrary element U € SU(2) can be written as

1% http://en.wikipedia.org/wiki/Parallelizability
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U=a-1+ Z ay I ®)

n=xy,z

The condition that the determinant of U is +1 implies that the coefficients «,, are constrained to lieona
3-sphere.

2.1.6 Versor
Any unit quaternion g can be written as a versor:

u=-exp(y) =cos@@) + 1 sin(yp) (1)

This is the quaternionic analogue of Euler's formula. Now the unit imaginary quaternions all lie on the
unit 2-sphere in Im H so any such 7 can be written:

i = icos(e)sin(0) + jsin(e) sin(0) + k cos(0) (2)

2.1.7 Symplectic decomposition
Quaternions can be written as the combination of two complex numbers and an imaginary number k
with unit length.

q a + bj;wherea = w + xi;andb = y + zi

w + xi + yj + zk

<
I
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2.1.8

2.18.1
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Quaternionic algebra

Quaternions

3
a= (ao,al,az,a3)=Zeuau=a0+ia1 +ja,+kaz;=ay+a
pu=0

*

a =a0_a
a‘a=aa* =|al?

3

(a,b) = Z a,b, = 8,,a,b, = |al|b| cos(8)
u=1

axb=-bxa= i(eijk el-ajbk)

ab=ayb+ bya—(ab)taxbh

The colored + indicates the handedness of the vector cross product.

ab= —(a,b)t+axb

a(b+c)=ab+ac

(@+ b)c=ac+bc

(ab)c = a(bo)

(a,bxc)= (axb,c)

ax (b xc)=b(ac)—c(a,b)

(ax b) X ¢ = b{a,¢) — a(b, c)
ax(bxc)+bx(cxa)+cx(axb)=0
(axb,cxd)=(abx(cxd))=(ac)b.d)—(a,d)b.c)

(axb)x(cxd)={(axb,dyc—{axb,c)d

(1)

(2)
(3)
(4)

(5)
(6)

(7)
(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)

16)



3 Quaternionic distributions
We consider three kinds of quaternionic distributions

A. Quaternionic distributions with a discrete parameter space. That parameter space must be flat
and it is spanned by the rational quaternions™'.

B. Quaternionic distributions with a continuous parameter space. That parameter space is flat and
it is spanned by the real quaternions.

C. Quaternionic distributions with a continuous parameter space. That parameter space may be
curved. The curvature is defined by a category A type quaternionic distribution. The C-type
guaternionic distribution has a countable set of values. It inherits the sign flavor of the
guaternionic distribution that defines the curvature of its parameter space.

D. Quaternionic distributions with a continuous parameter space. That parameter space may be
curved. The curvature is defined by a category B type quaternionic distribution. The C-type
guaternionic distributions inherit the sign flavor of the quaternionic distribution that defines the
curvature of their parameter space.

3.1.1 Basic properties
A continuous quaternionic distribution contains a scalar field in its real part and a vector field in its
imaginary part.

f@) = fo0) + fx) 3)
af(x) = aof @)+ fox) a—{a,f(x)) + ax f(x) 2)
f@) b= fo()b+ by f(x) = (f(x),b) + f(x) X b 3)
The distributions follow the rules for the quaternion algebra.
a(f(x) +9() =af(x) +ag() (4)
(@ + b)f(x) = af(@)+ b f(x) (5)
f) g(x) = fo()g@) + go (COF @) = (F(x), g()) £ F(x) X g(x) (6)
(fFDghE) = fF)(gx) h(x)) (7)

3.1.2 Symmetries
Continuous quaternionic distributions keep the same discrete symmetries (sign flavor) throughout their
domain. The sign flavor of the parameter space acts as reference sign flavor.

3.1.3 Differentials
The quaternionic nabla acts similarly as a normal quaternion

VE@) +9(@x) =Vf(x)+Vgx) (1)

1 http://en.wikipedia.org/wiki/Quaternion_algebra#Quaternion_algebras_over_the_rational_numbers
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V() = Vof(x) + Vfo(x) —(V,f(x)) £V X f(x)

However

and

Further
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V(b c) £ (V b)c

Vibc) #(Vb)c+ bVc

(V,V)a = V2a

(VxV,a)=0

(V,Vxa)=0

VxVa=0

Vb= —(V,b)+Vxb
V(aB)=aV g+ fVa

V(ea) =aVx a—a(V,a)+ (Va)a
(V,a a) = aVa + a(V, a)

(V,a xb) = (b,V x a) — (a,V x b)
(Va,VB)=(V,aV B) — aV?S
(Va,Vxa)=-V,ax Va

(VX a,Vx b)=(b,Vx(Vxa))—{(a,Vx (Vx b))
Vx(aa) =aVxa—axVa

VX (aVPB) = (Va) X VB

(2)

(3)

(4)

(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

(18)



4 The separable Hilbert space H,

We will specify the characteristics of a generalized quaternionic infinite dimensional separable Hilbert
space. The adjective “quaternionic” indicates that the inner products of vectors and the eigenvalues of
operators are taken from the number system of the quaternions. Separable Hilbert spaces can be using
real numbers, complex numbers or quaternions. These three number systems are division rings.

4.1 Notations and naming conventions
{f.}x means ordered set of f, . It is a way to define functions.

The use of bras and kets differs slightly from the way Dirac uses them.

|f> is a ket vector, f> is the same ket

<f| is a bra vector, <f is the same bra

A'is an operator. |A is the same operator
At is the adjoint operator of operator A. A| is the same operator as AT
| on its own, is a nil operator

|A] is a self-adjoint (Hermitian) operator

We will use capitals for operators and lower case for quaternions, eigenvalues, ket vectors, bra vectors
and eigenvectors. Quaternions and eigenvalues will be indicated with italic characters. Imaginary and
anti-Hermitian objects are often underlined and/or indicated in bold text.

>« means.sum over all items with index k.

Jxmeans.integral over all items with parameter x.

4.2 Quaternionic Hilbert space
The Hilbert space is a linear space. That means for the elements |f>, |g>and |h>and numbers a and b:

4.2.1 Ketvectors
For ket vectors hold
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[f>+ |g>=|g>+ |f>=|g+> (1)

(|f>+ |g>)+ |h>=|f>+ (|g>+ | h>) (2)
[(a+b)f>=|f>a+|f>b (3)
(If>+|g>)a=[f>a+ |g>a (4)
|f>-0 = |0> (5)
[f>1=|f> (6)

Depending on the number field that the Hilbert space supports, a and b can be real numbers, complex
numbers or (real) quaternions.

4.2.2 Bravectors
The bra vectors form the dual Hilbert space I-I,T of H,.

<f| +<g| =<g| +<f| = |g+f> (1)
(<f] +<g|) +<h| =<f]| + (<g| +<h]) (2)
<f (a +b)> = <f|-a + <f|-b=a <f| + b <f]| (3)
(<f| +<g|)-a =<f|-a+<g|-a=a"<f| +a <g| (4)
0-<f| =<0| (5)
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1<f| = <f| (6)

4.2.3 Scalar product
The Hilbert space contains a scalar product, also called inner product, <f|g> that combines HandH'in a
direct product that we also indicate with H,

The scalar product <f|g> satisfies:

<f|g + h> = <f|g> + <f|h> (1)

<fl{|g>a}; = {<f|g>}ga (2)

With each ket vector |g>in H belongs a bra vector <g| in I-I,T such that for all bra vectors <f| in I-I,T

<f|g>=<g|f>’ (3)
<f|f>=0when |f>=|0> (4)
<flag>=<f|g>a=<g|f> a=<ga|f> =(a"<g|f>) =<f|g>a (5)

In general is <f|a g> # <f a|g>. However for real numbers r holds <f|r g>=<fr|g>

Remember that when the number field consists of quaternions, then also <f|g> is a quaternion and a
guaternion q and <f|g> do in general not commute.

The scalar product defines a norm:

(6)

30



1] = v(<f]f>)

And a distance:

D(f.g)=|If-gll (7)

The Hilbert space H, is closed under its norm. Each converging row of elements of converges to an
element of this space.

4.2.4 Separable

In mathematics a topological space is called separable if it contains a countable dense subset; that is,
there exists a sequence {x, }n=, of elements of the space such that every nonempty open subset of the
space contains at least one element of the sequence.

Every continuous function on the separable space H is determined by its values on this countable dense
subset.

4.2.5 Base vectors
The Hilbert space H, is separable. That means that a countable row of elements {f,>} exists that spans the
whole space.

If <f,|fn> = &(m,n) = [1 when n = m; 0 otherwise]
then {|f,>} forms an orthonormal base of the Hilbert space.

A ket base {|k>}of H is a minimal set of ket vectors | k> that together span the Hilbert space H,

Any ket vector |f>in H, can be written as a linear combination of elements of {| k>}.

[f> =3 (Jk><k|f>) (2)

A bra base {<b|}of H' is a minimal set of bra vectors <b| that together span the Hilbert space H,.

Any bra vector <f| in H' can be written as a linear combination of elements of {<b|}.

(2)
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<f| = 3, (<f|b><b])

Usually base vectors are taken such that their norm equals 1. Such a base is called an othonormal base.

4.2.6 Operators
Operators act on a subset of the elements of the Hilbert space.

4.2.6.1 Linear operators
An operator Q is linear when for all vectors |f> and |g> for which Q is defined and for all quaternionic

numbers a and b:

|Qaf>+ |Qbg>=|a-Qf>+ |bQg>=|Qf>a+|Qg>b= (1)

Q(|f>a+|g>b)=Q(laf>+ |bg>) (2)

B is colinear when for all vectors |f> for which B is defined and for all quaternionic numbers a there

exists a quaternionic number ¢ such that:

|B-af>=|a-Bf>=|Bf>cac” (3)

If |f>is an eigenvector of operator A with quaternionic eigenvalue g, then is |b f> an eigenvector of A

with quaternionic eigenvalue b-a-b™.

A| = A" is the adjoint of the normal operator A. |A is the same as A.

<fA| g>=<fA"|g> (4)
A=A (5)
(A-B)"=B"A' (6)
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|B] is a self adjoint operator.

| is a nil operator.

The construct |f><g| acts as a linear operator. |g><f| is its adjoint operator.

Zn {lfn>'an'<fn|}r (7)

where a nis real and acts as a density function.

The set of eigenvectors of a normal operator form an orthonormal base of the Hilbert space.

A self adjoint operator has real numbers as eigenvalues.

{<q|f>}4is a function f(q) of parameter g.

{<g|g>}q is a function g(q) of parameter q.

When possible, we use the same letter for identifying eigenvalues, eigenvalues and the corresponding
operator.

So, usually |g> is an eigenvector of a normal operator Q with eigenvalues g.

{g} is the set of eigenvalues of Q.
{a}q is the ordered field of eigenvalues of g.

{la>}q is the ordered set of eigenvectors of Q.
{<q|f>}4is the Q view of |f>.

4.2.6.2 Normal operators

The most common definition of continuous operators is:
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A continuous operator is an operator that creates images such that the inverse images of open
sets are open.

Similarly, a continuous operator creates images such that the inverse images of closed sets are
closed.

A normal operator is a continuous linear operator.

A normal operator in H, creates an image of H, onto H. It transfers closed subspaces of H, into closed
subspaces of H.

Normal operators represent continuous quantum logical observables.

The normal operators N have the following property.

N:H=H (1)

N commutes with its (Hermitian) adjoint N'

N (2)

Normal operators are important because the spectral theorem holds for them.

Examples of normal operators are

e unitary operators: U" = U™, unitary operators are bounded;

o Hermitian operators (i.e., self-adjoint operators): N' = N;

e Anti-Hermitian or anti-self-adjoint operators: N' = -N;

e Anti-unitary operators: M=-1=1", anti-unitary operators are bounded;
e positive operators: N = Mm"

e orthogonal projection operators: N = N' = N?
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4.2.6.3 Spectral theorem

For every compact self-adjoint operator T on a real, complex or quaternionic Hilbert space H, there exists
an orthonormal basis of H, consisting of eigenvectors of T. More specifically, the orthogonal complement
of the kernel (null space) of T admits, either a finite orthonormal basis of eigenvectors of T, or a
countable infinite orthonormal basis {en} of eigenvectors of T, with corresponding eigenvalues {A,} C R,
such that A, — 0. Due to the fact that H, is separable the set of eigenvectors of T can be extended with a
base of the kernel in order to form a complete orthonormal base of H,.

If Tis compact on an infinite dimensional Hilbert space H, then T is not invertible, hence o(T), the
spectrum of T, always contains 0. The spectral theorem shows that o(T) consists of the eigenvalues {A,}
of T, and of O (if 0 is not already an eigenvalue). The set o(T) is a compact subset of the real line, and the
eigenvalues are dense in o(T).

A normal operator has a set of eigenvectors that spans the whole Hilbert space H,.

In quaternionic Hilbert space a normal operator has quaternions as eigenvalues.

The set of eigenvalues of a normal operator is NOT compact. This is due to the fact that H, is separable.
Therefore the set of eigenvectors is countable. As a consequence the set of eigenvalues is countable.
Further, in general the eigenspace of normal operators has no finite diameter.

A continuous bounded linear operator on H has a compact eigenspace. The set of eigenvalues has a
closure and it has a finite diameter.

4.2.6.4 Eigenspace
The set of eigenvalues {g} of the operator Q form the eigenspace of Q

4.2.6.5 Eigenvectors and eigenvalues

For the eigenvector |g> of normal operator Q holds

[Qg>=[gg>=|g>q (1)

<qQ'| =<qq’| =q <q| (2)
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Virs en (S F1Q @ >} = (< fla > q)q = {< q QTIf >} ={q" <qlf >'}q] (3)
The eigenvalues of 2"-on normal operator are 2"-ons

(4)

Q= nilei
j=0

The Q; are self-adjoint operators.
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4.2.6.6 Generalized Trotter formula
For bounded operators {4;} hold:

p p n (1)
14
lim | |eAJ'/n = exp E A; | = lim <1 y2=d
n-oo { 4 n-oo n

In general

P (2)
e4i
=1

4
exp ZA]- *

j=1 J

In the realm of quaternionic notion the Trotter formula is confusing.

4.2.6.7 Unitary operators
For unitary operators holds:

u'=u? (1)

Thus
U.U+= U+U :1 (2)

Suppose U =1+ Cwhere U is unitary and Cis compact. The equations U U* = U*U =1 and C= U - | show
that Cis normal. The spectrum of C contains 0, and possibly, a finite set or a sequence tending to 0. Since
U =1+ C, the spectrum of U is obtained by shifting the spectrum of C by 1.

The unitary transform can be expressed as:

U = exp(I-®/h) (3)
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h=h/(2'm) (4)

@ is Hermitian. The constant h refers to the granularity of the eigenspace.
Unitary operators have eigenvalues that are located in the unity sphere of the 2"-ons field.

The eigenvalues have the form:

u = exp(i-d/h) (5)

¢ is real. i is a unit length imaginary number in 2"-on space. It represents a direction.

u spans a sphere in 2"-on space. For constant i, u spans a circle in a complex subspace.

4.2.6.7.1 Polar decomposition
Normal operators N can be split into a real operator A and a unitary operator U. U and A have the same
set of eigenvectors as N.

N=]|N||-U=A-U (1)

N=AU=UA (2)

= A- exp(I-©)/h)

= exp (O+T-0)/h)

@, is a positive normal operator.

4.2.6.8 Ladder operator

4.2.6.8.1 General formulation

Suppose that two operators X and N have the commutation relation:
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[N, X] = X (1)

for some scalar c. If |[n> is an eigenstate of N with eigenvalue equation,

INnNn>=|n>n (2)

then the operator X acts on |n> in such a way as to shift the eigenvalue by c:

[N-Xn>=[(X-N+[N, X]) n> (3)
= |(X-N + c-X) n>
= |X-Nn>+ | X n>c
= |Xn>n+ |Xn>c

= | X n>(n+c)

In other words, if |n>is an eigenstate of N with eigenvalue n then |X n> is an eigenstate of N with
eigenvalue n +c.

The operator X is a raising operator for N if c is real and positive, and a lowering operator for N if c is real

and negative.

If N is a Hermitian operator then ¢ must be real and the Hermitian adjoint of X obeys the
commutation relation:

[N, XT]=-cX' (4)
In particular, if Xis a lowering operator for N then X'is a raising operator for N and vice-versa.

4.2.7 Unit sphere of H

The ket vectors in H, that have their norm equal to one form together the unit sphere ® of H.

Base vectors are all member of the unit sphere. The eigenvectors of a normal operator are all member of
the unit sphere.

The end points of the eigenvectors of a normal operator form a grid on the unit sphere ®of H.
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4.2.8 Bra-ket in four dimensional space
The Bra-ket formulation can also be used in transformations of the four dimensional curved spaces.

The bra (f is then a covariant vector and the ket g) is a contra-variant vector. The inner product acts as a
metric.

s = {flg) (1)
The effect of a linear transformation L is then given by

s. = (f1Lg) (2)
The effect of a the transpose transformation LT is then given by

(fL 1g) = (fILg) (3)

For a unitary transformation U holds:

(UflUg) = (flg) (4)

These definitions work for curved spaces with a Euclidian signature as well as for curved spaces with a
Minkowski signature.

(VfIVg) = (fIV?g) = (f|Dg) (5)

4.2.9 Closure
The closure of H means that converging rows of vectors converge to a vector of H.

In general converging rows of eigenvalues of Q do not converge to an eigenvalue of Q.
Thus, the set of eigenvalues of Q is open.

At best the density of the coverage of the set of eigenvalues is comparable with the set of 2"-ons that
have rational numbers as coordinate values.

With other words, compared to the set of real numbers the eigenvalue spectrum of Q has holes.

The set of eigenvalues of operator Q includes 0. This means that Q does not have an inverse.

The rigged Hilbert space H can offer a solution, but then the direct relation with quantum logic is lost.
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4.2.10 Canonical conjugate operator P
The existence of a canonical conjugate represents a stronger requirement on the continuity of the
eigenvalues of canonical eigenvalues.

Q has eigenvectors {|g>}, and eigenvalues g.
P has eigenvectors {| p>}, and eigenvalues p.

For each eigenvector |g> of Q we define an eigenvector |p> and eigenvalues p of P such that:

<qlp>=<plg>=exp(-p-q/h) (1)

h = h/(2m) is a scaling factor. < q|p > is a quaternion.1is a unit length imaginary quaternion.

4.2.11 Displacement generators
Variance of the scalar product gives:

ihéd<qlp>= —p<qlp>dq (1)
ihé <plg>= —q<plqg>dp (2)

In the rigged Hilbert space H the variance can be replaced by differentiation.

Partial differentiation of the function <q| p> gives:
ihd/dqs <qlp>= —ps<qlp> (3)

., 0 (4)
tho—<plg>= —qs<plg>
Ps
4.3 Quaternionic L% space
The space of quaternionic measurable functions is a separable quaternionic Hilbert space. For example

quaternionic probability amplitude distributions are measurable.™

2 http://en.wikipedia.org/wiki/Lp_space#Lp_spaces
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This space is spanned by an orthonormal basis of quaternionic measurable functions. The shared affine
versions of the parameter space of these functions is called Palestra’®. When the Palestra is non-curved,
then this base has a canonical conjugate, which is the quaternionic Fourier transform of the original
base.

As soon as curvature of the Palestra arises, this relation is disturbed.

With other words: “In advance the Palestra has a virgin state.”

 The name Palestra is suggested by Henning Dekant’s wive Sarah. It is a name from Greek antiquity. It is a public
place for training or exercise in wrestling or athletics
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5 Gelfand triple

The separable Hilbert space only supports countable orthonormal bases and countable eigenspaces. The
rigged Hilbert space H that belongs to a separable Hilbert space H is a Gelfand triple. It supports non-
countable orthonormal bases and continuum eigenspaces.

A rigged Hilbert space is a pair (H, @) with H, a Hilbert space, @ a dense subspace, such that @ is given a
topological vector space structure for which the inclusion map 7 is continuous. Its name is not correct, because
it is not a Hilbert space.

Identifying H, with its dual space H*, the adjoint to i is the map
i“H=H - o~ (1)

The duality pairing between @ and @* has to be compatible with the inner product on H, in the sense
that:

(ulv>¢°><¢°* = ('Ll., V)I—[ (2)

wheneveru € @ c Handv € H = H* c ¢*.

The specific triple (@ c H, c @*) is often named after the mathematician Israel Gelfand).

Note that even though @ is isomorphic to @* if @ is a Hilbert space in its own right, this
isomorphism is not the same as the composition of the inclusion i with its adjoint i*

i*i:® cH=H" - ¢ (3)
6 Fourier transform

The Fourier transformation is a linear operator. This transform transfers functions to another parameter
space. As a consequence the Fourier transform has no eigenvalues, but the Fourier transform knows
functions that are invariant under Fourier transformation.

The Fourier transform cannot cope with functions that have curved parameter spaces. However, it is
possible to reduce the parameter space to a domain in which the Fourier transform keeps acceptable
accuracy. Another possibility is that the target function is flattened, such that its parameter space
becomes flat.
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The Fourier transform transfer a orthonormal set of base functions into a new a orthonormal set such
that each member of the new set can be written as a linear combination of members of the old set such
that none of the coefficients is zero. In fact all coefficients have the same norm.

The Fourier transform converts the nabla operator into an operator that does not differentiate but
multiplies the converted function with a factor. That operator will be called a momentum operator.

The Fourier transform has an inverse. It turns the momentum operator into the nabla operator.

The Fourier transform converts convolution of two functions into the multiplication of the two functions
and vice versa.

In order to simplify the discussion we restrict it to the case that the parameter spaces of the functions
are not curved.

6.1 Fourier transform properties

6.1.1 Linearity
The Fourier transform is a linear operator

Flg(@) = §») (1)

Flag(q) +bh(q) = aglp)+bhp) (2)

1.1.1 Differentiation

Fourier transformation converts differentiation into multiplication with the canonical conjugated
coordinate.

g(q) =Vf(q) (1)
g() =pf(p) (2)
8(q) = V(@) = Vofo(q) TV, (@) £ Vof (@) + Vfo(q) + (£V X f(q)) (3)

8(k) = kF (k) = kofo (k) F (k, F (kD) £ koF (k) + Kfo(k) £k x (k) @
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For the imaginary parts holds:

g8(a) = £Vof(@) + Vfo(q) + (£V x f(q)) (5)

B(k) = +kof (k) + kfy(k) + (+k x F(k)) (6)
By using

VX Vfo(q) =0 )
and

(V,V X f(q)) =0 ®)

It can be seen that for the static part (V,f(q) = 0) holds:
g(@) = Vfo(q) + (xV x f(q)) (9)

800 = Kfo(h) + (+kx F(ho)) (10)

1.1.2 Parseval’s theorem

Parseval’s theorem runs:
[r@-g@-a,= [Fo)-50-ay &
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This leads to

[ir@r-ay = [l -y @

1.1.3 Convolution

Through Fourier transformation a convolution changes into a simple product and vice versa.

F(f@eog@) = f®)g®) (1)

6.2 Helmholtz decomposition
The Helmholtz decomposition splits the static vector field F in a (transversal) divergence free part F; and
a (one dimensional longitudinal) rotation free part F;.

F=F,+F =Vxf—Vf, (1)

Here f, is a scalar field and f is a vector field. In quaternionic terms f;, and f are the real and the
imaginary part of a quaternionic field f. F is an imaginary quaternionic distribution.

|”

The significance of the terms “longitudinal” and “transversal” can be understood by computing the local
three-dimensional Fourier transform of the vector field F, which we call F. Next decompose this field, at
each point k, into two components, one of which points longitudinally, i.e. parallel to k, the other of

which points in the transverse direction, i.e. perpendicular to k.

F(k) = Fy(k) + F.(k) (2)
(k,F(k)) =0 (3)
k x Fy(k) = 0 (4)
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The Fourier transform converts gradient into multiplication and vice versa. Due to these properties the
inverse Fourier transform gives:

F=F,+F, (5)
(V,F)=0 (6)
VXF, =0 (7)

So, this split indeed conforms to the Helmholtz decomposition.

This interpretation relies on idealized circumstance in which the decomposition runs along straight lines.
This idealized condition is not provided in a curved parameter space. In curved parameter space the
decomposition and the interpretation via Fourier transformation only work locally and with reduced
accuracy.

6.2.1 Quaternionic Fourier transform split

The longitudinal Fourier transform represents only part of the full quaternionic Fourier transform. It
depends on the selection of a radial line k(q) in p space that under ideal conditions runs along a straight
line.

F(9(@) = F(g(q), k(q)) (1)

Or

Filo@) 2 F(a1@) 2)

It relates to the full quaternionic Fourier transform F

47



Flg@) = 3 (3)
The inverse Fourier transform runs:
FHI®) = 9@ (4)

The split in longitudinal and transverse Fourier transforms corresponds to a corresponding split in the
multi-dimensional Dirac delta function.

6.3 Fourier integral
For the bra-ket inner product holds:

<q|Pf>=h-V,<q|f>=10-V, /(@)= gl (1)

= f<q|p >-<plg >
14

The static imaginary part is

<q|lPf>=hV,<q|f >=h-Vf' () = glq) (2)

= Im f<q|p >-<plg> =flm(< qlp >-<plg >)
p p

f Im(< qlp >< plgi >) + f Im(< qlp >< plge >)
14 14
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=f1m(< qlp > 1()) +f1m(< qlp > g+(p))
p p

The left part is the longitudinal inverse Fourier transform of field g(p).
The right part is the transverse inverse Fourier transform of field g(p).

For the Fourier transform of g(q) holds the split:

glp) = flm(< plqa > 9:1(q)) +f1m(< vlq > g+(q)) 3

q p

= flm(< rlg > g9(q))
q

The longitudinal direction is a one dimensional (radial) space. The corresponding transverse direction is
tangent to a sphere in 3D. Its direction depends on the field g(q) or alternatively on the combination of
field f and the selected (ideal) coordinate system Q.

For a weakly curved coordinate system @ the formulas hold with a restricted accuracy and within a
restricted region.

6.3.1 Alternative formulation
The reference S. Thangavelu* provides an alternative specification of the multidimensional Fourier
transform .

6.4 Functions invariant under Fourier transform
In this section we confine to a complex part of the Hilbert space.

See http://en.wikipedia.org/wiki/Hermite_polynomials.

There exist two types of Hermite polynomials: (1, 2)

" http://www.math.iitb.ac.in/atm/fahal/veluma.pdf
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1. The probalist’s Hermite polynomials:

ngob(z) = (=" eXp(l/ZZZ) % exp(—l/zzz).

2. The physicist’s Hermite polynomials

n

dx

HE™S(2) = (=1)" exp(z?)

These two definitions are not exactly equivalent; either is a rescaling of the other:

HP™ (z) = 272 HY"°P (2/2)

In the following we focus on the physicist’s Hermite polynomials.

The Gaussian function ¢(z) defined by

@(x) = exp(-m z*)

is an eigenfunction of F. It means that its Fourier transform has the same form.

As F* = I any \in its spectrum o (F) satisfies A*= 1: Hence,

o(F) = {1;,-1; i;—i}.

We take the Fourier transform of the expansion:

oo

exp(—% z%+ 2zc-c?) = Z exp(—% z%) H,(z) ¢ /n!

n=0

First we take the Fourier transform of the left hand side:
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— exp(—z*) = exp(¥2z*) z-— exp(—¥%2z*)

(3)

(4)

(5)

(6)



L foo exp(—k zp,) exp(—% z?> + 2zc- c?) dz 7)
m Z=—00 z
= exp(—%pZ — 2kp,c + c?)
= Z exp(=¥2p) Hy(p,) (—k )" /n!
n=0
The Fourier transform of the right hand side is given by
(8)

1~ [©
— exp(—=k zp,) - exp(—% z?) H,(z) c"/n! dz
m;fzwr)( D) - exp(—¥ 22) Hy(2) "/

Equating like powers of c in the transformed versions of the left- and right-hand sides
gives

% f;i_oo exp(—k z p,) - exp(—% z?) H,(z) ¢"/n! dz (9)

n

C
= (k)" - exp(—% p?) H,(p,) —

Let us define the Hermite functions i,,(z)
Yn(2) ¥ < zlthy > = cy exp(=Y2%) Hn(2) (10)
|F b >= | > (K)" (11)
with suitably chosen ¢, so as to make
I¥all* = 1 (12)

_tr (13)
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The importance of the Hermite functions lie in the following theorem.
“The Hermite functions y,; n € N form an orthonormal basis for L%(R)”
Consider the operator
H = —1/2%+ Y 722 (14)
Apply this to P, (2):

H-Yp(2) = (Y2 + 1) Yn(2)

(15)
Thus, Y, is an eigenfunction of H.
Letf = Y4k be any of the Hermite functions. Then we have
< (16)
Z fly + n)- exp(—Z nkx(y+ n))

n=—oo

= (—k)/ Z fix + n)expRnukny)

n=—oo

The vectors |,> are eigenvectors of the Fourier transform operator with eigenvalues (-k)". The
eigenfunctions ,(x) represent eigenvectors | > that span the complex Hilbert space Hy.

For higher n the central parts of 1,,(x) and [1},,(x)|? become a sinusoidal form.
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Figure 4

A coherent state is a specific kind of state’® of the quantum harmonic oscillator whose dynamics most
closely resemble the oscillating behavior of a classical harmonic oscillator system. The ground state is a

squeezed coherent state’’.

> http://en.wikipedia.org/wiki/Coherent_state
'® States
7 Canonical conjugate: Heisenberg’s uncertainty
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6.5 Special Fourier transform pairs
Functions that keep the same form through Fourier transformation are:

f(q) = exp(—Iql|?) (1)
_ 1 (2)

flq) = il

f(q) = comb(q) (3)

The comb function consists of a set of equidistant Dirac delta functions.

Other examples of functions that are invariant under Fourier transformation are the linear and spherical
harmonic oscillators and the solutions of the Laplace equation.

6.6 Complex Fourier transform invariance properties
Each even function f(q) < f(p) induces a Fourier invariant:

h(q) =V2r f(q) + f(@). (1)
h(q) = V2m h(q) (2)

Each odd function f(q) < f(p) induces a Fourier invariant:

h(@) =V2r f(@) - f(a). (3)

A function f(q) is invariant under Fourier transformation if and only if the function f satisfies the
differential equation
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’r@ _

5q7 t2f(q) = a f(q), for some scalar a € C. (4)

The Fourier transform invariant functions are fixed apart from a scale factor. That scale factor can be 1,
k, -1 or —k. k is an imaginary base number in the longitudinal direction.

Fourier-invariant functions show iso-resolution, that is, Ap=Aqin the Heisenberg’s uncertainty relation.

For proves see: http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf.

7 Quaternionic probability amplitude distributions

Continuous quaternionic distributions contain a scalar field in their real part and an associated vector
field in their imaginary part. In a quaternionic probability amplitude distribution (QPAD), the scalar field
can be interpreted as a scalar potential and will then correspond to a distribution of the density of
property carriers. The associated vector field can be interpreted as a vector potential and will then
correspond to a distribution of the current density of these carriers. The squared modulus of the value of
the QPAD can be interpreted as the probability density of the presence of the carrier of the charge at the
location that is specified by the parameter. The charge can be any property of the carrier or it stands for
the ensemble of the properties of the carrier. The QPAD inherits the sign flavor of the quaternionic
distribution that defines the curvature of its parameter space.

7.1 C-type QPAD

If a QPAD is a type C quaternionic distribution, then an A-type distance function defines the curvature of
the parameter space of the QPAD. The carriers can be interpreted as the function values of this distance
function. In this case the carriers are tiny patches of the parameter space of the QPAD. Their charge is
formed by the discrete symmetry set (sign flavor) of the QPAD. This type of QPAD is suitable for
application in quantum fluid dynamics.

7.2 D-type QPAD

If a QPAD is a type D quaternionic distribution, then an B-type distance function defines the curvature of
the parameter space of the QPAD. The carriers can be interpreted as elements of a medium like a gas or
a fluid. This type of QPAD is suitable for application in conventional fluid dynamics.

7.3 Differential equation

For QPAD’s the equation for the differential can be interpreted as a differential continuity equation.
Another name for continuity equation is balance equation. The differential continuity equation is paired
by an integral continuity equation. The differential equation runs:
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9(@) = go(@) + g(q) =Vf(q)

= Vofo(@) +(V.f(q))

+Vof (@) + Vfo(@) + (£V X £(q))

7.4 Continuity equation
Let us approach the balance equation from the integral variety of the balance equation.

When py(q) is interpreted as a charge density distribution, then the conservation of the corresponding
charge® is given by the continuity equation:

Total change within V = flow into V + production inside V (1)

In formula this means:

d v (2)
- Po av = npg— as + So av
dt s c
14 14
(3)
Vopo av = (V, p) av + So av
14 14 14

The conversion from formula (2) to formula (3) uses the Gauss theorem®. Here i is the normal vector
pointing outward the surrounding surface S, v(t, q) is the velocity at which the charge density py (7, q)
enters volume V and s is the source density inside V. In the above formula p stands for

p = pov/c (4)

It is the flux (flow per unit area and unit time) of pg .

18 Also see Noether’s laws: http://en.wikipedia.org/wiki/Noether%27s_theorem
¥ http://en.wikipedia.org/wiki/Divergence_theorem
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The combination of py(z, @) and p(t, q) is a quaternionic skew field p(t, q) and can be seen as a
probability amplitude distribution (QPAD).

pPEpotp (5)

p(t, q)p* (1, q) can be seen as an overall probability density distribution of the presence of the carrier of
the charge. py (7, q) is a charge density distribution. p(t, q) is the current density distribution.

This results in the law of charge conservation:

$o(T, @) = Vopo (T, @) F(V, (po (. Q)v(1,q) + V x a(z, q))) (6)

=Vopo (T, q) +(V,p(z,q) + A(7,q))

= Vopo(, @) + (v(z,q), Vpo(z, @) +(V,v(7, Q) po(T, q)

+HV,A(7, q))

The blue colored + indicates quaternionic sign selection through conjugation of the field p(t, q). The
field a(t, q) is an arbitrary differentiable vector function.

(V,Vxa(r,q)=0 (7)

A(1,q) & V X a(t, q) is always divergence free. In the following we will neglect A(z, q).

Equation (6) represents a balance equation for charge density. What this charge actually is, will be left in
the middle. It can be one of the properties of the carrier or it can represent the full ensemble of the
properties of the carrier.
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Up to this point the investigation only treats the real part of the full equation. The full continuity
equation runs:

s(t,q) = Vp(r,q) = so(7,q) +5(7,q) (8)
= Vopo(t, @) T(V,p(t, @) + Vop(z,) + Vpo(z,q) + (+V x p(z,q))
= Vopo(1,@) F (v(7,9), Vpo (v, @) F (V,v(z, @) po (7, @)
Vo0 (7, q) + Vopo (T, @) + Vpo(7,q)
+(+(po(z, @) V x v(1,q) — v(1,q) X Vpo(7,q))
$o(T, @) = 2Vopo (7, @) + (v(9), Vpo (7, @) + (V,v(7,9)) po (7, ) (9)
s(t,q) = £Vv(7, @) + Vpo(7,q) (10)
+ (+(po(1, @) VX v(x,q) — v(x, @) X Voo (7, @)

The red sign selection indicates a change of handedness by changing the sign of one of the imaginary
base vectors. Conjugation also causes a switch of handedness. It changes the sign of all three imaginary
base vectors.

In its simplest form the full continuity equation runs:
s(q,7) = Vp(q,7)

Thus the full continuity equation specifies a quaternionic distribution s as a flat differential Vp.
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When we go back to the integral balance equation, then holds for the imaginary parts:

d = = (4)
— | pdV =—=9np,dS—PnxpdS+ | sdV
dt s B

\%4 |4
fVOpde—prOdV—fVXpdV+fst ()
\%4 \%4 4 4

For the full integral equation holds:

| =

jpdV+fﬁpdS=fst (6)
‘L'V s

%4

U

Vpdv=fsdv )

14

S S—

Here 71 is the normal vector pointing outward the surrounding surface S, v(t, q) is the velocity at which
the charge density p, (7, @) enters volume V and s, is the source density inside V. In the above formula p
stands for

PoV
P=P0+P=P0+T (8)

It is the flux (flow per unit of area and per unit of progression) of p; . t stands for progression (not

coordinate time).
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7.5 Fluid dynamics
The quaternionic continuity equation is the foundation of quaternionic fluid dynamics. Depending on the
nature of the streaming medium, this branch of physics exists in two forms.

e |n conventional fluid dynamics the streaming charge carriers are elements of a gas or a liquid.

e |n quantum fluid dynamics the streaming charge carriers are tiny patches of the parameter space
of the QPAD. They correspond to the target values of an A-type quaternionic distance function
£ (x). This function has a flat parameter space that is spanned by the rational quaternions.

It means that in quantum fluid dynamics the coupling of QPAD’s can affect the local curvature.

7.5.1 Coupling equation
In its simplest form the continuity equation runs:

The continuity equation couples the local distribution {s to a source .

The coupling strength can be made explicit. This results in the coupling equation.

Vp=mdo

Here m is the coupling factor and ¢ is the adapted source.

8 Conservation laws
The following holds for all QPAD’s!!!

Only the interpretation tells whether the QPAD concerns a quantum state function, a photon, a gluon or
the field of a single charge, a field of a set of charges or a field corresponding to the density distribution
of eventually moving charge carriers.

8.1 Differential potential equations
Let ¢(q) define a quaternionic potential. The potential corresponds to a charge density distribution
¢o(q) and a current density distribution ¢p(q).

Note: This means that the following holds for any QPAD!
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d(@) = po(q) +p(q) = po(q@) + po(q)v(q) (1)

The gradient and curl of ¢(q) are related. In configuration space holds:

F(@) = Vo(q) = Vodo(q) TV, (@) £ Vod(q) £ Vo(q) £ (:Vx p(q))  (2)

€(q) ¥ —Voo(q) (3)
B(q) & Vx¢q) (4)
F(@) E Vo(a) = Fola) + F(a) (5)
Fo(@) = Vodo(q@) F(V, () (6)
F(@) = +€(q) £ B(q) £ Vop(q) (7)

Note: When the velocity v in ¢ changes, then an extra term V,¢(q) is added to equation (7).

8.1.1 Maxwell
In Maxwell equations, the electric field E(r, t) is defined as:

dp(r,t) dp(r,t) (1)
o - ErO-—

E(r,t) = —Vp(r,t) —

This is a remarkable decision, because ¢ can have components along € and components along B, while
€ and B are mutually perpendicular.

Further:
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oV, ¢(r, 1))

(V.E(r,0) = ~Vio(r, ) ——=

— pO(r' t) _ a<VJ ¢(r' t))

& at

In Maxwell equations, B(r) is defined as:

B(r,t) = VX ¢(r,t) = B(r,t)

Further:

0B(r,t)

VXE(rt)=— 5%

(V,B(r,t))=0

0E
VX B(r,t) = po(p + €05,)

8.2 Fluxvector

(2)

(3)

(4)

(5)

(6)

The longitudinal direction k of field €(q) and the direction i of field B(q) fix two mutual perpendicular
directions. This generates curiosity to the significance of the direction k X i. With other words what

happens with €(q) X B(q).

The flux vector S(q) is defined as:

S(q) € €(q) xB(q)
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8.3 Conservation of energy

(V,8(q)) = (B(q),V x €(q)) — (€(q),V x B(q)) (1)

= —(B(q), VoB(q)) — (€(q), p(9)) — (€(q), VoB(q))

= =%V, ((B(q),B(q)) + (€(q), E(1))) — (€(q), $(q))

The field energy density is defined as:

uriera(q) = ¥2((B(q), B(q)) + (€(q), €(9))) = up(q) + ue(q) (2)

&(q) can be interpreted as the field energy current density.

The continuity equation for field energy density is given by:

Vouriea (@) +(V,8(q)) = —(€(q), (@) = —do(9)(€(q),v(q)) (3)

This means that (€(q), ¢(q)) can be interpreted as a source term.

8.3.1 Interpretation in physics
Despite the fact that the above equations hold for any QPAD, we give here the physical interpretations
when € is the electric field and B is the magnetic field.

¢0(q)E(q) represents force per unit volume.

$0(@){€(q),v(q)) represents work per unit volume, or, in other words, the power density. It is known
as the Lorentz power density and is equivalent to the time rate of change of the mechanical energy
density of the charged particles that form the current ¢(q).

Voufield (q) + <V: G(Q)) = _Voumechanical(Q) (4)
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VolUmechanicat = (€(q), ¢(q)) = ¢do(q)(€(q),v(q)) (5)

v0 (ufield (C[) + umechanical(Q)) = _<V: 6(61)) (6)
Total change within V = flow into V + production inside V (7)
u(Q) = Ufjeld (CI) + umechanical(CI) =Uugp (CI) + ug (Q) + umechanical(CI) (8)

9
U= Ufield + Unmechanical = Up + Ug + Upmechanicat = j-u av ©)

14

d

—fudv - f(ﬁ,e>ds+fso av (10)

at g J
\%4

Here the source s; is zero.

8.3.2 How to interprete Umechanical
Unmechanical is the energy of the private field (state function) of the involved particle(s).

8.4 Conservation of linear momentum
&(q) can also be interpreted as the field linear momentum density. The time rate change of the field
linear momentum density is:

Vo8(q) = grieta(q) = Vo €(q) X B(q) + €(q) X VB(q) (1)
= (VxB(q) — p(@)) x B(q) — €(q) XV x E(q) (2)
G(E)=CEX(V X €) =(VE,E) — (€ E) = KLV(E,E) — (€, E) (3)
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= —V(€E) + %LV(E,E) +(V,E)E

= —V(EE + %15(€,E)) +(V,E)E

G(B) = Bx (V x B) = —V(BB + ¥%15(B,B)) + (V,B)B (4)
H(B) = —V(BB + %15(B,B)) (5)
Vo8(q) = G(B) + G(E) — p(q) X B(q) (6)

= H(€) + H(B) — p(q) x B(q) +(V,B)B +(V,E)€

= H(€) + H(B) — p(q) x B(q) — po(q) €(q)

=H(€)+ H(€) - f(q) =T(q) — f(q)

T(q) is the linear momentum flux tensor.

The linear momentum of the field contained in volume V surrounded by surface S is:

~ (7)
Pricia = | Gfieta AV = | pop dV + | (Vg,E) dV + ¢ (1, EA)dS
Joruatr=[ moavs [ wo0ay
f(@) = p(q) x B(q) + po(q) €(q) (8)

65



Physically, f(q) is the Lorentz force density. It equals the time rate change of the mechanical linear
momentum density gmechanical-

Imechanicat(q) = Pom(@)V(q) (9)

The force acted upon a single particle that is contained in a volume Vis:

F:fde:f(px B + py €) dV (10)
14 1%
Brought together this gives:

V0 (gfield (CI) + I mechanical (Q)) = _<V; T(Q)) (11)

This is the continuity equation for linear momentum.

The component Tj; is the linear momentum in the i-th direction that passes a surface element in the j-th

direction per unit time, per unit area.

Total change within V = flow into V + production inside V (12)

g(Q) = gfield(Q) + gmechanical(Q) (13)

14
P = Pfield + Pechanical = jg av (14)
|74

d
—fg dv = jg(ﬁ,.‘T)dS + fsg dv (15)
dt s J
4
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Here the source s, = 0.

8.5 Conservation of angular momentum

8.5.1 Field angular momentum
The angular momentum relates to the linear momentum.

h(q.) = (q—qc) x g(q)
hfieia(qc) = (@ — qc) X Gfiera(q)
hinechanicat(@) = (@ — qc) X Gmechanicar (q)
K(q.) = (q—qc) xT(a)

This enables the balance equation for angular momentum:

VO (hfield (qc) + hmechanical(qc)) = _<V'«7€(qc))

Total change within V = flow into V + production inside V

J= ]field + Jmechanical = f hdv
\%4

d
—jhdv=j£(ﬁ,ac>ds+fshdv
dt © J

\%4
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Here the source s, = 0.

For a localized charge density contained within a volume V holds for the mechanical torsion:
_ ' ' (8)
7(q0) = | (@' —q0) X f(qHav
v
~ [ @ = a0 % (po(@IE@) + (@) x B@))aV
14

=Q(q —q.) x (€E(q) + v(q) x B(q))

Jriera(qc) =Jfie1a(0) + q. X P(q) (9)

Using
da (10)
-—n
(Va,b) =n, 34, b,
da (11)
(b,Va)=n,—tb
Maqv u
holds
(12)

I ie1a(0) = f g’ x S(q"dV = f g’ X €(q") X V X $(q") dV
Vv Vv
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- f (@' x((V), €) — (q' X €, (V))) dV
|4

= f g (V), €)dV
Vv

+f@xqﬁdV—f(V,@q’x¢)dV+f(q’><¢)(V,(€)dV
7 74 |4

8.5.2 Spin
Define the non-local spin term, which does not depend on q' as:

Zfiela = f@(Q) X ¢(q)dV (13)
v
Notice
$(9) X Vo(9) = $o¥ X $(q) + V X (o (@)p(0))
And
Lfie1q(0) = ffI' x ((V¢), E)aV + f q' X popdV (14)
v 14
Using Gauss:
I(V, a)dV = jg(ﬁ, a)ds (15)
14 S
And
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po = (V,€) (16)

Leads to:
o ' 17
Jrie1a(0) = Zfie1q + Lfie1a(0) + %(n, €q' x ¢)dS (17)
s
8.5.3 Spin discussion
The spin term is defined by:
1
Zfielq = IG(CI) X ¢p(q)av @)

14

In free space the charge density po vanishes and the scalar potential ¢ shows no variance. Only the
vector potential ¢ may vary with go. Thus:

C=Vp,—-Vop=—-Vy¢ (2)

Friaa = [ Tob(@) X @)V 3)
14

Depending on the selected field 2%..s has two versions that differ in their sign. These versions can be
combined in a single operator:

z +field] (4)

Zricia = |y
field [2 Field

Voo (@)
Vo ()|

can be interpreted as the binormal 8B(q,).

¢(a@)
I (o)l

N(qp), then

can be interpreted as tantrix (q,) ) and

(Vod(@)x9(q)
[(Vop(a))xp(a)]

can be interpreted as the principle normal
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From these quantities the curvature and the torsion2? can be derived.

T(t) 0 k® 0 ][T® (5)
NO|=|-x® 0 T@®||NQ®
B(t) 0 —-t® 0 |([B®

%path characteristics
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